
ORIGINAL RESEARCH ARTICLE
published: 22 January 2015

doi: 10.3389/fpls.2015.00004

A multi-tissue genome-scale metabolic modeling
framework for the analysis of whole plant systems
Cristiana Gomes de Oliveira Dal’Molin*, Lake-Ee Quek , Pedro A. Saa and Lars K. Nielsen

Centre for Systems and Synthetic Biology, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Qld, Australia

Edited by:

Zoran Nikoloski, Max-Planck Institute
of Molecular Plant Physiology,
Germany

Reviewed by:

Damien Eveillard, Université de
Nantes, France
Nadine Toepfer, Weizmann Institute
of Sciences, Israel

*Correspondence:

Cristiana Gomes de Oliveira
Dal’Molin, Australian Institute for
Bioengineering and Nanotechnology,
The University of Queensland,
Corner College and Cooper Roads
(Bldg. 75), Brisbane, Qld 4072,
Australia
e-mail: c.gomesdeoliveira@
uq.edu.au

Genome scale metabolic modeling has traditionally been used to explore metabolism of
individual cells or tissues. In higher organisms, the metabolism of individual tissues and
organs is coordinated for the overall growth and well-being of the organism. Understanding
the dependencies and rationale for multicellular metabolism is far from trivial. Here,
we have advanced the use of AraGEM (a genome-scale reconstruction of Arabidopsis
metabolism) in a multi-tissue context to understand how plants grow utilizing their leaf,
stem and root systems across the day-night (diurnal) cycle. Six tissue compartments were
created, each with their own distinct set of metabolic capabilities, and hence a reliance
on other compartments for support. We used the multi-tissue framework to explore
differences in the “division-of-labor” between the sources and sink tissues in response to:
(a) the energy demand for the translocation of C and N species in between tissues; and (b)
the use of two distinct nitrogen sources (NO−

3 or NH+
4 ). The “division-of-labor” between

compartments was investigated using a minimum energy (photon) objective function.
Random sampling of the solution space was used to explore the flux distributions under
different scenarios as well as to identify highly coupled reaction sets in different tissues
and organelles. Efficient identification of these sets was achieved by casting this problem
as a maximum clique enumeration problem. The framework also enabled assessing the
impact of energetic constraints in resource (redox and ATP) allocation between leaf, stem,
and root tissues required for efficient carbon and nitrogen assimilation, including the
diurnal cycle constraint forcing the plant to set aside resources during the day and defer
metabolic processes that are more efficiently performed at night. This study is a first step
toward autonomous modeling of whole plant metabolism.
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INTRODUCTION
Genome-scale reconstruction and modeling of metabolism
enables the integration of knowledge at different levels of the cas-
cade from genes over proteins to metabolic fluxes. This is pivotal
to develop an understanding of how individual components in
a system interact and influence overall cell function (Oberhardt
et al., 2009; Blazeck and Alper, 2010). Reconstructions capture
our current knowledge of the full set of metabolic capabilities of
an organism (Figure 1A). In multicellular organisms, specific tis-
sues only utilize a subset of the full set of capabilities encoded
by the genome, and at the same time depend on other tissues
for support. While it is relatively easy to generate cell or tissue
specific models from single genome reconstructions (Figure 1B)
(Bordbar et al., 2011; de Oliveira Dal’Molin and Nielsen, 2013),
the real challenge is to gain insight into the intricate interactions
between the various tissue types and unravel their core metabolic
dependencies.

In the past few years, genome-scale reconstructions were
developed for several plant species, including Arabidopsis thaliana
(Poolman et al., 2009; de Oliveira Dal’Molin et al., 2010a; Mintz-
Oron et al., 2012), maize (Zea mays) (de Oliveira Dal’Molin
et al., 2010b; Saha et al., 2011), sorghum (Sorghum bi-color),

and sugarcane (Saccharum officinarum) (de Oliveira Dal’Molin
et al., 2010b). Our Arabidopsis genome-scale reconstruction
(AraGEM 1.0) was developed to provide a global genome-
scale description of plant metabolic capabilities (Figure 1A).
While AraGEM does not contain tissue-specific information,
it can be used to model important metabolic scenarios of
both photosynthetic and non-photosynthetic tissues (de Oliveira
Dal’Molin et al., 2010a). In separate work, Mintz-Oron et al.
developed a computational pipeline for cell compartmentaliza-
tion and generated 10 individual tissue-specific models, which
cover primary and some secondary pathways of Arabidopsis
(Mintz-Oron et al., 2012). More recently, Arnold et al. has
proposed an Arabidopsis core reconstruction and its util-
ity to estimate the metabolic costs of enzyme production
(Arnold and Nikoloski, 2013).

The Arabidopsis reconstructions have been explored using
several constraint-based modeling approaches and strong cor-
relations have been observed between predicted and observed
results (Poolman et al., 2009; de Oliveira Dal’Molin et al.,
2010a,b, 2014; Saha et al., 2011). Multi-tissue analysis has so far
not been performed directly on Arabidopsis models. However,
AraGEM formed the basis of our C4 model (C4GEM), which was
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FIGURE 1 | Genome-scale metabolic reconstruction and specific tissue

models. (A) The reconstruction represents the full set of metabolic reactions
of the organism. (B) Tissue or cell specific models can be derived from the
metabolic reconstruction to represent tissue and cell specific functions by

adding physical–chemical constraints and tissue biomass compositional data.
The common pools enable translocation of metabolites between tissues.
Chemical species that are translocated between tissues are internal
metabolites and must be balanced.

used to model C4 photosynthesis considering the tissue–tissue
interaction between mesophyll and bundle sheath cells (de
Oliveira Dal’Molin et al., 2010b). Two instances of the model,
one for bundle sheath and one for mesophyll, were connected
through exchange of metabolites via plasmodesmata. C4GEM
predicted the classical C4 photosynthesis pathway and was used
to: (i) investigate the effect in organelle function in mesophyll
and bundle sheath, (ii) explore the metabolic activities around
photosystem I and photosystem II for three different C4 sub-
types, and (iii) to explore the effects of CO2 leakage out of bundle
sheath.

Ultimately, the goal is to advance the reconstruction of
metabolism at the whole-plant level. Ideally, whole plant mod-
els would be used to obtain non-intuitive results from simple,
observable multi-tissue constraints. One of many potential uses of
the whole plant framework is to guide genetic engineering strate-
gies to improve the nitrogen and carbon use efficiency of crop
plants. Physiological representation and overall analysis, however,
cannot be achieved unless an integrated multi-tissue model-
ing framework for plants is developed. Here we have advanced
the use of AraGEM (de Oliveira Dal’Molin et al., 2010a) in
a multi-tissue context to explore complex interactions of car-
bon, nitrogen metabolism, and resource allocation in the whole
plant across the diurnal cycle. Using resource utilization as the
optimality criterion, we explore how plants efficiently allocate
resources between leaf, stem, and root while performing the

necessary carbon and nitrogen translocation over the diurnal
cycle.

MATERIALS AND METHODS
MULTI-TISSUE FRAMEWORK
Conventional genome-scale modeling deals with a cellular net-
work that exchange metabolites directly with the surrounding. We
recently demonstrated that the availability of these exchanges can
be controlled in a context-dependent manner (Quek et al., 2014).

When modeling whole plant systems, we must consider
the tissues, external pool (boundaries exchanges), exchange of
metabolites between tissues (common pools), temporal storage
and retrieval of metabolites and in particular, the diurnal cycle
constraint.

The multi-tissue modeling framework developed here differs
from the approaches used in modeling microbiome (Mahadevan
and Henson, 2012) and multi-tissues of human (Bordbar
et al., 2011). Although these problems can be solved by using
constraint-based optimization, the objective function, interac-
tion pools, boundaries and model constraints are different. When
modeling microbiomes for example, it is important to consider
the metabolic interactions that are possible in the studied com-
munity (i.e., competition, cross-feeding, syntrophy or mutual-
ism). In most studies, the community objective has been assumed
to be growth rate maximization of the individual microbes, but a
community level objective function in addition to the individual
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species objective function of growth rate maximization has been
also considered (Zomorrodi and Maranas, 2012). The individ-
ual tissues and organs of plants do not interact by competition.
Instead, the metabolism of individual tissues and organs is coor-
dinated for the overall growth and well-being of the organism.
Here we tested the framework under the assumption that the
whole plant metabolic network will minimize energy usage (pho-
ton capture) for plant growth (see Model Assumptions and
Constraints Section).

Common pool
Spatial transport is captured by defining a shared resource pool or
“common pool” (CP). CP has no storage capacity, so transport to
the pool from one tissue must be matched by transport to other
tissues. A model may have several CPs to describe distinct pools
shared by some but not all tissue types. A simple C4 model, for
example, would have a CP describing exchange between bundle
sheath and mesophyll tissue as well as a CP describing translo-
cation through the vasculature. Transport mechanisms fall into
two catagories passive and active. Passive transport mechanisms
do not require the cell to do work for the substance to enter or
leave the cell (e.g., diffusion or water transport). Active transport
mechanisms involve the cell to use cellular energy usually in the
form of ATP. In the multi-tissue model, active transport is cap-
tured by coupling transport to ATP hydrolysis. The difference in
energetics of loading and unloading can be captured by introduc-
ing separate transport for export and import. For the purpose of

illustration, the current study will consider a three-tissue (root,
stem, and leaf tissues) model with two interstitial CPs, one for
leaf-stem exchange and one for stem-root exchange (Figure 2).

Storage pool
Temporal storage and retrieval of metabolites is managed through
the introduction of a storage pool (SP). We can divide time into
as few or many periods as required. The key assumption is that
there is no net accumulation across all periods, i.e., whatever is
stored in one period must be retrieved in the other periods. For
illustration purposes, we will here consider a day-night cycle with
leaf starch being the only stored compound.

Stoichiometric matrix
We extended the concept of stoichiometric modeling to describe
the metabolite balance constraints for the whole-plant system.
Using an existing genome-scale model, we can define an internal
stoichiometric matrix S (i.e., excluding all transporters) and three
types of transport matrices. Matrix E represents the exchange
reactions of metabolites in S with the environment, matrix T the
transport reactions of metabolites in S with the common pool CP,
and matrix A the accumulation reactions of metabolites in S into
a temporal storage pool SP. The number of rows in matrix CP
or SP depends on the number of metabolites shared or stored,
respectively.

The stoichiometric matrix block representing the leaf, stem
and root tissues (l, s, r) exchanging with the environment and

FIGURE 2 | Tissue compartments, intercellular translocation and common pool over day-night period.
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common pools for a given period is shown below:

sblock =

⎡
⎢⎢⎢⎢⎢⎣

Sl 0 0 El→ 0 0 Tl→s 0 0 0
0 Ss 0 0 Es→ 0 0 Ts→l Ts→r 0
0 0 Sr 0 0 Er→ 0 0 0 Tr→s

0 0 0 0 0 0 ωlCPls ωsCPls 0 0
0 0 0 0 0 0 0 0 ωsCPsr ωrCPsr

⎤
⎥⎥⎥⎥⎥⎦
(1)

Mass fractions ωl, ωs, and ωr for the different three tissue types
(leaf, stem and roots) were introduced to convert intrinsic tissue
fluxes (moles/g DW/h) to extrinsic fluxes (moles/h), in order to
balance fluxes between tissues.

Temporal separation (i.e., day-night cycle) was achieved by
duplicating compartments for both tissues and common pools
and introducing SP. The large stoichiometric matrix linking
resource storage between day-night cycle is:

Swhole plant =
⎡
⎣

Sblock,day 0 Aday→ 0
0 Sblock,night 0 Anight→
0 0 ωdSP ωnSP

⎤
⎦ (2)

Where time fractions ωd, ωn were introduced to represent the
fraction of hours day light is available to the plant, in order to con-
vert rates to total flows. The introduced mass and time fractions
are shown in Supplemental Material (multi-tissue framework
folder, read me file).

Flux balance analysis (FBA) (Orth et al., 2010) was used to
investigate the uptake, assimilation and tissue reallocation of
nitrogen and carbon. The above metabolic problem can be solved
by linear programming using an objective function f and a set of
flux boundary constraints (vlb, vub).

min f Tv
Swhole plant · v = 0
vlb ≤ v ≤ vub

(3)

MODEL ASSUMPTIONS AND CONSTRAINTS
Equations (1)–(3) define a generic FBA model for a given genome
scale stoichiometry with a defined set of tissues and pools.
Specific models are formulated by specifying the objective func-
tion weights, f, the exchange weights, w, and the flux through a
subset of reactions. In the current example, we will consider a
minimal specification of fluxes to explore flux coupling and pho-
ton optimal flux distribution assuming the plant has access to the
full set of reactions. In alternative formulations, transcriptomics
and proteomics may be used to define tissue specific reactions
based on the gene-protein-reaction mapping.

Metabolic objective
We assume that plant metabolism (e.g., kinetics and regula-
tory factors) has evolved to become efficient at utilizing pho-
tons for growth (Equation 3). Efficient resource usage has been
successfully applied as the metabolic objective to predict sin-
gle and two-tissue metabolic function (de Oliveira Dal’Molin
et al., 2010a,b). Efficient photon utilization was used for the cur-
rent model objective and implemented as photon minimization
subject to achieving a given rate of biomass synthesis.

Plant growth rate and biomass composition for each tissue
were estimated based on literature data (Pooter and Bergkotte,
1992) (see Supplemental Material, Tables S1, S2). These numbers
were used to define plant growth rate and biomass composition
for each tissue. The set of constraints (upper and lower bound-
aries) is shown in Supplemental Material (Table S2). At this stage,
we do not account for nitrogen and carbon re-mobilization from
senescent leaves.

Phototrophic vs. heterotrophic
The leaf is treated as a phototrophic tissue, whereas the stem
and root are treated as heterotrophic tissue. These tissue-specific
activities were imposed using constraints on RuBisCO activity in
root and stem, vRuBisCO

root = 0 and vRubisCO
stem = 0.

Diurnal cycle: starch links day/night period
Starch is the major form in which carbon is stored in plants. We
assume a 12-h/12-h dark/light period and continual growth dur-
ing the night. Thus, starch must accumulate during the day to
meet metabolic requirements during the night, vstarch biomass

leaf , day ≥ 0

and vstarch biomass
leaf , night ≤ 0 (Smith et al., 2004).

Tissue translocation
The tissue model defines both the tissues and the metabo-
lites pools used for interaction (Figure 1B). The boundaries are
defined for each tissue and species defined for translocation
(e.g., sucrose, amino acids, NO3, H2O) considering both day
and night period. Phloem loading and unloading of amino acids
and sucrose is dependent on an energy-requiring mechanism
(Giaquinta, 1979; Servaites et al., 1979). However, identifying
transport mechanisms responsible for translocation of photoas-
similate to and from the leaf as well as to measure the energy
demand for the translocation process has proven challenging.
The multi-tissue framework incorporates translocation energet-
ics through a “penalty weight” (pw) for the species translocated
between tissues (captured by coupling transport to ATP hydroly-
sis). For example, the penalty weight for sucrose translocation can
be described as:

(pw) [ATP + H2O] + [Sucrose](leaf)

= (pw)
[
ADP + Orthophosphate

]
(leaf) + Sucrose(common pool)

where pwsucrose
leaf , CP > 0, when the translocation process of

sucrose from leaf to the common pool is considered active.
Passive diffusion is described by defining zero penalty, e.g.,
pwsucrose

leaf , CP = 0.
By varying pw, we were able to evaluate the main changes in

the metabolic network caused by an active translocation process
compared to a passive translocation process for glutamate, nitrate
and sucrose between tissues.

Nitrogen source
The model was used to contrast two nitrogen sources: nitrate
and ammonium. The contrast was implemented by constraining
uptake of the alternate nitrogen source, e.g., ammonium uptake

was constrained to zero, v
NH3 uptake
root = 0, to describe nitrate

metabolism.
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MODEL ANALYSIS
Comparison of flux distributions under different conditions
The solution to any genome scale FBA problem (Equation 3)
is degenerate, i.e., multiple solutions produce the same optimal
value. Comparisons can be made using representative values
determined by adding an additional criterion, for example,
choose the optimal solution that minimizes total enzyme effort
required. This can be calculated as an optimal solution to
Equation (3) that also minimizes the L1-norm (taxicab norm):

min
∑

i
|vi|

s.t.
Swhole plant · v = 0
f Tv = Zopt

vlb ≤ v ≤ vub

(4)

where Zopt denotes the solution found in Equation (3).

Flux variability analysis
If no additional criterion is introduced, Flux Variability Analysis
(FVA) (Mahadevan and Schilling, 2003) can be employed to
determine which flux variables are fixed and which can vary under
optimal conditions. FVA determines the lower and upper value
for each flux, one at a time

min/max vi

s.t.
Swhole plant · v = 0
f Tv = Zopt

vlb ≤ v ≤ vub

. (5)

Random sampling of the solution space
FVA identifies the extreme values for each individual reaction.
Uniform sampling of the solution space has been increasingly
used for studying the correlation structure of metabolic networks
(Almaas et al., 2004), unraveling transcriptional regulation in
key enzymes (Price et al., 2004; Bordel et al., 2010) and deter-
mining important metabolic interactions between different cell
types (Bordbar et al., 2011; Shoaie et al., 2013). In our case, we
employed sampling to explore flux distributions under different
scenarios as well as to identify coupled reaction sets in different
tissues and organelles. Prior to sampling, we used FVA to remove
all blocked reactions in the model given the constraints of the
different scenarios analyzed. Next Monte Carlo sampling was per-
formed using a modified version of the Artificially Centered Hit-
and-Run (ACHR) algorithm (Kaufman and Smith, 1998), which
is readily available within the COnstrained Based Reconstruction
and Analysis (COBRA) Toolbox (Schellenberger et al., 2011). A
total of 105 uniformly distributed samples were generated and
used to calculate pairwise. Pearson correlation coefficient (ρ) was
calculated.

Modules of coupled reactions were identified from the sets
of highly correlated reactions by casting the problem as the
maximum clique enumeration problem (Eblen et al., 2012).

The adjacency matrix (Adj) was constructed based on the
reactions (i, j) with correlations higher than a correlation cut-
off (|ρij|> ρcut−off). This matrix represents an undirected graph

G = (V, E) consisting of a finite sets of vertices V (reactions)
and a finite set of edges E (coupled reaction pairs). The prob-
lem of finding the largest sets of fully connected reaction modules
can now be cast as listing maximal cliques. A clique is a sub-
set C of the vertex set (C ⊆ V) such that every vertex in C
is connected to all the other vertices in the clique, i.e., C is a
complete graph. All maximal cliques were enumerated using the
Bron–Kerbosch algorithm based on recursive backtracking (Bron
and Kerbosch, 1973). In this way, we were able to identify and
visualize maximal cliques involving highly correlated reactions
from different tissues, organelles and day periods under different
conditions.

Computational implementation
AraGEM was used as the base metabolic model for the con-
struction of the multi-tissue model. FBA, FVA and coupling
calculations were performed using Gurobi Optimizer 5.6 (Gurobi
Optimization, Inc.) within the MATLAB 2013a environment
(The MathWorks, Natick, MA). MATLAB scripts, along with
instructions to use the scripts, are provided in Supplementary
Materials.

RESULTS AND DISCUSSION
Nitrogen use by plants involves uptake, assimilation and translo-
cation/remobilization. Nitrogen is most often taken up by plants
as water soluble nitrate (NO−

3 ; usually the most abundant form),
ammonium (NH+

4 ) and to a lesser extent, as proteins or amino
acids (Masclaux-Daubresse et al., 2010). The combined use of
ammonium (NH+

4 )-based fertilizers and nitrification inhibitors
can effectively alleviate the two main environmental problems
associated with nitrogen fertilization, namely water pollution
caused by nitrate leaching and gaseous emissions of nitrogenous
compounds. As such, the use of NH+

4 has been proposed as a
good alternative to nitrate-based fertilizers (Lesschen et al., 2011).
Once nitrogen has been taken up and assimilated, it is transported
throughout the plant as glutamine, asparagine, glutamate, aspar-
tate, NO−

3 and NH+
4 for utilization, storage and remobilization

(McAllister et al., 2012). The assimilated nitrogen forms are trans-
ported via xylem and distributed to mesophyll cells, where they
are either stored or utilized for carbon assimilation.

The current framework is flexible and allows for translocation
between tissues and temporal storage of any number of compo-
nents. For the sake of simplicity, we here use the simplest possible
model based on the following assumptions: (i) most of C and N
species are translocated in between tissues in the form of NO−

3 ,
glutamate, and sucrose; (ii) most of NH+

4 is assimilated in roots
rather than translocated to source tissues; (iii) starch is the major
storage component and is accumulated in leaves; (iv) growth is
constant day and night; and (v) the whole plant will use the
minimum energy capture (i.e., best network performance with
minimum photon usage).

Under these assumptions, we used the multi-tissue frame-
work to explore differences in the “division-of-labor” between the
source and sink tissues as a function of (a) the energy demand for
the translocation of C and N species in between tissues, and (b)
the nitrogen source (NO−

3 or NH+
4 ) used. The model-highlights

discussed here are to show the potential use of the framework
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in whole-plant systems only. Biological interpretation requires a
more detailed model as well as experimental validation.

THE EFFECT OF ACTIVE TRANSPORT ON TISSUE-TRANSLOCATION IN
THE NETWORK
Random sampling of the solution space was used to compare
active (with energetic penalties) vs. passive (without penalties)
tissue translocation under nitrate as sole N source (Figure 3). The
model highlights that the restriction of one metabolic step, such
as the increase in energy requirement for C or N species to be
translocated between tissues, can have a profound effect on the
behavior of the plant network as a whole. Figure 3A illustrates N
uptake and assimilation pathways across sink and source tissues.
The initial reduction of NO−

3 to NO−
2 occurs in the cytoplasm

and it is carried out by nitrate reductase (step 9 and 15). Further
reduction of NO−

2 occurs in the plastid/chloroplast by nitrite
reductase, which converts NO−

2 to NH+
4 (step 10 and 16). NH+

4
assimilation takes place in the plastid and leads to the formation
of glutamine and glutamate (step 11–12 and step 17–18) through
glutamine synthetase/glutamate synthase (GS/GOGAT). Nitrate
and nitrate reductases are available in all tissues and various iso-
forms of GS/GOGAT enzymes (GS: EC 6.3.1.2, NADH-GOGAT:
EC 1.4.1.3, and ferredoxin (Fd)-GOGAT: EC1.4.7.1) enable these
reactions in both photosynthetic and non-photosynthetic tissues.

The histogram for each reaction shows the change in flux dis-
tributions caused by the tissue translocation penalties. The flux
distribution shapes give information about the sensitivity of the
solution space to each constraint. Introduction of an energy cost
of transportation greatly affected the probability distributions
through many reactions in the network. For instance, the flux dis-
tribution for glutamate translocation changed not only in shape,
but also in direction (step 14). Under free tissue-translocation
(no penalties), the model predicts that nitrate is taken up in
roots (sink tissues) but is preferentially assimilated into glutamate
in leaves (source tissues). However, under high energy demand
for tissue translocation (with penalties), nitrate is preferentially
assimilated in roots.

According to the simulations, the translocation constraint is
likely to affect many reactions involved in nitrogen metabolism,
whereas steps through carbon fixation, photon uptake, starch
synthesis/degradation, nitrate uptake and glutamate synthase (in
source tissues) are less likely to be affected based on the very
similar flux distributions (steps 1–4, 7). Differences in sensitiv-
ity of fluxes carried by isoforms of GS/GOGAT enzymes are also
highlighted. Our results suggest that the flux through plastidic
glutamate synthase in root is likely to be more sensitive to the
translocation constraint than its isoform in leaves.

COUPLING ANALYSIS IN THE N UPTAKE AND ASSIMILATION
PATHWAYS
Uniform random sampling of the steady-state flux space was used
to calculate the correlation coefficient between subsets of fluxes
of the N uptake and assimilation pathways under different tissue
translocation constraints (Figure 3B). The method also enabled
us to identify highly-correlated but not perfectly-correlated reac-
tion subsets. Perfect positive and negative correlations (1.0, −1.0)
are shown in red and blue, respectively.

Identification of the correlated reaction sets can aid experi-
mental design. The measurement of any flux in a perfectly cor-
related reaction set determines the steady-state flux level though
all the reactions (Price et al., 2004). For instance, our analy-
sis shows that glutamate translocation between sink and source
tissues is perfectly correlated to fluxes through nitrate/nitrite
reductases (in leave) and to sucrose translocation, independent
of the translocation penalties. Meaning for example that any flux
perturbation through the nitrate/nitrite reductases in leave (step
9–10) caused by genetic modifications is likely to affect gluta-
mate (step 14) and sucrose translocation (step 5–6) in between
source and sink tissues. The analysis also shows that inefficiency
in photon absorption or limited light exposure (step 1), is likely
to affect nitrate uptake in roots (step 7), independently of the
tissue-translocation constraint.

The translocation penalties affected the correlation of a few
reaction sets. For instance, glutamate translocation (step 14) is
only perfectly correlated to fluxes through nitrate/nitrite reduc-
tases in root (step 15–16) under none or minimum restriction in
energy requirements for tissue translocation.

In the absence of experimentally determined cost of active
transport, the subsequent studies of the effect of nitrogen source
was performed assuming no (or minimal) tissue translocation
penalties.

FLUX VARIABILITY ANALYSIS OF N CONTRASTS: NO−
3

vs. NH+
4

UPTAKE
Flux variability analysis (FVA) was performed under two nitrogen
sources. The predicted uptake rates of nitrate or ammonium are
the same during day and night, approximately 7 mmol/g tissue.h
under the tested conditions (Table S3, Supplemental Material).
This is a direct consequence of the assumptions that (a) growth
is constant day and night and (b) there is no nitrogen storage
compound to transfer nitrogen between day and night. While
this is evidently a gross simplification of metabolism, there is
experimental evidence that the enzymes of the NO−

3 and NH+
4

assimilation pathways are active over the diurnal cycle at least in
tobacco roots (Stohr and Mack, 2001).

The metabolic network characteristics are presented for NO−
3

or NH+
4 condition (Figure 4). The network differs only due to the

imposition of the nitrogen usage as a constraint. The remaining
constraints (i.e., biomass growth rate, biomass composition, reac-
tion with fixed boundaries) are the same in both N conditions.
The imposition of the constraints and optimality criterion define
the reactions carrying: zero, fixed and variable fluxes (non-zero
flux range). Following this preliminary analysis, we then com-
pared the FVA results between the two different nitrogen sources,
assuming photon efficiency.

NITRATE USE INCURS SIGNIFICANTLY HIGHER METABOLIC COST
The model shows significant metabolic changes in N uptake and
assimilation pathways due to the use of N source (Figure 5). The
plant network flexibility does not overcome the fundamentally
higher cost of using NO−

3 rather than NH+
4 . The model pre-

dicts an increase of approximately 17% in photosynthesis and C
fixation (measured by photon uptake rate) is required on NO−

3
compared to NH+

4 to sustain the same plant growth. This is a
direct result of the cost of nitrate and nitrite reduction.
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FIGURE 3 | The effect of active tissue translocation on nitrogen

uptake and assimilation pathways using nitrate as nitrogen source.

(A) Flux distributions for the nitrogen uptake and assimilation pathways
in the multi-tissue model. The histograms next to each reaction step
represent the flux distributions with active tissue translocation (with
translocation penalties, red) and with passive transport (without

translocation penalties, blue) for sucrose, glutamate and nitrate species.
Distributions shown are based on 105 uniform samples from the solution
space. (B) Correlation between fluxes were calculated between pairs of
reactions of the multi-tissue model using the 105 random sample points.
Perfect positive and negative correlation (1.0, −1.0) are shown in dark red
and blue, respectively.
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FIGURE 4 | Flux variability analysis of the multi-tissue metabolic

network. (A) General network characteristics under two nitrogen sources.
(B) Number of shared and unique reactions under nitrate or ammonia uptake.

Blocked reactions: reactions carrying zero flux; fixed rxns: reactions with a
fixed, non-zero flux (due to the objective function or the imposition of
constraints); variable rxns: reactions with a non-zero flux range.

Consequently, the multi-tissue model predicts flux increases
in carbon assimilation and starch accumulation in leaf tissues,
in order to sustain the same plant growth rate under NO−

3
metabolism. An increase of approximately 27% in starch accu-
mulation in leaf tissues is required in order to keep the same
leave biomass composition (i.e., avoiding any biomass penalties)
and to sustain the same plant growth rate. The increase in starch
accumulation is achieved by increasing carbon fixation and pho-
tons usage. Stored starch in the source tissue during the day is
degraded during the night into sugars that are then used to sus-
tain leaf tissue biomass and some are translocated to sustain the
sink tissues. Our simulations show no changes in starch degra-
dation during the day. However, flux through starch degradation
increases over night in leaf tissues to sustain plant growth (Table
S3, Supplemental Material).

Plant growth relies on the efficient and controlled distribution
of sucrose and source-to-sink transport of sugars is a major deter-
minant of growth. For most plants, this occurs by loading sucrose
into the phloem and transporting it from source tissues to sink
tissues, where sucrose in unloaded (Giaquinta, 1977; Truernit and
Sauer, 1995; Srivastava et al., 2008). Given constant growth rates
during day and night, it is unsurprising that sucrose translocation
from source to sink tissues have similar rates over these periods
(Supplemental Material, Table S3). However, a decrease in sucrose
translocation flux from source to sink tissues is required in order
to sustain the same plant growth rate when NO−

3 is the nitrogen
source compared to NH+

4 . On the other hand, nitrate transloca-
tion from sink to source tissue is increased. The model predicts
that N is preferentially assimilated into glutamine in leaves, and
glutamate translocation from source to sink tissue is increased on
NO−

3 compared to NH+
4 usage.

Overall, our model predicts that changes in nitrogen uptake
and assimilation pathways are intimately coupled to changes in
carbon fixation, photoassimilates and carbon translocation from
source to sink tissues. Simulation results support the hypothe-
sis that source-to-sink sucrose can be affected by nitrogen supply
and shows that the carbon-nitrogen balance and partitioning are
controlled by (i) the supply of assimilates via photosynthesis, (ii)
nitrogen source, and (iii) ability of different organs to utilize the
available supply.

VISUALIZING COUPLED REACTION MODULES
Clique analysis has been used previously to visualize the corre-
lation structure of A. thaliana metabolomics data and to obtain
further information about metabolite relationships (Kose et al.,
2001). Here, we used clique analysis to visualize the largest sets of
fully connected reaction modules for different conditions and dif-
ferent correlation cut-offs (ρcut−off) under optimal photon uptake
(Supplemental Material, Table S4). Figure 6 presents the largest
sets of fully connected reaction modules (i.e., maximal cliques)
under different N sources using a high correlation threshold
(ρcut−off = 0.95). Each coupled reaction pair is represented as two
vertices connected by an edge. Coupling analysis enabled us to
identify and visualize highly coupled reactions from different tis-
sues, organelles and day periods under different conditions. For
instance, two reaction modules coupled between source and sink
tissues under nitrate condition (Figure 6A). The nodes shown in
blue are “tissue linkers” and represent the C and N species translo-
cated in between source and sink tissues (e.g., sucrose, nitrate
and glutamate). These transporters are highly coupled to step
reactions of N and C assimilation in source tissues. Similarly, we
observed clusters of highly coupled reactions between different
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FIGURE 5 | Metabolic flux contrast during light period in the nitrogen

uptake and assimilation pathways across source and sink tissues, under

sole nitrate compared to sole ammonia as nitrogen source (no

translocation penalty considered). Enzymatic step reactions are displayed
based on the model reaction IDs. R00794_c, cytosolic nitrate reductase;
R00794_p, plastidic nitrite reductase; R00253_p, plastidic glutamine

synthase; R00093_p, plastidic glutamate synhtase, R00243_m, mitochondrial
glutamate dehydrogenase; R02110_p, starch branching enzyme; R02112N_p,
beta-amylase; R00024, ribulose-bisphosphate carboxylase; G3P,
glyceraldehyde-3-phosphate; hv_ext, photons uptake. Direction of glutamate
translocation: from source tissue to sink tissue under nitrate condition and
from sink tissue to source tissue under ammonia condition.
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FIGURE 6 | Coupling analysis under nitrate and ammonia

conditions. (A) Highly coupled reactions in different tissues under
nitrate condition. (B) Coupled reactions within the same tissue and

between different organelles under nitrate condition. (C) Coupled
reactions within the same tissue and between different organelles
under ammonia condition.

organelles within stem and root tissues under nitrate condition
(Figure 6B). The first cluster represents highly coupled reactions
between cytosol and mitochondrion. The second cluster displays
highly coupled reactions of the pentose phosphate pathway and C

fixation in plastids, whereas the third cluster shows highly corre-
lated reactions in mitochondrion. Under ammonia condition, the
maximal clique was found in root tissue (Figure 6C). This cluster
includes reactions involved in fatty acid synthesis (in plastids) and
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beta-oxidation (in peroxisome) pathways. Interestingly, we found
that most of these step reactions are blocked (zero flux) under
the nitrate condition. These are only a few examples of how non-
trivial correlations can be obtained from a topological analysis of
the multi-tissue network.

CONCLUDING REMARKS
Efforts toward multi-tissue and ultimately whole-plant models
will form an important component of genome scale computa-
tional models of plant growth and development and are likely
to play a major role in efforts to improve crop yield and qual-
ity. Here, we have presented a flexible multi-tissue modeling
framework to study whole plant resource allocation over the diur-
nal cycle, coupling both spatial (via cell/tissue interfaces) and
temporal (across the diurnal cycle) processes.

This approach may generally be coupled to extensive omics
data sets in a two way interaction where data narrows the solu-
tion space and the network model enable us to gain biologically
meaningful insights into complex networks and system level
interactions.

In the current study, we did not constrain the tissue models
using gene expression data for leaf, stem or root tissues. Instead,
we used the minimum set of constraints for key biochemical
reactions that distinguish phototrophic (leaf) and heterotrophic
(stem and root) tissues. This enabled us to explore the optimum
distribution of metabolic fluxes in the whole plant system, assum-
ing that plant metabolism (e.g., kinetics and regulatory factors)
has evolved to become efficient at utilizing photons for growth.

With minimal constraints, the solution space remains large.
Using random sampling, however, we were still able to unravel
network-wide effects of (a) imposing energy penalties to account
for active transport and (b) using NO−

3 rather than NH+
4 as

nitrogen source. Identification of highly correlated reactions sets
enabled visualization of key pathways linking metabolic reactions
from different tissues, organelles and day periods under different
conditions. The examples of in silico flux predictions illustrate the
potential of this framework to interrogate plant metabolism at the
multi-tissue level.
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