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Metabolite levels together with their corresponding metabolic fluxes are integrative
outcomes of biochemical transformations and regulatory processes and they can be
used to characterize the response of biological systems to genetic and/or environmental
changes. However, while changes in transcript or to some extent protein levels can usually
be traced back to one or several responsible genes, changes in fluxes and particularly
changes in metabolite levels do not follow such rationale and are often the outcome
of complex interactions of several components. The increasing quality and coverage of
metabolomics technologies have fostered the development of computational approaches
for integrating metabolic read-outs with large-scale models to predict the physiological
state of a system. Constraint-based approaches, relying on the stoichiometry of the
considered reactions, provide a modeling framework amenable to analyses of large-scale
systems and to the integration of high-throughput data. Here we review the existing
approaches that integrate metabolomics data in variants of constrained-based approaches
to refine model reconstructions, to constrain flux predictions in metabolic models, and to
relate network structural properties to metabolite levels. Finally, we discuss the challenges
and perspectives in the developments of constraint-based modeling approaches driven by

metabolomics data.
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INTRODUCTION

The metabolome comprises the complete set of metabolites, the
non-genetically encoded substrates, intermediates, and products
of metabolic pathways, associated to a cell (Nielsen and Jewett,
2007). While RNA and proteins are encoded in the DNA, the
variety of metabolites with their particular chemical properties
is immensely large and cannot be directly inferred from the
genome (Lenz and Wilson, 2007). Therefore, metabolites can be
regarded as the bridging component between the genotype and
the phenotype (Fiehn, 2002).

Recent years have witnessed the development and application
of metabolomics technologies that facilitate large-scale identi-
fication and quantification of metabolites. These technologies
complement the well-established methodology used in genomics,
transcriptomics, and proteomics studies which are marked by
a large coverage of the respective cellular components (Romero
et al,, 2006). The integration of data generated from these
high-throughput platforms holds the promise to ultimately help
determine the gene-function relationship (Nobeli and Thornton,
2006)—the long-standing goal of modern biology.

Metabolome analysis aims at identifying and quantifying the
entire collection of metabolites in a biological system (Oliver
et al., 1998). As the spectrum of metabolites is extremely wide
in concentration and physico-chemical properties, no single
methodology can facilitate the simultaneous measurement of the
entire metabolome (Nobeli and Thornton, 2006). Therefore, the
term metabolomics refers to a collection of technologies which

cover different parts of the metabolome (Redestig et al., 2011).
Usually, metabolomics studies report relative quantifications of
metabolites, determined by the fold-change (unitless number)
of the peak size between two samples. In comparison, absolute
metabolite quantifications require calibration curves of standards
for each metabolite, and result in levels given in moles per weight
of tissue, e.g., mol per gram (g) fresh weight (FW). While rela-
tive changes in metabolite levels provide sufficient information
for many applications, there is an increasing focus on the determi-
nation of absolute metabolite levels. For a comprehensive review
about the spectrum of metabolomics approaches we refer to
Dettmer et al. (2007) and Kueger et al. (2012).

Since metabolites are embedded in an intricate network struc-
ture, the metabolome can be regarded not only as a connect-
ing component between the genotype and the phenotype, but
also as a cellular level in its own right. Large-scale studies of
metabolism have shifted focus from the analysis of the struc-
ture of the underlying network, driven by progress in complex
network research (Jeong et al., 2000; Parter et al., 2007), to under-
standing the relation of metabolic processes to other cellular levels
affecting them (e.g, transcriptional and translational regulation,
Chandrasekaran and Price, 2013; Scott et al., 2014, as well as pro-
tein abundances and turnover, O’Brien et al., 2013). Formal large-
scale analysis of metabolism, even under simplifying assumptions
about the laws governing the transformation of molecules, is par-
ticularly challenging due to the nonlinearities in the underlying
relationships. As metabolomics data are read-outs from complex
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interaction networks, their analysis in a network context can
reveal the underlying network structure and regulation. Two main
approaches are usually applied to model metabolic networks—
kinetic approaches and stoichiometry-based methods.

Classical kinetic modeling approaches describe the rate of
change in the concentration of the considered metabolites based
on the enzyme kinetics (e.g., mass action or its derivative,
Michaelis-Menten) with the corresponding parameters (e.g., rate
constants or phenomenological constants, such as maximum
reaction velocity Vi, and dissociation (Michaelis-Menten) con-
stant K,). Therefore, the solution of the resulting system of
ordinary differential equations, dX/dt = N - v(X, p), with X rep-
resenting the concentration of metabolites, N representing the
stoichiometric matrix, v the vector of metabolic fluxes (i.e., rates,
velocities), and p standing for the various parameters, yields
the concentration-time trajectories of the metabolites. These
approaches have successfully been applied to study small and
moderate-sized metabolic networks (for general reviews see Resat
et al., 2009; Machado et al., 2011).

However, the advances in high-throughput technologies dur-
ing the last two decades paved the way for large-scale metabolic
network reconstructions which aim at providing an integrated
view of an organism’s metabolism. These models not only rep-
resent the stoichiometry of several hundred to several thousand
metabolic reactions in the stoichiometric matrix but they also
contain a mathematical representation of the gene-reaction rela-
tionship. For example, this annotation makes it possible to in
silico study the phenotype of gene knockouts or to integrate tran-
scriptomics data (for reviews see Blazier and Papin, 2012; Lewis
et al., 2012). Moreover, a comprehensive overview of the genera-
tion of genome-scale models can be found in Thiele and Palsson
(2010) and Henry et al. (2010). As a kinetic description of the
behavior of these large networks is hampered by uncertainties
in both, the underlying kinetics and the respective parameters,
a large collection of stoichiometry-based (often also referred to
as constraint-based) approaches have been developed in paral-
lel with genome-scale models. These approaches are derived from
the classic Flux Balance Analysis (FBA) formulation (Varma and
Palsson, 1994a; Orth et al., 2010, and also see Table 1) and have in
common that they solely rely on the stoichiometry of the network,
given chemico-physical constraints, and an optimization goal
under which the organism is considered to operate. For example,
for microorganisms this optimization goal, or the so called objec-
tive function, is usually the maximization of growth (Feist and
Palsson, 2010). For other systems, such as blood cells or plants,
the minimization of fluxes or photon usage was introduced as
an alternative principle (Holzhiitter, 2004; De Oliveira Dal’Molin
et al.,, 2010). Moreover these FBA-based methods assume that
changes on the metabolic level happen so fast that the system
under consideration can be considered to be in a steady-state
(Varma and Palsson, 1994b):

d—X—N (X,p)=0
ar VP =D

The steady-state assumption allows solving the system of lin-
ear equations, N - v = 0, for the metabolic fluxes. Nevertheless,

despite the resulting decoupling of fluxes and metabolite
concentrations in classical stoichiometry-based approaches, in
recent years elaborate methods have been developed to facili-
tate the integration of not only metabolomics data but also the
plethora of high-throughput data from other levels of the cellular
organization.

In this comprehensive systematic review, we present
constraint-based approaches that make use of metabolite data
to refine model reconstructions, to constrain flux predictions
in metabolic network models, and to relate network structural
properties to metabolite levels (see Table2 and Figure1). We
particularly focus on plant-specific studies that make use of the
covered approaches. Finally, we discuss current limitations and
challenges in data generation, method development, and their
coupling in applications.

METABOLITE DATA TO RECONSTRUCT TISSUE-SPECIFIC
NETWORKS

MODEL BUILDING ALGORITHM

The Model Building Algorithm (MBA) makes use of metabolites
that were detected in a given organ or tissue (Jerby et al., 2010).
In its first application, a liver metabolomics data set was used
for the reconstruction of tissue-specific networks from a generic
human metabolism model. The metabolomics data are employed
in combination with other tissue-specific data, such as: literature-
based knowledge, transcriptomics, proteomics, and phenotypic
data, to define two sets of reactions—high-probability (Cy) and
moderate probability reactions (Cps). High-probability reactions
are those that are part of human-curated tissue-specific path-
ways. A reaction is considered to be a member of the group of
moderate probability reactions only if it was necessary for the
inclusion of a liver metabolite that appeared in the metabolomics
data or if it was supported by at least two of the used data
sources.

The subsequent optimization procedure employs a greedy
heuristic search algorithm to arrive at the most parsimonious
tissue-specific consistent model that guarantees the inclusion of
all the tissue-specific reactions in Cp, a maximum number of
reactions from Cyy, and a set of additional reactions from the
generic model that are necessary for gap filling. Cross validation
was used for model selection by leaving out core reactions as well
as data sets to predict hepatic flux measurements. Finally, the
derived liver model was validated by simulating various known
hepatic metabolic pathways. Predictions of metabolic biomarkers
demonstrated that the resulting model performed better than the
underlying generic model.

In planta—application of the MBA for extracting tissues-specific
Models of Arabidopsis from a generic model

MBA was used to extract 10 tissue-specific metabolic networks
(i.e., culture light, culture dark, silique, flower bud, open flower,
root 10 days, root 23 days, juvenile leave, cotyledon, and seed)
from a generic model of Arabidopsis thaliana (Mintz-Oron et al.,
2012). The authors slightly adapted the method to fit plant-
specific modeling needs. First, they allow not only for the addition
of generic reactions to the set of core reactions, but also for
the relaxation of irreversibility of existing core reactions, if this
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Table 1 | Mathematical formalisms in computational biology used throughout this review.

Formalism

Mathematical formulation

Flux balance analysis—FBA (Varma and Palsson, 1994c)

This computational approach predicts steady-state flux distributions that are thermodynamically
feasible and mass-balanced. The underlying assumption of the method is that the organism under
consideration operates under a certain optimality goal, e.g., the maximization of growth for
microorganisms. The optimization problem formulation relies solely on the stoichiometry of the
participating reactions (represented in the stoichiometric matrix S), lower and upper boundaries (Viin
and vmax) for the respective fluxes and an optimization goal (captured in the vector ¢) as input. No
knowledge of initial metabolite concentrations or kinetic parameters is required.

max CT -V

dx __ _
st.=Sv=0

Vmin = V = Vmax

Minimization of metabolic adjustment—MOMA (Segre et al., 2002)
This FBA-based method was developed to identify a feasible flux distribution of a genetically perturbed
system which is closest to the wild-type flux distribution. The rationale for this approach is the

min (v — w)2
ax _ —
stg=S-v=0

Vmin =V = Vmax

assumption that the metabolic network of the organism under consideration adjusts to the vk =0keA
perturbation with a minimal rewiring of the flux profile. The set A contains all reactions which are

switched off in the perturbed organism. Due to the introduction of the Euclidean norm the resulting

optimization problem is quadratic.

Regulatory on/off minimization—ROOM (Shlomi et al., 2005) min 27721 Vi

Similar to MOMA, this method aims at predicting steady-state flux distributions in a perturbed system
which are closest to the wild-type flux distribution. However, ROOM relies on the minimization of the
number of significant changes of fluxes (hence on/off) with respect to the wild type. The thresholds
determining significant flux changes are given by wY and wt for upper and lower bounds,
respectively. They are defined by relative (8) and absolute (¢) ranges of tolerance from the wild type
fluxes. For each flux v;, 1 < i < N, y; = 1 for a significant flux change in flux v; and y; = 0 otherwise.
The introduced binary variables (y;) render the problem a mixed-integer linear problem (see below).

s.t.% =S-v=0

Vmin = V = Vmax
vi=0,keA

Vil<i<m

Vi—VYi (Vmax,/ - W,-U) = W/U

L L
Vi—VYi (Vminj - W ) =W,

yi € {0, 1}
U

W= wi+ 8wl +e
W,.L= w; =8 |w| —¢
Dual formulation Primal:
The duality theorem states that for every Primal optimization problem, there exists a Dual problem. In maxc - x
general, the solution to the Dual problem provides a lower bound to the solution of the Primal s.t.S-x=0b
(minimization) problem. For convex optimization problems the value of an optimal solution of the x>0
Primal problem is given by the value of an optimal solution of the Dual problem (Boyd and Dual:
Vandenberghe, 2004). Here, x and y is the vector of the Primal/Dual variable, respectively. minb -y
st.y-S=c¢
x>0
Convex vs. non-convex optimization
For a convex optimization problem, if it is feasible, there can only be one optimal solution, which is
globally optimal. Linear programming problems are always convex problems. Non-convex optimization
may have multiple local optima. Hence, convex optimization problems can be much faster and more
efficiently solved than non-convex optimization problems.
Linear programming (LP) minc’ - x
Optimization problem in which the objective and all constraints are linear. If the vector of variables x s.t. Ax<b

includes entries which are only allowed to be integers the problem changes into a Mixed-integer linear
programming (MILP) problem.

Xmin = X = Xmax

Quadratic programming (QP)
Optimization problem in which the objective is a quadratic function and all constraints are linear.

. T
min $x Q- x+c' - x
s.t.Ax<b

Xmin = X = Xmax

Nonlinear programming (NLP)

Optimization problem in which the objective and/or constraints are nonlinear. If the vector of variables
x includes entries which are only allowed to be integers the problem changes into a Mixed-integer
nonlinear programming (MINLP) problem.

min f(x)
s.t. g(x)<b

Xmin = X = Xmax
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FIGURE 1 | Schematic overview of the described approaches. Depicted
are the different levels and methods at which constraint-based approaches
integrate metabolite data—starting from the model reconstruction to the
validation of experimental observations. MBA, Model Building Algorithm
(Jerby et al., 2010); GIM3E, Gene inactivation Moderated by Metabolism,
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Metabolomics, and Expression (Schmidt et al., 2013); IOMA, Integrative
Omics-Metabolic Analysis (Yizhak et al., 2010); InDisMinimzier, Integrative
Discrepancy Minimizer, (Recht et al., 2014); TREM-Flux, Time-Resolved
Expression and Metabolite-based prediction of flux values; DFBA, Dynamic
Flux Balance Analysis (Mahadevan et al., 2002).

increases the set of activated core reactions. In addition, reactions
from the generic model are prioritized based on their organism
of origin, i.e., reactions from Arabidopsis or other closely related
organisms are more likely to be included than reactions from dis-
tant organisms. Finally, a constraint is introduced that enforces
the production of all biomass compounds under minimal
media.

GENE INACTIVATION MODERATED BY METABOLISM, METABOLOMICS,
AND EXPRESSION (GIM3E)

Another approach for context-specific network extraction is
Gene Inactivation Moderated by Metabolism, Metabolomics, and
Expression (GIM3E) (Schmidt et al., 2013). GIM3E is an exten-
sion to GIMME (Becker and Palsson, 2008), a network extraction
approach that integrates transcriptomics data to derive penalty
coefficients for the considered reactions and to subsequently com-
pute condition-specific models of smallest penalty score. GIM3E
integrates metabolomics data by adding turnover metabolites
and a respective sink reaction to the generic model. Therefore,
a flux through a respective metabolic reaction can be obtained,
and experimentally detected metabolites can be integrated by
enforcing a minimum flux for the turnover of the respective

metabolite. By doing so, the authors are able to enforce fluxes
though reactions without violating the steady-state assumption.
This approach relies on a cellular objective, e.g., the maximization
of biomass, whose optimal value is used as an additional con-
straint for the enforcement of the turnover fluxes. More specific,
in their study the authors required the network to produce 99%
of the optimum value of biomass while enforcing a small positive
flux value through turnover sink reactions of the corresponding
experimentally detected metabolites.

The algorithm was developed to study the metabolism of the
bacterium Salmonella typhimurium, particularly to allow for the
investigation of metabolite turnover in two scenarios, namely,
rich and virulence media. In a similar fashion to MBA, the
approach has the advantage that it can be employed to gain
insights about metabolite turnover rates in the system under
investigation. A potential drawback of the approach lies in the
nature of the problem formulation. The method relies on con-
verting all reversible reactions to reaction pairs of forward and
backward reactions; the applied constraints, i.e., the decision
whether the forward or backwards reaction of a reaction pair is
activated, result in a mixed integer linear program (MILP) which
becomes time-demanding for very large networks.
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BRIDGING THE GAP BETWEEN KINETIC MODELING AND
STOICHIOMETRY-BASED APPROACHES

INCLUDING KINETIC INFORMATION INTO FBA

Integrating quantitative proteomics and metabolomics with a
genome-scale metabolic network model (IOMA)

Yizhak et al. (2010) presented an approach that seeks a steady-state
flux distribution through a metabolic network that is most consis-
tent with flux estimations which are derived from the integration
of quantitative metabolomics and proteomics data by assuming
an underlying Michaelis-Menten-like kinetic. The chosen func-
tional form also enables the integration of proteomics data, which
represent relative protein levels compared to some reference state
as well as absolute metabolite data to arrive at flux values. These
estimates are integrated in the overall flux prediction by solving
a quadratic program (QP), which finds a feasible flux distribu-
tion that is as consistent as possible with the rates derived from
the data.

The approach was validated via two comparative analyses:
First, the predictive performance of the method was compared
to that of Minimization of Metabolic Adjustment (MOMA) a
method commonly used to identify a feasible flux distribution of
a perturbed system which is closest to the wild-type flux distri-
bution (Segre et al., 2002) (see Table 1 for a description of the
approach). This comparison is based on predicted flux distri-
butions upon gene knock out simulations which were generated
using a kinetic model of red blood cells and randomly generated
proteomics data. Second, the performance of the approach was
compared to those of MOMA and FBA in studies of genetic per-
turbations in E. coli for which proteomics, metabolomics, and flux
measurements were available.

The advantage of the approach lies in the program formula-
tion which seeks to minimize errors introduced from noisy data
or from the simplified Michaelis-Menten-like enzyme kinetic.
The assumed kinetic law may pose disadvantages: While it may
be the case that not all enzymes follow the assumed kinetics,
besides metabolite abundances the approach also requires that
relative protein abundances, metabolite dissociation constants
and Vi, values are available. While the first two are specific
for the respective experiment, the latter two might be obtained
from the literature. Although new types of experimental data
are becoming increasingly available (Tummler et al., 2013), the
applicability of this approach remains limited to well-studied
organisms for which these kinetic information are collected.

DYNAMIC OPTIMIZATION APPROACHES

Dynamic flux balance analysis allows prediction of dynamics with
only limited knowledge of kinetic parameters

As indicated above, the dynamics of metabolic networks can be
investigated by kinetic modeling. To this end, the parameters
of specific enzyme kinetics have to be determined by measure-
ments of enzyme activities and data fitting to experimentally
obtained metabolite concentrations. The requirements of this
large amount of data limit the application of kinetic model-
ing methods only to well-studied systems of moderate scale
and complexity (Rios-Estepa and Lange, 2007; Nigele et al.,
2010; Rohwer, 2012). In contrast, Mahadevan et al. presented
Dynamic Flux Balance Analysis (DFBA) as an alternative to

predict time-resolved metabolite levels and flux distributions with
only a limited knowledge of enzyme kinetics (Mahadevan et al.,
2002).

DFBA overcomes the main drawback of the classical FBA
which precludes the analysis of the dynamic behavior of a
network—the steady-state assumption. Within DFBA, (time-
resolved) measurements of metabolite levels can be directly
integrated to obtain more accurate flux predictions. Two gen-
eral DFBA formulations were introduced—static and dynamic
(Mahadevan et al., 2002). The static optimization approach
(SOA), which results in a LP, involves first dividing the time
period of interest into uniform time intervals and then solv-
ing the instantaneous optimization problem at the beginning of
each time interval, followed by integration to compute metabo-
lite concentrations over time. The SOA considers a steady-state
and therefore only allows changes in external metabolite con-
centrations. On the other hand, the general dynamic optimiza-
tion approach (DOA) involves optimization over the entire time
period by parameterizing the dynamic equations with the help of
orthogonal collocation on finite elements (OCFE) (Cuthrell and
Biegler, 1987). An illustrative tutorial of OCFE can be found in
Kleessen and Nikoloski (2012). The DOA, which allows, in addi-
tion, to analyze internal metabolite concentrations, usually results
in a non-linear program (NLP) due to nonlinear constraints.

Mahadevan and coworkers used both alternatives of DFBA to
predict the dynamics of diauxic growth of E. coli on acetate and
glucose. While classical FBA incorrectly predicted the reutilization
of acetate (Varma and Palsson, 1994c; Mahadevan et al., 2002)
DFBA provides a significant improvement due to the ability to
characterize different phases of batch growth which qualitatively
match experimental results.

Moreover, the DOA variant of DFBA has been combined
with MOMA (Segre et al., 2002), resulting in the so-called M-
DFBA approach. In their classical formulations, both, FBA and
DFBA, ignore the possibility that under perturbed conditions
metabolic network may not be regulated toward the generally
considered optimal objective. To this end, MOMA was designed
based on the hypothesis that fluxes in perturbed metabolic net-
works undergo a minimal redistribution compared to those of
the unperturbed network. Similarly, in M-DFBA minimal fluc-
tuation of the dynamic profile of metabolite levels over time is
considered as objective to represent the behavior in perturbed sys-
tems (Luo et al., 2006). Luo and coworkers applied M-DFBA to
explore the dynamic adjustment of the mammalian myocardial
energy metabolism under normal and ischemic conditions. The
predictions from M-DFBA were able to represent the dynamic
regulation of utilization of metabolic substrates for energy pro-
duction more accurately than the classical DFBA assuming max-
imal ATP production as an objective under ischemic conditions.
This supported the assumption that under perturbed conditions a
system does not follow the assumed objective but instead reaches
a suboptimal level of energy production.

In planta—Dynamic flux balance analysis reveals time-resolved
behavior of plant systems

Alongside the applications of different variants and slight mod-
ifications of DFBA in non-photosynthetic organisms (Lee et al.,
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2008; Krauss et al., 2012), DFBA-based methods have been widely
employed for predicting the dynamics of plant systems. In its
first application, Luo et al. (2009) studied the photosynthetic
metabolism in C3 plants and posited hypotheses about its robust-
ness under different CO, and water conditions by using the
M-DFBA approach.

In addition, a suite of DFBA-based approaches using DOA
has been proposed to analyze the dynamics of (internally per-
turbed) metabolic networks and for quantifying their robustness
with only a limited knowledge of kinetic parameters (Kleessen
and Nikoloski, 2012). This suite consists of variants of DFBA,
M-DFBA as well as a new proposed coupling of the princi-
ple of Regulatory on/off minimization (ROOM) (Shlomi et al.,
2005) (see Tablel for a description of the approach) with
DFBA (R-DFBA). As a contending alternative for MOMA,
ROOM relies on significant flux changes, extended in R-DFBA to
minimize of the total number of significant changes of metabo-
lite concentrations over time (also fluxes in some variants).
In total 10 different DFBA-based approaches were analyzed of
which seven were newly proposed. By conducting a compar-
ative analysis of the different variants with a kinetic model
of the Calvin-Benson cycle and a model of plant carbohy-
drate metabolism, it was shown that DFBA-based methods can
accurately predict the changes in metabolic states. Therefore,
DFBA and its extensions are suitable for positing model-based
hypotheses for the dynamics of metabolic pathways when only
little enzymatic details are known (Kleessen and Nikoloski,
2012).

Furthermore, a DFBA-based approach was developed to inves-
tigate different model variants of the mitochondrial electron
transport chain (ETC) in A. thaliana during dark-induced senes-
cence in order to elucidate alternative substrates for this metabolic
pathway (Kleessen et al., 2012). The findings demonstrated that
the coupling of the proposed computational approach with mea-
sured time-resolved metabolomics data results in model-based
confirmations of the given hypotheses. This approach can also
help to find modified pathways at different levels of plant adapta-
tion to various conditions.

In contrast, Grafahrend-Belau et al. (2013) used the static
variant of DFBA in combination with a multiscale modeling
approach to achieve the spatiotemporal resolution of source-
sink interactions in barley (Hordeum vulgare) by integrating
static organ-specific models with a whole-plant dynamic model.
However, the static variant of DFBA is restricted to inte-
grate only metabolite levels of import and export reactions
from the analyzed system while in the dynamic variant also
internal metabolite levels can be included as well as kinetic
expressions. To this end, DOA variants of DFBA can pre-
dict flux and metabolite levels even beyond the measured time
points.

Nevertheless, due to the computationally intense formulation
in terms of orthogonal collocation on finite elements, requiring
a large number of variables, the application of DFBA-based is
currently restricted to relatively small metabolic networks. The
underlying mathematical problem of DFBA results in a combi-
natorial explosion in the number of unknown variables as the
network size increases.

METABOLITE DATA TO INFER THERMODYNAMIC
REALIZABILITY

INCLUDING METABOLITE CONCENTRATIONS INTO FLUX BALANCE
ANALYSIS

Metabolite concentrations in metabolic networks are intrinsi-
cally tied to the thermodynamic potential of Gibbs Energy AG,
given by:

AG = AGO—i—RTZlnP—RTZlnS,

where AG? is the standard Gibbs Energy, R is the universal gas
constant, T the temperature, and P and S are the product and the
substrate concentrations of the reaction, respectively. A negative
Gibbs Energy indicates that the respective reaction proceeds in the
forward reaction, whereas a positive Gibbs Energy indicates that
the reaction is proceeding backwards. Several approaches make
use of these information to either integrate metabolite levels or
estimates of concentration ranges, or to infer these information
form the models predictions (Holzhiitter, 2004; Kiimmel et al.,
2006; Henry et al., 2007).

THERMODYNAMIC REALIZABILITY AS A CONSTRAINT ON FLUX
DISTRIBUTIONS IN METABOLIC NETWORKS

Here, we briefly describe the method by Hoppe et al. (2007)
which makes use of metabolite concentration ranges in the above-
mentioned manner to predict more reliable flux distributions
than a generic model. The objective function of this approach
is a combination of flux minimization and minimizing penalties
that arise from violating thermodynamically feasible concentra-
tion ranges. The approach results in the solution of a mixed
integer linear optimization problem with a quadratic objective
function. The algorithm computes an optimal flux distribution
and a metabolite profile which is thermodynamically feasible
and assures minimal deviations of the respective metabolite lev-
els from their expected values, the so-called thermodynamically
realizable flux-minimized solution.

The authors used the approach to study a small-scale network
of red blood cells and a large-scale network of E. coli and demon-
strate that increasing network complexity results in increased
sensitivity of the predicted fluxes to variations of standard Gibbs
Energies and metabolite concentration ranges. The lack of any
additional assumption during the introduction of simple ther-
modynamic rules liberates the approach from potential errors
that might arise from speculations about underlying kinetics.
However, like DFBA, the approach depends on the availability of
absolute metabolite concentrations or on plausible absolute con-
centration ranges which may not be readily available (Van der
Greef et al., 2003).

BALANCING THE MAXIMIZATION OF ENZYME EFFICIENCY AND THE
MINIMIZATION OF TOTAL METABOLITE LOAD—A METABOLIC TUG OF
WAR

Tepper et al. (2013) developed a method to compute steady-state
metabolite concentrations and flux values in microorganisms on
a genome-scale. Their approach, termed “metabolic tug-of-war
(mTOW)” suggests an underlying balance between maximiz-
ing enzyme efficiency on the one hand and minimizing total

www.frontiersin.org

February 2015 | Volume 6 | Article 49 | 7


http://www.frontiersin.org
http://www.frontiersin.org/Plant_Systems_Biology/archive

Topfer et al.

Integration of metabolomics data into metabolic networks

metabolite load on the other. The rationale for this assump-
tion weights factors that favor a small metabolite pool size, e.g.,
due to limited capacities of the cell, vs. the need to maintain
an adequate thermodynamic driving force, i.e., concentrations
far from chemical equilibrium, in order to direct metabolic
fluxes. In other words the computational formulation captures
the trade-off between minimizing the total concentration of inter-
mediate metabolites and maintaining adequate forward driving
force for all reactions based on the laws of thermodynamics. The
computational procedure involves estimating Gibbs Energies via
Component Contribution Method (CCM) (Noor et al., 2013)
followed by a non-convex optimization (for an explanation see
Table 1), searching for a flux distribution and metabolite concen-
trations that minimizes both the metabolite and enzyme levels.
The authors applied their approach in a test study to a set
metabolite data from E. coli and Clostridium acetobutylicum under
several growth conditions. They showed that mTOW can explain
up to 55% of the observed variation in measured metabolite con-
centrations in both organisms and therefore, presented the first
study that is able to predict high-throughput metabolite con-
centration data in microorganisms across several conditions. A
drawback of the approach is its non-convex nature of the prob-
lem formulation. The optimization problem might have mul-
tiple optima—Ilocal and a global one, whose exact solution is
computationally intractable for large-scale networks.

METABOLITE DATA TO ANALYZE FLUX RE-ROUTING

IN PLANTA—INTEGRATIVE DISCREPANCY MINIMIZATION REVEALS
METABOLIC CONSTRAINTS FOR CARBON PARTITIONING UNDER
HIGH-LIGHT AND NITROGEN-STARVATION IN THE GREEN ALGAE
HEMATOCOCCUS PLUVIALIS (InDisMinimizer)

A recent method enables constraining condition-specific solution
spaces by integrating information about the environment with
measured metabolite, enzymology, and physiology data (Recht
et al.,, 2014). In this approach, the experimental data are inte-
grated by deriving flux rates and subsequently minimizing the
discrepancy between the experimental data and predictions from
the model.

The approach is formulated as a QP, and is applied to study
stress-induced carbon re-partitioning in the green algae H. plu-
vialis. Measurements of groups of metabolites, e.g., chlorophylls,
proteins, total fatty acid content, and total carbohydrate content
in combination with dry weight and cell number measurements
are used to derive flux rates for the accumulation of these metabo-
lite groups. By introducing sink reactions for these groups of
compounds major flux routes in the model can efficiently be con-
strained. Based on the constrained model, two hypotheses about
carbon partitioning under the respective stress condition were
tested in silico by performing flux variability analyses for differ-
ent biological scenarios while enforcing a best fit between model
and data.

The approach was used to test whether starch can be degraded
to supply carbon skeletons as precursors for starvation-induced
fatty acid synthesis and to test whether an increased activity of
the TCA cycle, observed under the stress condition, can support
a high synthesis rate of fatty acids. The findings showed strong
model-driven support for the proposed mechanisms and provide

the basis for further experimental testing strategies. Similar to
the approach presented by Yizhak et al. (2010), the method
is free from a biologically motivated objective function (which
is difficult to define for organisms that experience challenging
conditions) and it accounts for noisy data by minimizing discrep-
ancies between observation and model prediction. A disadvantage
of the approach is that the flux rates are derived from time
points that span up to 24 h and therefore, only represent average
accumulation rates.

DIRECT INTEGRATION OF METABOLITE DATA TO
CONSTRAINT FLUX PREDICTIONS

IN PLANTA—TIME-RESOLVED EXPRESSION AND METABOLITE-BASED
PREDICTION OF FLUX VALUES (TREM-FLUX) SPECIFIES
CHLAMYDOMONAS' METABOLIC RESPONSE TO RAPAMYCIN
TREATMENT

Since the application of DFBA-based methods to genome-
scale models is currently hampered by the model size and the
lack of optimization platforms which scale well, a constraint-
based method to couple time-resolved transcriptomics and
metabolomics data, termed Time-Resolved Expression and
Metabolite-based prediction of Flux values has been proposed
(Kleessen et al., 2015).

In this approach, the steady-state assumption of the general
FBA approach is replaced with the requirement that the changes
in flux distribution must coincide with the difference of the mea-
sured metabolite levels between two consecutive time points,
while matching global physiological parameters. Although post-
translational protein modifications may affect the cellular state, in
this approach, the more easily accessible and comprehensive tran-
scriptomics data are used to further constrain the time-resolved
flux predictions by applying a dynamic variant of the E-Flux
method.

In a genome-scale model reconstruction of Chlamydomonas
reinhardtii TREM-Flux was used to predict the metabolic
response to rapamycin treatment. The obtained flux distribu-
tions over time showed differences in the metabolic responses
under varying growth conditions between control and treat-
ment, in line with the findings from closely related organisms.
The study shows that the integration of time-resolved unlabeled
metabolomics data in addition to transcriptomics data can spec-
ify metabolic pathways involved in the system’s response to a
treatment.

STOICHIOMETRY-BASED ANALYSIS PROVIDES HINTS ON
BEHAVIOR OF METABOLITE LEVELS

FLUX IMBALANCE ANALYSIS

Flux Imbalance Analysis explores the sensitivity of metabolic
optima to violations of the steady-state constraints (Reznik et al.,
2013). The method does not directly integrate metabolomics data
but demonstrates that the underlying mathematical framework
can be used to elucidate biologically significant information on
the processes that control intracellular metabolite levels. Reznik
et al. used the dual formulation (for an explanation see Table 1)
of a classical FBA problem to compute sensitivities of the objec-
tive value to flux imbalances, e.g., deviations from the steady-state
assumption. The so-called shadow price of a given metabolite in
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the dual problem captures the influence of the metabolite’s accu-
mulation or depletion on the maximum value of the objective.
Thereby, a negative shadow price implies that the corresponding
metabolite is growth limiting.

By using data from Saccharomyces cerevisae under different
nutrient limiting conditions, the authors showed that the deter-
mined shadow prices are negatively associated with the growth
limitation of the respective measured intracellular metabolites.
Moreover, based on these findings, the authors argued that
growth-limiting metabolites cannot exhibit large fluctuations in
an uncontrolled manner. Using time-resolved metabolomics data
from the metabolic response of E. coli to carbon and nitrogen per-
turbations, they further demonstrated that metabolites associated
with a negative shadow price indeed show lower temporal varia-
tion in comparison to metabolites with zero shadow prices in a
perturbed system. In addition, the authors applied this concept
to a recently published method termed Temporal Expression-
based Analysis of Metabolism (TEAM), (Collins et al., 2012). This
approach combines DFBA with GIMME in order to predict time-
dependent flux profiles and extracellular metabolite levels. They
were able to show that the shadow prices of the TEAM formu-
lation hint at metabolites whose levels should rise or drop in
order to increase consistency between flux predictions and gene
expression data.

An advantage of the approach is that it allows for the simulta-
neous investigation of transcriptomics as well as metabolite data
without the need to consider time-displacement between those
data types (Nicholson et al., 2002, 2004). Since in the approach
metabolite levels are characterized by their coefficient of variation
over a given time-series the time delay between transcriptional
regulation and its taking effect on the metabolic level does not
need to be considered. However, the approach does not allow for
the prediction of the levels of single metabolites. All predictions
rather have to be considered as general trends.

IN PLANTA—VARIABILITY OF METABOLITE LEVELS IS LINKED TO
DIFFERENTIAL METABOLIC PATHWAYS IN ARABIDOPSIS'S
RESPONSES TO ABIOTIC STRESSES

A recent study links predictions from the analysis of time-series
transcriptomics data to metabolite levels (Topfer et al., 2014).
Similar to the Flux imbalance analysis described above, metabo-
lite data are not directly integrated to make predictions, but are
rather used to infer underlying organizational principles. This
study relies on the findings of the integration of time-resolved
transcriptomics data capturing the response of A. thaliana to
eight different environmental cues. The predictions pertain to
pathways which are differentially regulated with respect to a data-
driven null model (Topfer and Nikoloski, 2013; Topfer et al.,
2013). The study demonstrates that substrates of those differential
metabolic pathways show on average a lower temporal fluctua-
tions than other groups of metabolites. Moreover, these pathways
include on average fewer substrates which are better connected
than the rest of the metabolites. These observations not only
underline the predictive power of transcriptomics data to make
inferences on the level of the metabolites, but also relate results
from constraint-based optimization approaches to topological
network properties.

FLUX-SUM TO ANALYZE METABOLITE TURNOVER

THE FLUX-SUM APPROACH

The Flux-sum approach was developed with the idea of incorpo-
rating and investigating the metabolic state of a metabolic net-
work model rather than only to focus on the flux distribution(s)
(Chung and Lee, 2009). The flux-sum is a descriptor of a turnover
rate of a metabolite and is given by summing up the incoming
and outgoing fluxes of the reactions in which the metabolite par-
ticipates as a product or a substrate, respectively. The algorithm
involves calculating a basal flux-sum for each metabolite based
on a flux distribution which maximizes an assumed objective,
determining the maximum flux-sum of individual metabolites
irrespective of an objective, and using the calculated bounds to
manipulate the behavior of flux-sums of individual metabolites
and to investigate their influence on the objective function. The
approach was used to investigate different types of metabolite
essentiality in E. coli and it was demonstrated to complement the
reaction-centric view.

In planta—application of Flux-sum to analyze nitrogen metabolism
in a maize leaf model

A second-generation model of maize leaf has been recently inves-
tigated with the help of the flux-sum approach (Simons et al,,
2014). To this end, the directional changes of the flux-sum of
individual metabolites between two different nitrogen conditions
in a wild-type maize leaf were qualitatively compared to the
directional changes in the experimentally measured concentra-
tion levels. Therefore, this study used the flux-sum as a proxy for
the metabolic pool size rather than its turnover. Since the flux-
sum can vary in alternative optima, the authors only considered
those metabolites whose ranges for flux-sums (normalized by the
biomass rate) did not overlap between the compared scenarios.
The study shows that inclusion of transcriptomics and proteomics
data may result in flux-sums that better match the changes in
metabolite pool sizes than without data integration.

FUTURE CHALLENGES AND PERSPECTIVES

This systematic review of constraint-based approaches for inte-
grating metabolite data demonstrates a great potential of consid-
ering metabolite profiles at different levels of metabolic networks
of varying size, ranging from small-scale to genome-scale recon-
structions, and different level of details regarding the functional
form of fluxes. The brief description of the approaches also
indicates that the challenges of integrating metabolite data into
metabolic networks depend on the coverage and spatio-temporal
resolution of metabolite profiles, the quality of the network mod-
els used, as well as the particularities of the employed optimiza-
tion approaches. In this section, we focus on these three crucial
points followed by a succinct perspective for future development
of computational approaches that rely on metabolomics data to
investigate the behavior of biological systems.

SUBCELLULAR COMPARTMENTALIZATION AND METABOLIC PROFILES
In contrast to prokaryotes, eukaryotic cells contain membrane-
enclosed subcellular compartments, e.g., mitochondria, endo-
plasmic reticulum, and chloroplast. Therefore, the interpretation
of currently available metabolite data from eukaryotic cells is
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complex. Currently, compartmentalization is only considered in
a few studies (Masakapalli et al., 2010; Oikawa et al., 2011;
Nigele and Weckwerth, 2013) and metabolite profiles are usu-
ally obtained on a tissue or organism level. In plant science,
non-aqueous fractionation has been used to separate organelles
(i.e., cytosol, plastid and vacuole) in a continuous non-aqueous
fractionation density gradient prior to detection (Gerhardt and
Heldt, 1984). The approach depends strongly on a bioinformatics
evaluation to obtain reliable results (Klie et al., 2011).

The availability of the metabolic composition of each com-
partment will lead to a better understanding of pathways, their
partitioning between compartments, and the multitude of nec-
essary intracellular transport processes. This will contribute to
metabolic networks of increasing quality and thus, to more accu-
rate flux predictions.

Detection of a metabolite in compartments where the metabo-
lite cannot be synthesized will help elucidating the existence of
possible metabolite transporters between subcellular compart-
ments (Lunn, 2007; Sweetlove and Fernie, 2013). Although new
metabolite transporters are steadily identified (Sweetlove and
Fernie, 2013), they have been so far only barely discussed in
the context of constraint-based modeling (Mintz-Oron et al,,
2009). As a result, for many metabolite transporters included in
metabolic network reconstructions no evidence is available, but
they are included to provide an operating network (Thiele and
Palsson, 2010).

Finally, the metabolome is not a static feature, but changes
during the life history of an organism. Therefore, careful spatio-
temporal characterization of the metabolome can have a tremen-
dous effect on the understanding of the temporal (in) activation
of reactions in response to external and internal cues (Kim and
Reed, 2012; Topfer et al., 2012).

METABOLIC NETWORKS
The applicability of stoichiometry-based modeling approaches
is highly dependent on the scale and quality of the analyzed
metabolic network. Common issues encountered during the
network reconstruction include: dead-end metabolites, blocked
reactions, unknown co-factor specificity, and unknown reaction
directionality. Dead-end metabolites are metabolites which are
either only produced or only consumed in a metabolic network.
During the refinement process of a metabolic reconstruction, the
number of occurring dead-end metabolites is reduced by gap-
filling algorithms (Satish Kumar et al., 2007). These algorithms
add reactions from external databases (e.g., KEGG Kanehisa et al.,
2012), allow reactions to operate in their reverse direction, or
add unverified transport reactions to the network. Therefore,
these additions/modifications may often not be supported by the
underlying annotation of the genome and can reduce the accuracy
of the obtained predictions. Up to a certain network-scale, the
model-discrimination approach of Kleessen et al. (2012) can facil-
itate validation for additional and modified reactions by finding
the best support based on measured data. In addition, dead-end
metabolites are associated to blocked reactions, which cannot
carry any flux under the steady-state assumption.

The lack of knowledge about the biological system which is
reconstructed also leads to inaccuracies of single reactions. For

instance, for the majority of enzymes the specificity of co-factor
usage (e.g., NADP or NAD) is unknown. In addition, the lack of
biochemical data can result in uncertainties in assigning correct
(condition-specific) directionality to a reaction which can have a
significant impact on the network’s performance (Haraldsdottir
et al.,, 2012). Finally, the structure of biochemical pathways is
well-established only for the central metabolism of model organ-
isms (Breitling et al., 2008). Thus, the modeling results for
less-characterized organisms and for pathways not included in
central metabolism have to be treated with care, especially it the
predictions are not driven by data integration.

ALTERNATIVE OPTIMAL SOLUTIONS

Optimization problems, such as those typically encountered in
constraint-based modeling, can result in non-unique flux distri-
butions for a unique optimum value of the assumed objective.
Therefore, to understand the quality and robustness of predic-
tions, the alternative optima need to be investigated. In gen-
eral, for constraint-based modeling approaches, two ways can be
applied to deal with alternative optima (Mahadevan and Schilling,
2003; Sweetlove and Ratcliffe, 2011): (i) analyze flux ranges (e.g.,
with help of flux variability analysis (FVA) Burgard et al., 2001)
or, if possible, to enumerate all alternative solutions; (ii) con-
sider additional objectives to obtain a unique solution. To find all
alternative optima for a constraint-based modeling approach usu-
ally the introduction of (additional) integer variables is required
(Lee et al., 2000). Therefore, this approach often results in com-
putational problems which are not tractable for genome-scale
networks. In contrast, a unique solution or, at least, a narrowed
down solution space can be obtained by a two-step objective.
In this approach, the general optimization problem, e.g., FBA,
is solved in the first step. A second objective (e.g., minimization
of the sum of fluxes Holzhiitter, 2004; Lewis et al., 2010) is then
optimized for the solutions achieving the optimum value of the
first step. Finally, the integration of additional constraints into the
optimization problem is expected to further reduce the space of
solutions (Reed, 2012).

FUTURE DIRECTIONS

With the ever-increasing quality of data from high-throughput
technologies, these data can be readily employed to obtain
more accurate metabolic network reconstructions. One promis-
ing future direction is to consider more refined methods to
analyze condition-specific thermodynamic properties which may
have a large effect on the resulting predictions.

In addition, plants experience a natural day-night cycle which
implications are rarely investigated in the context of large-scale
modeling (Cheung et al., 2014). Therefore, to analyze the behav-
ior of plant systems in a specified condition, one needs to design
a multiscale model, including various cell types, their interac-
tions, and responses with respect to naturally occurring cycles and
conditions (Arnold and Nikoloski, 2014).

Addressing these perspectives necessitates the development of
additional refined approaches which can bridge the gap between
statistical approaches applied in data analysis and the mechanistic
large-scale view taken in the constraint-based modeling frame-
work. Furthermore, in the future a transition from the usage of
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absolute metabolite levels, favored and necessary in kinetic mod-
eling, to the easier to obtain relative levels usually reported in
metabolomics studies in plants and animals has to be considered
in research efforts.

Finally, constraint-based modeling approaches are currently
hampered by the validation of the predicted flux distributions.
Fluxes can only be estimated by using various isotope labeling
approaches (Schuetz et al., 2007; Williams et al., 2010) which
are currently not applicable on a genome-scale level despite the
developments of genome-scale carbon maps (Ravikirthi et al.,
2011). New technologies and computational methods will be nec-
essary to facilitate the evaluation of the flux predictions and to
determine the actual degree to which various data types (from
transcriptomics, proteomics, and metabolomics technologies),
their combination and positon in the network can help to con-
strain the flux distributions and to delineate their relationship to
metabolomics data profiles.
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