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In plants, actin filaments have an important role in organelle movement and cytoplasmic
streaming. Otherwise microtubules (MTs) have a role in restricting organelles to specific
areas of the cell and in maintaining organelle morphology. In somatic plant cells, MTs also
participate in cell division and morphogenesis, allowing cells to take their definitive shape
in order to perform specific functions. In the latter case, MTs influence assembly of the
cell wall, controlling the delivery of enzymes involved in cellulose synthesis and of wall
modulation material to the proper sites. In angiosperm pollen tubes, organelle movement
is generally attributed to the acto-myosin system, the main role of which is in distributing
organelles in the cytoplasm and in carrying secretory vesicles to the apex for polarized
growth. Recent data on membrane trafficking suggests a role of MTs in fine delivery and
repositioning of vesicles to sustain pollen tube growth. This review examines the role
of MTs in secretion and endocytosis, highlighting new research cues regarding cell wall
construction and pollen tube-pistil crosstalk, that help unravel the role of MTs in polarized
growth.
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INTRODUCTION
In plant cells, microtubules (MTs) play crucial roles in cell divi-
sion, expansion and morphogenesis. Unlike in animals, cytoplas-
mic streaming and organelle movement in plant cells are mostly
attributed to the actin cytoskeleton (Shimmen, 2007). The specific
role of actin filaments is thought to have been inherited by land
plants from an ancestral streptophyte algae; in fact, in the giant
internodal cells of Characean algae, myosin generates very fast
cytoplasmic streaming which depends on a dramatic acceleration
of ADP release and an extremely fast ATP binding rate (Ito et al.,
2003, 2007). Thus myosin motors enable more efficient organelle
and metabolite movement in large plant cells. The recent use of
high- and low-speed chimeric myosin expressed in Arabidopsis
thaliana has shown that the increase and decrease in plant cell
size are related to acceleration and deceleration of cytoplasmic
streaming, respectively. These findings suggest that cytoplasmic
streaming is one of the key regulators of plant cell size (Tominaga
et al., 2013).

Although some MT-associated motor proteins, such as
kinesins, seem to target and to be involved in the fine positioning
of organelles at their cellular destinations, it is uncertain whether
MTs participate in long-distance trafficking of organelles or vesi-
cles (Cai et al., 2000; Cai and Cresti, 2012). The characterization
of CLASP, which functions as a plus-end-tracking MT-associated
protein, suggests that MTs bind to endosomes and are involved in
endosome sorting and trafficking (Ambrose et al., 2013). Further-
more, CLASP mediates the interaction between MTs and plasma
membrane (PM) and plays a role in the organization of MTs in the

cell cortex (Ambrose et al., 2011). Thus, while actin-dependent
cytoplasmic streaming uniformly redistributes organelles in plant
cells, restriction of organelles to specific cell areas appears to
be actin-independent and suggests the involvement of MTs (for
reviews, see Brandizzi and Wasteneys, 2013; Cai et al., 2014). In
addition, the maintenance of Golgi morphology, characterized by
the presence of structurally and functionally independent stacks,
has been associated with MT integrity (Wang et al., 2012b). It
was also recently reported that MTs contribute to ER tubule
elongation and anchoring in Arabidopsis (Hamada et al., 2014).
MTs could therefore have a role in controlling organelle zonation
and shape in plant cells.

During cell division, MTs arrange into the pre-prophase band,
mitotic spindle and phragmoplast (for a review, see Rasmussen
et al., 2013). After cell division, cells grow and take specific
shapes depending on their differentiation pattern. Cell shape is
determined by different mechanisms involving turgor pressure
and cell wall tension and structure. The orientation of cellulose
microfibrils in the cell wall has a major role in determining cell
shape, and is in turn controlled by cortical MTs. A protein com-
plex containing multiple isoforms of cellulose synthase (CESA),
namely cellulose synthase complex (CSC), is located in the PM
and synthesizes the glucan chains that form elementary cellulose
fibrils. Elementary fibrils contain 18–24 glucan chains, suggesting
that some of the CESA proteins in CSC could be enzymically
inactive or that a single glucan chain could be synthesized by more
that one CESA protein (Fernandes et al., 2011; Newman et al.,
2013; Thomas et al., 2013; Li et al., 2014). The distribution of
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CSCs on the cell surface depends on correct targeting of CSC-
containing vesicles to the PM. Secretion of CSC vesicles by the
trans-Golgi network (TGN) appears to be actin-dependent, while
cortical MTs play a role in positioning CESA in the appropriate
PM sites (Gutierrez et al., 2009). CSC-containing Golgi bodies
show a MT-dependent pause under the PM, allowing delivery of
CSC vesicles to their PM sites (Crowell et al., 2009). It has also
been postulated that CSC internalization and recycling are MT-
dependent (Crowell et al., 2009; Bashline et al., 2014a,b).

Despite increasing knowledge of the role of MTs in membrane
trafficking and in somatic cell division, growth and morphogen-
esis very little is known about their role in cells with polarized
growth, such as pollen tube cells. In lower plants MTs play
a major role in fertilization, as plants deliver flagellated male
gametes that swim in an aqueous medium to reach the female
gamete. In Coniferophyta, Gnetophyta, and Magnoliophyta, male
gametophytes evolved the pollen tube as a biological channel to
convey sperm cells to the egg cell. This new structure implied the
loss of flagella; sperm cells retain a basket-like MT apparatus and
a tail where MTs are crossbridged but not organized to form an
axonemal structure (Cresti et al., 1990; Southworth and Cresti,
1997). The mechanism of generative/sperm cell movement along
the growing pollen tube and how this movement is regulated is
still being studied. It is reported that MTs control the distance of
male germ units from the pollen tube tip (Laitiainen et al., 2002;
Sanati Nezhad et al., 2013).

This review focuses on emerging new roles of MTs in the
growth of angiosperm pollen tubes and their interactions with
style tissues. Pollen tube elongation depends on polarized secre-
tion of cell wall material and new segments of PM in a restricted
area of the apex (for a recent review of the actin-mediated
trafficking in the clear zone, see Hepler and Winship, 2015).
The pollen tube is also characterized by an unequal distribution
of proteins and lipids along the PM, made possible by selective
internalization and recycling of PM domains (Moscatelli and
Idilli, 2009; Onelli and Moscatelli, 2013; Hepler and Winship,
2015). The actin cytoskeleton is involved in cytoplasmic streaming
and in delivering secretory vesicles to the apical PM (Hepler et al.,
2001; Lovy-Wheeler et al., 2007; Cheung and Wu, 2008; Chebli
et al., 2013a; Rounds et al., 2014). On the contrary, the role of
MTs in polarized cell growth has not been defined. Nevertheless,
new evidence suggests that MTs could be involved in short-lived
movement of membranous organelles in pollen tubes (Romagnoli
et al., 2003; Idilli et al., 2013).

Here we look at new evidence suggesting involvement of MTs
in membrane trafficking with the aim of highlighting new cues for
unraveling the structural constraints of polarized growth.

MICROTUBULES AND VESICLE/ENDOSOME TRAFFICKING
A recent model of pollen tube growth postulates the presence of
distinct sites of exocytosis and endocytosis (Figure 1). Fast exocy-
tosis in the apical flanks is supposed to provide new PM and cell
wall material supporting tip growth (Zonia and Munnik, 2008;
Chebli et al., 2012; Moscatelli et al., 2012). This fast secretion
appears to be actin-dependent while slower actin-independent
exocytosis occurs in the central domain of the apex (Moscatelli
et al., 2012; Rounds et al., 2014; Hepler and Winship, 2015).

The excess PM secreted in the apical flanks is retrieved by
an actin-dependent internalization process in the shank of the
tube (Moscatelli et al., 2007, 2012; Zonia and Munnik, 2008).
These endocytic vesicles are mostly recycled to the secretory
pathway through Golgi apparatus and are partially destined for
degradation. On the contrary, PM internalized in the apex is
mostly conveyed to the degradation pathway and does not involve
the Golgi apparatus. Endocytosis dissection experiments using
charged nanogold have also shown a mechanism of tip-localized
membrane recycling that is probably involved in regulating apical
PM protein/lipid composition (Parton et al., 2001; Helling et al.,
2006; Moscatelli et al., 2007).

MICROTUBULES AFFECTED MEMBRANE DYNAMICS IN THE APEX
It was recently shown that actin-independent internalization and
exocytic events taking place in the apex require MTs (Idilli et al.,
2013). In Nicotiana tabacum pollen tube, dynamic MTs are orga-
nized in short randomly oriented strands in the shank and apex
(5–30 µm from tip), whereas more stable MTs forming long,
longitudinally oriented bundles are present in the cortical region
of the distal area (Figure 1; Cheung et al., 2008; Idilli et al., 2012,
2013).

The presence of dynamic MTs in the shank and tip is
suggested by their higher sensitivity to low concentrations of
nocodazole (Noc), which does not affect MT bundles in the
distal part of the tube (Idilli et al., 2013). In addition, a cen-
trosomal homolog polypeptide, recognized by anti-6C6 mon-
oclonal antibody, localizes in the pollen tube apex and shank
PM, suggesting the presence of putative cortical MT nucleation
sites in this area (Cai et al., 1996). More recently, treatment
of elongating pollen tubes with plus-end-tracking MT-binding
GFP-AtEB1 fusion protein revealed short dynamic MTs in the
subapical region, up to 50–60 µm from the apex. These MTs
entered the apical dome and localized in the core cytoplasm
(Cheung et al., 2008). While undergoing changes in length, sub-
apical MTs stably associated with the cortex, as they remained
in approximately the same location over time (Cheung et al.,
2008).

In somatic cells, MT rearrangement is regulated by phos-
pholipase D (PLD), an enzyme that hydrolyzes structural phos-
pholipids to phosphatidic acid (PA; Pleskot et al., 2013). The
presence of PLD-dependent PA in the PM, due to salt-stress
activation of PLD, modulates the function of MT-interacting
protein MAP65 (Zhang et al., 2012) which stabilizes and bundles
MTs (Smertenko et al., 2004; Lucas et al., 2011). In tobacco pollen
tubes, PA localizes in the subapical region where dynamic MTs are
attached to the PM through direct interaction with members of
the PLDβ/δ protein subfamily; on the contrary, PA is not present
in the tip where MTs enter the core cytoplasm (Potocký et al.,
2003).

In more distal areas, GFP-AtEB1-labeled cables are prevalently
along the cortex and appear immobile, suggesting that they rep-
resent a more stable MT population (Cheung et al., 2008).

The use of low concentrations of the MT-depolymerising
agent, Noc, which affects more dynamic MTs, showed that only
slow exocytosis in the central part of the tip is affected by per-
turbation of MTs (Idilli et al., 2013). With regard to endocytosis,
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FIGURE 1 | Model of microtubules (MT)-dependent exocytic/endocytic
pathways describing putative relationships between MTs, vesicles,
plasma membrane (PM), endosomes and Golgi/Trans Golgi Network
(G/TGN). Dynamic MTs are organized in short randomly oriented strands in
the shank and in the tip. More stable MTs form long, longitudinally oriented
bundles in the cortical region of the distal area. Distinct sites of exocytosis
and endocytosis occur in growing pollen tubes. The fast exocytosis (blue
vesicle) and the endocytosis (orange vesicle)/recycling in the shank are both
actin-dependent (blue and light blue arrows). The delivery toward the vacuole
(V) of material internalized in the shank is also actin-dependent and involves
both Golgi/TGN (light brown/brown compartments respectively) and (MVBs;
light green arrows). In the central domain of the tip, endocytosis, recycling
(red circle) and slow exocytosis (blue vesicle) are MT-dependent (plum, red,
and lilac arrows respectively). Tip localized processes (endocytosis,
exocytosis, and recycling) involve the clear zone, a compartment acting as an

Trans-Golgi Network/early endosome (TGN/EE) and positive to SCAMP1,
exocyst and Rab11/A4d (yellow vesicles). Most endocytic vesicles (orange
vesicle) are delivered from this putative TGN/EE compartment to a
MT-dependent degradation pathway which does not involve the Golgi
apparatus (green arrows). Kinesin could also play a role in organelle
movement, in maintaining the structure of Golgi stacks and in cell wall
deposition. These membrane compartments are involved in cell wall building
and modulation, in recycling/repositioning of proteins/lipids to maintain PM
polarity and in the crosstalk between pollen tube and pistil ECM. PA,
phosphatidic acid; PIP2, inositol 4,5-bisphosphate; DAG, diacyl glycerol; PME,
pectin methylesterases; PMEI, PME inhibitor; CSC, cellulose synthase
complex; CLS, cellulose-synthase-like proteins; CalS, Callose synthase; ECM
proteins, pistil-secreted extracellular matrix including stigma/stylar
cysteine-rich adhesin (SCA), C2 domain-containing protein (NaPCCP) and
S-RNase.

MT depolymerization inhibits PM internalization in the tip and
affects the sorting of tip-internalized vesicles (Figure 1).

In somatic plant cells, the TGN was identified as the early
endosome (EE), the first station from which internalized material
is sorted to the recycling or degradation pathway (Lam et al.,
2007; Viotti et al., 2010). This compartment is defined by the
presence of SCAMPs which belong to a group of transmembrane
proteins playing a role in vesicle trafficking between the Golgi
apparatus and PM in higher eukaryotic cells (Castle and Castle,
2005). SCAMP 1 and SCAMP 2 are localized in TGN/EEs (Lam
et al., 2007; Toyooka and Matsuoka, 2009) and SCAMP 1-positive

organelles are the first compartment reached by the endocytic
probes FM4-64 in plant somatic cells (Lam et al., 2007). In
lily pollen tubes, SCAMP1 is mainly concentrated in the apical
inverted-cone region, suggesting the presence of a compartment
acting as an TGN/EE in the clear zone (Figure 1; Wang et al.,
2010).

In tobacco pollen tubes, acidic vesicles concentrated in the
clear zone have been revealed by Lysosensor, confirming that at
least part of these vesicles could represent an EE-like compart-
ment (Moscatelli et al., 2007; Idilli et al., 2013). The movement
of newly tip-internalized vesicles is delayed in the acidic inverted
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cone region and vesicles assigned to the degradation pathway are
misallocated to the Golgi apparatus in the presence of Noc (Idilli
et al., 2013).

Thus, although mathematical models show that movement of
vesicles in the clear zone is governed by diffusion and advection
(Kroeger et al., 2009; Chebli et al., 2013b), MTs may represent
tracks for endocytic vesicles directed to the degradation pathway
or they could play a role in redistribution/recycling of PM compo-
nents among different membrane domains in order to maintain
functional districts in the apical PM. The analysis of structure
and dynamic properties of MTs in growing pollen tubes could
provide major evidence of the involvement of MTs in tip-focused
trafficking.

The exocyst is an important complex observed in the pollen
tube tip. It is an octameric protein complex (Sec3, Sec5, Sec6,
Sec8, Sec10, Sec15, Exo70, and Exo84) that plays different roles
in cell growth, morphogenesis and pathogen response and tethers
exocytic vesicles to the PM (Zárský et al., 2009; Cvrcková et al.,
2012; Fendrych et al., 2013). It localizes exocytic vesicles in specific
PM domains (Hàla et al., 2008). Zárský and colleagues propose
that in plant cells exocytosis occurs mostly in exo/endocytotically
active PM domains (activated cortical domain, ACD) in which
exocyst complex, Rop-GTPase and lipids define PM sites for
exocytosis (Zárský et al., 2009; Synek et al., 2014).

It could be interesting to investigate whether short MT strands
in the tip and shank are involved in delivering vesicles to the
proper exocyst-primed PM sites. The mechanism of MT-based
transport could also be investigated: MTs may function as tracks
for vesicle movement or MT dynamics could be the driving force
of vesicles, as observed for CESA-containing vesicles during cell
wall assembly (Crowell et al., 2009; Gutierrez et al., 2009).

The altered dynamics of different exocyst subunits at the PM
after prolonged actin perturbation has been observed in Ara-
bidopsis thaliana somatic cells, and it was hypothesized to depend
on cooperation between actin filaments and MTs in defining
ACDs in the PM (Fendrych et al., 2013). In the pollen tube, studies
using actin filaments and MT depolymerizing drugs showed
that both cytoskeletal systems cooperate in regulating membrane
trafficking in the apex. However, the extent and mechanisms of
interaction still need to be investigated.

In somatic plant cells, exocyst complexes are also involved
in membrane recycling: in Arabidopsis root, the mutant of the
EXO70A1 (exo70A1) subunit showed defects in recycling PM
proteins such as PIN1 and PIN2 (Zárský et al., 2009, 2013; Zárský
and Potocký, 2010; Drdová et al., 2013). Mutants of different
subunits of the exocyst complex also showed defective pollen ger-
mination and pollen tube growth. Interestingly, the components
of the complex colocalized in the tobacco pollen tube tip (Cole
et al., 2005; Hàla et al., 2008) where a putative early-sorting com-
partment involved in apical membrane recycling was described
(Figure 1; Moscatelli et al., 2007; Idilli et al., 2013). Membrane
recycling is considered to be a mechanism that allows the polar-
ization of PM components to be maintained in the cell. It has been
hypothesized that recycling compartments/vesicles and ACDs
may be dynamic membrane compartments/superstructures called
recycling domain (RDs; Zárský et al., 2009). Intriguingly, the
existence of multiple RDs in a single plant cell could imply the

presence of TGN/EE subtypes (Zárský et al., 2009) and it could
be interesting to investigate whether the EE-like compartment
observed in the clear zone, affected by MT depolymerising agents,
might belong to a RD involved in tip polarized growth.

MICROTUBULE MOTOR PROTEINS IN POLLEN TUBE GROWTH
Interaction between MTs and vesicles in the clear zone has been
supported by detection of a kinesin-like protein that associates
with these compartments aligned along apical MTs (Tiezzi et al.,
1992; Cai et al., 1993; Terasaka and Niitsu, 1994). Kinesins
are MT-based motor proteins which have been classified in 14
families with different roles in MT/organelle interaction. They
can move to the plus or minus end of MTs and play a role in
organelle movement, in maintaining the structure of Golgi stacks,
in formation of Golgi-derived vesicles, in cell wall deposition
and in cell division (Figure 1; for reviews, see Li et al., 2012;
Zhu and Dixit, 2012). In Corylus avellana pollen, a kinesin-like
protein has been associated with Golgi membranes and assumed
to mediate their binding to MTs (Figure 1; Liu et al., 1994). It
is hypothesized that MTs and kinesins are involved in the final
positioning of Golgi stacks following long range transportation
events mediated by the acto-myosin system (Romagnoli et al.,
2007). Recent in vitro motility assays show that organelles of the
microsomal fraction of tobacco pollen tubes move along MTs in
an ATP-dependent manner (Romagnoli et al., 2003). Organelle
movement occurs without cytosol and only in the presence of
ATP, suggesting that functional motor proteins are stably attached
to the organelle surface and that these proteins could be so far
unidentified kinesins (Romagnoli et al., 2003).

The role of kinesins in the tip growth seems to be evolution-
arily conserved in plants despite different models of elongation.
In Physcomitrella patens, KINID1 kinesin binds MT plus end
and controls MT dynamics in the apex of caulonemal cells. As
a consequence, KINID1 participates in maintaining a thick MT
bundle in the apex, thus promoting tip growth and regulating
growth direction (Hiwatashi et al., 2014). Kinesins also support
tip growth in root hairs and conifer pollen tubes, by deliver-
ing different cargoes along MTs to the elongating areas (Yang
et al., 2007; Lazzaro et al., 2013). Picea abies pollen, showed a
calmodulin-binding kinesin which accumulates in the elongating
tip and is involved in the functional interplay between MTs and
actin filaments (Lazzaro et al., 2013).

In tobacco pollen tubes, biochemical and molecular studies
also show the presence of dynein-related polypeptides, the major
minus-end-directed MT motor (Moscatelli et al., 1995; Scali
et al., 2003; Shanina et al., 2009). Dynein-related polypeptides
are present in the soluble fraction or associated with membranous
organelles/vesicles uniformly distributed in the pollen tube cyto-
plasm (Moscatelli et al., 1995, 1998). Nevertheless, the presence
of dyneins in higher plants is debated since dynein and dynactin
sequences have not been identified in the Arabidopsis genome
(Wickstead and Gull, 2007; Hammesfahr and Kollmar, 2012).

Growing pollen tubes in stiffened artificial media allowed to
dissect the role of the cytoskeleton in the mechanics of pollen
tube elongation: whereas actin filaments generate the force for
the style tissue penetration, MTs are involved in the control of the
growth direction (Gossot and Geitmann, 2007). The contribution
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of MTs in membrane trafficking at the tip and in repositioning of
signaling protein/lipids among different regions of the apical PM,
could confer to pollen tubes the ability to turn in the presence of
mechanical obstacles during the route toward the embryo sac.

The possible role of MTs in membrane trafficking implies
that they could be cytoplasmic determinants which modulate PM
protein/lipid remodeling, cell wall synthesis and composition, and
which contribute to signaling processes occurring during pollen
tube elongation into pistil tissues.

MICROTUBULES AND CELL WALL DEPOSITION
The composition of the cell wall and the spatial distribution of
its components are crucial for pollen tube shaping and growth
(Geitmann, 2010; Chebli et al., 2013a,b; Nezhad et al., 2013;
Bashline et al., 2014b). In plants, somatic cell shape is mainly
determined by the orientation of cellulose fibrils that constrain
cells to expand in certain directions. The chemical configuration
of pectins can also affect the mechanical properties of the cell
wall (Parre and Geitmann, 2005a; Palin and Geitmann, 2012).
During differentiation, plant cell volume increases considerably,
allowing cells to take their final shape. This process requires an
increase in cell surface area which occurs by secretion of cell wall
material and simultaneous insertion of new PM tracts. It has
also been hypothesized that besides being the driving force of
cell expansion, turgor pressure also provides the physical strength
to incorporate new cell wall material secreted by Golgi-derived
vesicles (Ray, 1992; Proseus and Boyer, 2005; Hepler et al., 2013).

PECTIN SECRETION
The chemical composition of pectins inserted into the cell wall
seems to influence cell expansion. In root meristem and the elon-
gation zone, cell growth is enabled by methyl-esterified pectins,
while non-growing cells (quiescent center) show de-esterified
pectins (Dolan et al., 1997). Pectins with a low degree of methyl
esterification can be crosslinked by Ca2+ ions and this process
increases the rigidity of the cell wall matrix (Cosgrove, 2005).

In angiosperm pollen tubes, the tip area undergoes cell expan-
sion, while the shank and distal areas do not elongate. The dis-
tribution of cell wall components is consistent with this model of
polarized growth (Geitmann, 2010; Chebli et al., 2013a,b). Pollen
tube walls consist mainly of pectins which allow elongation at the
tip and stabilize pollen tube diameter in the distal region. The very
few cellulose microfibrils are mainly distributed in the sub-apex
(Schlupmann et al., 1994; Taylor et al., 2003). Otherwise, callose
is never observed in the tip but distributes in the sub-apical/distal
regions of growing pollen tubes (Ferguson et al., 1998; Fayant
et al., 2010; Cai et al., 2011; Chebli et al., 2012). The deposition
of new cell wall material occurs mostly at the pollen tube tip:
Golgi-derived vesicles containing highly methyl-esterified pectins
are delivered to the apical flanks (Figure 1). Pectins are secreted
together with pectin methylesterases (PMEs) which remove the
methyl groups, allowing pectin gelation and cell wall stiffening
(Willats et al., 2001). The activity of PMEs is in turn regulated by
a PME inhibitor (PMEI), cosecreted with PMEs (Figure 1; Rockel
et al., 2008). PMEI is observed in the tip and never in the shank
cell wall, suggesting that PMEI inhibits pectin de-esterification,
inducing local cell wall softening and allowing tip growth. On

the contrary, PME activity in the shank stiffens the cell wall and
prevents lateral cell expansion (Figure 1). The distribution of
de-esterified pectins is important for maintaining pollen tube
diameter and cylindrical shape. Studies performed in lily pollen
tubes support a mechanical model by which the change from a
high to a low degree of pectin methyl-esterification, occurring in
the transition region between apex and shank, is crucial for cell
shape determination (Parre and Geitmann, 2005a; Fayant et al.,
2010; Palin and Geitmann, 2012). Depolymerization of short
randomly-oriented MTs in the pollen tube tip by low concentra-
tions of Noc show that MTs play a role in the fine control of tube
diameter (Idilli et al., 2013). Nevertheless, how MTs are involved
in this process is not yet defined. It is possible to hypothesize that
MTs affect endo-exocytosis or recycling/repositioning processes
that could influence PME/PMEI function in the tip (Figure 1).
As reported above, MTs are involved in internalization events in
the tip and regulate slow exocytosis in the central area of the apex,
since presence of the MT depolymerising drug Noc inhibits endo-
cytosis and enhances secretion speed in this zone (Moscatelli et al.,
2012; Idilli et al., 2013). Alternatively or additionally, MTs could
control cell wall composition by modulating pectin deposition.
In Nicotiana tabacum, rings of de-esterified pectins are observed
along pollen tubes, coinciding with pulsed growth cycles (Derksen
et al., 2011). Analysis of tobacco pollen tubes by cryo-FESEM
and VEC-LM suggests that during pollen tube elongation, a high
rate of exocytosis in the apical flanks precedes a period of fast
growth and coincides with the formation of a thick wall. During
fast growth, this thick wall moves along the shank and a new
thin wall forms by exocytosis at the very tip. As a consequence,
ring-like areas consisting of thick de-esterified pectins alternate
with thin cell wall interband regions (Derksen et al., 2011). MTs
may therefore control pollen tube diameter by regulating pectin
secretion and pectin esterification status in the transition zone
between the apex and shank during pulsed growth.

CELLULOSE SYNTHASE PLASMA MEMBRANE TARGETING
Besides de-esterified pectins, control of pollen tube shape and
diameter has also been attributed to crystalline cellulose (Aouar
et al., 2010). Cellulose microfibrils are highly resistant to tensile
stress and determine the direction of cell expansion (Green, 1962).
In cylindrical pollen tubes, cellulose microfibrils are oriented in a
helical/longitudinal direction, nearly parallel to the longitudinal
axis of the cell (Aouar et al., 2010; Chebli et al., 2012). This
orientation does not control the direction of pollen tube elon-
gation as in somatic cells, but rather confers tensile resistance in
the transition areas between the tip and the cylindrical shaped
regions maintaining, together with pectins, tube diameter and
shape (Aouar et al., 2010; Chebli et al., 2012). Furthermore, the
longitudinal microfibril arrangement sustains the pollen tube
during its journey through the style transmitting tissue to the
ovules (Geitmann, 2010; Chebli et al., 2012).

In somatic plant cells, co-localisation of CESA proteins and
MTs suggest that MTs and CESA interact functionally: MTs play
a role in CSC positioning in the PM and in stabilizing their
movement during microfibril synthesis (Paredez et al., 2006). In
tobacco pollen tubes, cellulose microfibrils orient in the same
direction as cortical MTs in the sub-apical region and CSCs also
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partially align with MTs (Cai et al., 2011, 2014). However, failure
to visualize MTs in live pollen tubes (Idilli et al., 2013) means that
data on the direct physical interaction between CSC and MTs is
not yet available. Nevertheless, it is possible to suppose that in
pollen tubes, MTs could have a role in positioning CSCs in specific
PM domains, as observed in somatic cells (Crowell et al., 2009;
Gutierrez et al., 2009).

In Arabidopsis and tobacco, CESA-containing vesicles are
secreted in the apical flanks of pollen tubes and CSCs are observed
in shank and tip PM (Figure 1; Cai et al., 2011; Chebli et al.,
2012). In Arabidopsis, CSCs are activated in secretory vesicles
prior to their insertion into the PM. Cellulose has been observed
in the tip of lily and Arabidopsis pollen tubes, where it may confer
additional reinforcement (Fayant et al., 2010; Chebli et al., 2012).
In tobacco, although CESA proteins is reported in the apical
dome (Cai et al., 2011), crystalline cellulose is observed 5–15 µm
behind the tip (Ferguson et al., 1998), suggesting that cellulose is
deposited in the apex in a disorganized way and therefore does
not determine the direction of growth (Guerriero et al., 2014).
Immunolocalization experiments show that CESA is also present
in the inverted cone region (Cai et al., 2011) where exocytic and
endocytic vesicles localize (Figure 1). As reported, it is hypoth-
esized that the clear zone represents a sorting station involved
in repositioning and recycling PM proteins/lipids and in deliv-
ering apically internalized materials through the MT-dependent
degradation pathway (Idilli et al., 2013). In somatic cells, CESA
is observed in small vesicles which exhibit erratic movements and
localize immediately behind the PM (Paredez et al., 2006). These
compartments, small CESA compartments, SmaCCSs (Gutierrez
et al., 2009), or MT-associated CESA compartments, MASCs
(Crowell et al., 2009; Wightman and Turner, 2010) are associated
with MTs and are interpreted as delivery compartments formed
before their fusion to the PM (Gutierrez et al., 2009) or as
intracellular stores of internalized CESA proteins (Crowell et al.,
2009). In pollen tubes, cellulose synthesis is achieved differently in
shank and tip, since microfibrils seem organized in the subapical
region and disorganized in the tip, responding to the mechanical
properties of different tube areas (Cai et al., 2011; Guerriero
et al., 2014). In pollen tubes as in somatic cells, CESA activity
is also regulated by internalization processes occurring in the
shank and tip (Chebli et al., 2012). Mutation of the dynamin-
related proteins AtDRP1A and OsDRP2B suggests that clathrin-
dependent endocytosis (CDE) plays a role in cellulose biosyn-
thesis (Collings et al., 2008; Xiong et al., 2010). Furthermore,
CESA seems to be functionally associated with µ2, a subunit of
an AP2 (adaptor protein complex 2) involved in the recruitment
of CDE cargoes and proteins of the CDE machinery (Rohde et al.,
2002; Bashline et al., 2013; Kim et al., 2013). Interaction between
µ2-adaptin and CESA suggests that CSCs are internalized by
CDE (Bashline et al., 2013, 2014a). In pollen tubes, CDE occurs
in apical and sub-apical regions in MT-dependent and actin-
dependent manners, respectively (Moscatelli et al., 2007; Idilli
et al., 2012, 2013; Onelli and Moscatelli, 2013). We speculate that
MTs play a role in the internalization and recycling/repositioning
of CSCs in the tip by affecting endocytosis and exocytosis. In
tobacco pollen tubes, recycling/repositioning of PM components
in the tip appears to depend on the more dynamic MTs observed

in this area (Idilli et al., 2012, 2013). It is interesting to note
that SmaCCSs/MASCs are associated with cortical MTs in somatic
cells and that movements of these compartments coincide with
MT-depolymerizing ends (Crowell et al., 2009; Gutierrez et al.,
2009). Thus, CSC regulation/movement in the pollen tube apex
could depend on MT dynamics.

In somatic cells, internalized vesicles are recycled by VHA-a1
compartments (TGN; Dettmer et al., 2006; Crowell et al., 2009).
In the pollen tube, CSC recycling and repositioning might involve
CESA-containing vesicles of the inverted cone region, further
supporting the idea that they are a crucial sorting compartment
which may function as a TGN/EE (Figure 1; Viotti et al., 2010;
Cai et al., 2011; Moscatelli et al., 2012; Idilli et al., 2013). To
complicate the puzzle, several cellulose-synthase-like proteins
(CLS), differently involved in cell wall polysaccharide synthesis,
have been identified (Yin et al., 2009). Among these, CSLD1
and CSLD4 were identified in Arabidopsis pollen tubes and show
polar localization in the tip PM. These proteins are predominantly
expressed in tip-growing cells, in which low levels of CESA are
detected, suggesting that CSLDs may be involved in the synthesis
of cellulose in the tip region of the pollen tube (Wang et al.,
2011). Their localization in the tip together with the role of MTs
in tip membrane trafficking suggest that MTs may play a role in
restricting these proteins to specific PM domains (Figure 1).

An additional or alternative role of MTs in defining cell wall
composition may be the modulation of cellulose crystallinity in
the pollen tube apex. Cell wall resistance to tensile forces and
thus the direction of cell expansion appear to depend on the
degree of cellulose crystallinity and microfibril length (Wasteneys
and Fujita, 2006; Fujita et al., 2011, 2012). MT disruption in
AT2G35630 MICROTUBULE ORGANIZATION 1 mutant (mor-
1) alters CSC velocity and cellulose crystallinity, affecting the
mechanical properties of the cell wall (Kawamura et al., 2006;
Kawamura and Wasteneys, 2008; Fujita et al., 2011). Furthermore,
in the tip the presence of short MT strands in the core cyto-
plasm produce short and mechanically weak microfibrils, result-
ing in loss of anisotropic expansion (Wasteneys, 2004). Short and
dynamic MTs in the pollen tube apex, may modulate CSC or
CLS activity or their long residence in the PM, thus affecting
the structure of cellulose microfibrils in the tip and pollen tube
elongation.

MEMBRANE MICRODOMAINS AS DETERMINANTS OF CELLULOSE
SYNTHASE ACTIVITY
An intriguing hypothesis suggests that cortical MTs influence PM
lipid composition and fluidity. Dynamic MTs also define specific
PM domains which in turn affect CSC activity and movement
(Emons et al., 1992; Fujita et al., 2012). Asymmetrical PM lipid
composition has an important role in polarized pollen tube
growth. For example, PA accumulates in the subapical PM in
growing pollen tubes (Potocký et al., 2003, 2014). The PA is impli-
cated in regulating CDE, inducing PM curvature by changing PM
lipid geometry (Pleskot et al., 2012; Potocký et al., 2014). In the
apical flank, PA localization merge with lipids involved in signal
transduction, such as diacyl glycerol (DAG) and phosphatidyl
inositol 4,5-bisphosphate (PIP2; Potocký et al., 2014). Unlike PA,
PIP2 accumulates in the tip (Kost et al., 1999) and is restricted
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in this area by the activity of phospholipase C localized behind
the apex (Dowd et al., 2006; Helling et al., 2006). PIP2 plays a
role in exocytosis and endocytosis at the tip (Kost et al., 1999;
Zhao et al., 2010). Hydrolysis of PIP2 results in formation of
1,4,5-triphosphate (IP3) and DAG which is endocytosed and
recycled to maintain its symmetrical distribution in the tube
tip. These lipids are also involved in secretion, in establishing
the Ca2+ gradient and in regulating Ca2+-dependent signaling
(Monteiro et al., 2005). Phosphorylation of DAG by diacylglycerol
kinase (DGK) forms PA which plays a critical role as signaling
molecule in the regulation of tip growing pollen tubes (Pleskot
et al., 2012). Phosphoinositides, DAG and PA can represent
sites for the targeting of effector proteins to specific membrane
domains or for modulating membrane curvature (Pokotylo et al.,
2013).

Intriguingly, in root hairs PIP2 overlaps with a sterol-enriched
PM platform that delimits the tip (Ovecka et al., 2010). In
animal cells and in somatic plant cells, specific PM domains,
called membrane rafts, are enriched in sterols, sphingolipids and
highly saturated phospholipids and seem to interact with AFs
and MTs (Zambito and Wolff, 1997, 2001; Mongrand et al.,
2004; Borner et al., 2005; Lefebvre et al., 2007; Dinic et al.,
2013). Rafts or detergent-resistant membranes (DRMs) recruit
specific sets of proteins and may restrict cell processes in specific
PM domains (Schroeder et al., 1994; Brown and London, 1997;
Mongrand et al., 2004; Borner et al., 2005; Laloi et al., 2007;
Lefebvre et al., 2007; Cacas et al., 2012; Muñiz and Zurzolo, 2014).
The involvement of membrane microdomains in pollen tubes
was defined in the gymnosperm Picea meyeri (Liu et al., 2009).
The use of filipin and live cell imaging by di-4-ANEPPDHQ
showed that sterol-enriched microdomains were polarized in the
growing tip. Disruption of membrane microdomain polarization
dissipates the Ca2+ gradient and attenuates production of tip-
based NADPH oxidase (NOX)-dependent reactive oxygen species
(ROS; Liu et al., 2009). The involvement of lipid microdomains
rich in sterols and sphingolipids in angiosperm pollen tubes still
need to be investigated.

Several mutants in sterol biosynthesis showed that cellulose
formation depends on the presence of sterols in the PM (Schrick
et al., 2004, 2012). In hybrid aspen and tobacco somatic cells,
CESA occurs in DRMs and 85% of the CESA catalytic sub-
unit segregates in the DRM fractions (Colombani et al., 2004;
Bessueille et al., 2009). It has also been proposed that sterols in
DRMs provide a primer for cellulose biosynthesis (Peng et al.,
2002) or a scaffold to ensure the proper structural conforma-
tion of CESA and to stabilize CSCs (Schrick et al., 2012). In
pollen tubes, DRMs containing actin and tubulin, together with
proteins involved in membrane trafficking, have been identified
(Moscatelli et al., 2015, paper in press). Further functional studies
are necessary to elucidate the role of membrane microdomains
in exo-endocytosis and in cytoskeleton dynamics. CSCs may
interact with cortical MTs and lipids in specific PM domains to
regulate polarized growth. Another piece of this puzzle is iden-
tification of proteins representing a possible link between CESA
and MTs. One of these proteins is a glycosyl-phosphatidyl inositol
(GPI)-anchored protein COBRA which is involved in controlling
anisotropic expansion. GPI-anchored proteins usually contribute

to raft platform stability (Schroeder et al., 1994; Paladino et al.,
2004; Paulick and Bertozzi, 2008) and could be required for
cell wall synthesis (Gillmor et al., 2005). Specifically, in somatic
plant cells, COBRA affects cellulose microfibril orientation and
crystallization in a MT-dependent manner (Li et al., 2003; Brown
et al., 2005; Roudier et al., 2005; Wasteneys and Fujita, 2006; Liu
et al., 2013). In Arabidopsis pollen tubes, COBRA_LIKE10 protein
(COBL10) is localized in the apex PM and pectin and cellulose
deposition are affected in cobl10. It is hypothesized that COBL10
could regulate the clustering of lipid rafts at the very tip of pollen
tubes (Li et al., 2013).

Cellulose synthase interactive proteins (CSI1 and CSC3)
are other factors playing a role in cellulose biosynthesis and
anisotropic cell expansion in somatic cells (Gu et al., 2010; Gu and
Somerville, 2010; Lei et al., 2013). CSI1 co-localizes with CSCs
and moves along cortical MTs, suggesting a role in alignment
of CSC trajectories and MTs (Gu et al., 2010; Li et al., 2011;
Lei et al., 2012, 2013). Putative lipid-binding activity in the C2
domain of CSI1 suggests that this protein may act as a scaffold
for CSCs, MTs and lipid rafts (Lei et al., 2014). Altogether, the
various evidence supports the idea that MTs play a major role in
cell wall modulation, particularly in the pollen tube apical dome,
and opens new perspectives on the role of lipids and PM domains
in rapid polarized cell growth.

CALLOSE DEPOSITION
Beside pectins and cellulose microfibrils, callose also occurs in
large amounts in pollen tube cell walls. Unlike cellulose, which
plays an important mechanical role in the transition region
between the hemispherical apex and the cylindrical shank (Parre
and Geitmann, 2005b; Aouar et al., 2010), callose stabilizes and
reinforces the cylindrical sub-apical region of pollen tubes (Parre
and Geitmann, 2005b; Cai et al., 2011; Chebli et al., 2012). Callose
deposition occurs in the shank and the plugs that isolate the
growing apical cytoplasmic region from old distal vacuolated
areas (Cresti and van Went, 1976; Carpita and Gibeaut, 1993;
Ferguson et al., 1998). Callose has not been detected in the tip
(Ferguson et al., 1998; Cai et al., 2011; Chebli et al., 2012).
The application of mechanical stress to pollen tubes showed that
callose is important for resistance to circumferential tensile stress
(Parre and Geitmann, 2005b). Callose synthase (CalS) is a large,
PM-localized complex secreted in the apical flanks by Golgi-
derived vesicles and distributing in the apical and distal regions
(Figure 1; Brownfield et al., 2007, 2008; Cai et al., 2011; Chebli
et al., 2012). Immunofluorescence analysis and drugs affecting
MT dynamics have shown that MTs are important for proper
deposition of callose in the plugs and for insertion of CalS in the
distal PM (Cai et al., 2011); otherwise MTs do not affect delivery
and secretion of CalS in the apex (Cai et al., 2011).

Besides cellulose biosynthesis, lipid rafts also appear to be
involved in callose formation in somatic cells. Detection of callose
activity in isolated DRMs and biochemical characterization of
glucans synthesized in vitro by DRMs confirm the occurrence of
callose and CESAs in DRMs (Colombani et al., 2004; Bessueille
et al., 2009; Morel et al., 2006). The presence of CalS in the pollen
tube tip (Cai et al., 2011) where callose is absent intriguingly
suggests that CalS activity could be controlled by the retrieval
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of the enzyme from the apical PM to be repositioned in the
shank and that MTs could be involved in this process. Even
if CalS has not been identified in tobacco pollen tube mem-
brane microdomains (Moscatelli et al., 2015), further studies
could better characterize DRM-proteins and investigate the role
of MTs in functional relationships between membrane rafts,
membrane trafficking and cell wall composition in polarized
growth.

MICROTUBULES AND POLLEN TUBE/PISTIL INTERACTION
Appropriate pollen tube growth plays a key role in conveying
sperm cells to the embryo sac for double fertilization. Pollen
landing on the pistil interacts with stigma papillae for adhe-
sion, hydration and germination. Pollen tubes then travel in the
transmitting tissue of the style, grow along the funiculus and
finally enter the embryo sac through the micropyle. Pollen tube
reception includes tip bursting and degeneration of synergids
to allow sperm discharge and double fertilization (Palanivelu
and Tsukamoto, 2012; Dresselhaus and Franklin-Tong, 2013).
During their journey to the ovule, crosstalk between the male
gametophyte and molecules of the pistil-secreted extracellular
matrix (ECM) occurs to support, attract and guide pollen tubes
(Higashiyama et al., 2003; Higashiyama, 2010; Takeuchi and
Higashiyama, 2011; Palanivelu and Tsukamoto, 2012; Dresselhaus
and Franklin-Tong, 2013; Guan et al., 2013). These interactions
facilitate or prevent pollen tube elongation, inducing changes
in the gene expression pattern in different stages of the pollen
tube journey, both in the male gametophyte and in the female
tissues (Wang et al., 2008; Qin et al., 2009; Boavida et al., 2011;
Leydon et al., 2014). Little data is available on pollen tube
cytoplasmic targets of crosstalk with the pistil ECM. Neverthe-
less, the function of endomembrane trafficking in internalization
and processing style proteins and the emerging role of MTs in
endo- and exocytosis (Idilli et al., 2013) open new perspectives
regarding the contribution of the cytoskeleton to pollen-pistil
interactions.

INTERACTIONS PROMOTING POLLEN TUBE GROWTH
Microtubules may possibly be involved in adhesion to
transmitting-tissue ECM. Adhesion is the first event occurring
on the stigma, where it involves recognition processes and also
plays a role in guiding the pollen tube toward the ovary (Lord,
2003; Kim et al., 2004). In lily this interaction is mediated by
pectins and a stigma/stylar cysteine-rich adhesin (SCA) secreted
in the ECM (Mollet et al., 2000; Park et al., 2000; Chae et al.,
2007). The action of SCA in pollen tube adhesion and guidance
involves interaction with the pollen tube surface and also a more
intimate relation. In fact, while SCA functions as an adhesive
matrix in the region behind the tip, in the tip region it binds the
PM and is endocytosed and delivered to vacuoles, suggesting that
it plays a role in pollen tube growth signaling (Ravindran et al.,
2005; Kim et al., 2006). Interestingly, SCA is internalized by CDE
and sorted to vacuoles without Golgi involvement (Kim et al.,
2006). The same pattern has been observed for negative-charged
nanogold (Ng−) internalization in the tobacco pollen tube tip
by CDE (Moscatelli et al., 2007). Depolymerization of more
dynamic MTs in the apex of pollen tubes by low concentrations of

Noc affects Ng− internalization and conveyance to degradation
pathways (Idilli et al., 2013). Thus, MTs could be involved in
these processes, also playing a role in signaling pathways induced
by SCA protein (Figure 1).

Among the ECM proteins involved in crosstalk between pollen
tubes and the pistil, arabinogalactan proteins (AGPs) play a key
role both in positive and negative interactions (Castro et al.,
2013; El-Tantawy et al., 2013; Losada and Herrero, 2014; Pereira
et al., 2014). AGPs comprise the C2 domain-containing protein
(NaPCCP) which is a transmitting tract-specific glycoprotein of
Nicotiana alata, involved in uptake and transport of proteins from
the pistil ECM to the pollen tube (Lee et al., 2009). NaPCCP
has a C2 domain that binds phosphatidylinositol 3-phosphate
(PI3P), which is a component of endosomes and multivesicular
bodies (MVBs). PI3P is transformed into PI(3,5)P2 during the
transition from EEs to MVBs (Zonia and Munnik, 2004). Since
NaPCCP is observed in vacuole-like compartments, this protein
may conceivably be involved in the internalization and processing
of ECM molecules. Moreover, as MTs play a role in sorting inter-
nalized material to the degradation pathway (Idilli et al., 2013), it
might be worth investigating whether NaPCCP-containing com-
partments interact with MTs during internalization and en route
to vacuoles (Figure 1).

INCOMPATIBILITY SYSTEMS
Extracellular matrix also includes secreted proteins involved in the
recognition and rejection of self-pollen (Cheung and Wu, 2001;
Higashiyama et al., 2001; Cheung et al., 2010; Higashiyama, 2010;
Kumar and McClure, 2010; Chae and Lord, 2011; Dresselhaus
and Franklin-Tong, 2013; Maruyama et al., 2013; Denninger et al.,
2014; Losada and Herrero, 2014). The self-incompatibility system
(SI) allows self-recognition and rejection of incompatible pollen.
Angiosperms have evolved various SI mechanisms, which can
be classified into two fundamentally different systems depending
on taxonomy: gametophytic and sporophytic SI, GSI, and SSI
respectively (Iwano and Takayama, 2012). SI is specified by S-
determinant genes at a highly polymorphic, multi-allelic S-locus.
In GSI, the SI phenotype is determined by the haploid genotype
of the pollen (male gametophyte) and the pollen is incompatible
when its S-determinant matches one of the two S-determinants
expressed in the diploid pistil. In SSI, the SI phenotype of
pollen is determined by the genotype of the diploid sporophyte
(tapetum cells of anthers) and pollen is incompatible when both
the S-determinants on the pollen surface match both pistil S-
determinants. In different plant families, rejection mechanisms of
incompatible pollen occur in different ways in the SSI and GSI
systems (McClure and Franklin-Tong, 2006).

Evidence of involvement of pollen MTs in GSI has been
observed in Papaver and in S-RNase-based GSI systems. In
Papaver, the interaction between pollen and pistil S-determinants
causes a rapid Ca2+ influx which triggers a Ca2+-dependent
signaling cascade, inducing actin depolymerization and rapid
inhibition of tube growth (Snowman et al., 2002; Huang et al.,
2004; Wheeler et al., 2009, 2010; Poulter et al., 2010, 2011).
Disorganization of the actin cytoskeleton in turn induces MT
depolymerization, leading to programmed cell death (Poulter
et al., 2008).
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In S-RNase-based GSI systems, MTs are not only a target, as
in Papaver SI, but they also participate actively in the GSI process
(Meng et al., 2014). In this system, the pistil S-determinant gene
encodes a glycoprotein with RNase activity (S-RNase) which is
secreted in the ECM (McClure et al., 1989). This S-RNase enters
the pollen tube cytoplasm where it causes degradation of RNA,
arresting pollen tube growth (McClure et al., 1990). In Petunia
and Antirrhinum, during compatible pollination, the non-self
interaction leads to S-RNase ubiquitylation and degradation by
the 26S proteasome (Zhang et al., 2009), whereas in incom-
patible pollination, the self-interaction does not cause S-RNase
degradation and S-RNase affects the pollen tube gene expression
program (Qiao et al., 2004; Sijacic et al., 2004; McClure and
Franklin-Tong, 2006). An alternative model proposes that the
endomembrane system plays a pivotal role in S-RNase-based
GSI. In Nicotiana S-RNases are endocytosed both in self and
non-self pollen tubes and delivered to vacuoles (Goldraij et al.,
2006). Later, S-RNases remain compartmentalized in compati-
ble pollinations while they are released into the cytoplasm by
vacuole breakage in incompatible systems. Released S-RNases
digest cytoplasmic RNA, causing pollen rejection (Goldraij et al.,
2006).

In apple, recent in vitro experiments show that S-RNases are
internalized and delivered to vacuoles by Golgi-derived vesicles
(Meng et al., 2014). The S-RNases first accumulate in membra-
nous compartments and are later released into the cytoplasm
where they disrupt MTs, suggesting that MTs are targets of S-
RNase-based GSI, as observed in Papaver. Interestingly, the effects
of MT-depolymerising drugs or drugs affecting MT dynamics
suggest that MTs also play a role in endocytosis of S-RNases: MT
perturbation delays S-RNase internalization and allows incom-
patible pollen to grow (Meng et al., 2014). A delay in internal-
ization is also observed when Noc is used on tobacco pollen tube
tips (Idilli et al., 2013). It is postulated that tubulin polymerization
facilitates PM invagination in the pollen tube tip and perturbation
of MT dynamics affects internalization processes (Idilli et al.,
2013). MTs may be involved in mediating internalization of
factors acting in S-RNase-based GSI (Figure 1) or, more generally,
in signaling patterns allowing crosstalk between pollen and pistil
ECM during pollination processes.

CONCLUSION
The involvement of MTs in organelle trafficking, endo-exocytosis,
signaling and cell wall construction in pollen tubes remains
elusive. Recent data supports a role of MTs in polarized growth
together with new evidence of a correlation between endocytosis
and exocytosis in the pollen tube apex. The emerging picture
supports the idea that MTs are involved in vesicle trafficking
leading to degradation pathways and in the fine delivery and
recycling of proteins/lipids to specific membrane domains. This is
an important feature since the proper distribution of enzymes and
receptors in the PM and the spatially controlled allocation of cell
wall components are essential for maintaining polarized growth
and for regulating the direction of growth in style transmitting
tissue.

The use of drugs affecting MT dynamics and specific probes
for exo- and endocytosis has made it possible to describe

MT-dependent pathways in pollen tubes. These pathways merge
with those followed by proteins/lipids involved in tube elongation
(PIP2, CESA, and SCA, as described above). These studies provide
material for speculation about the role of MTs in pollen tube
polarized growth and in crosstalk with style molecules, highlight-
ing new research cues.

Furthermore, studies on involvement of the cytoskeleton in
polarized growth have highlighted the close interaction between
MTs and actin filaments (Zárský et al., 2009; Idilli et al., 2012;
Synek et al., 2014). It can be argued that it is extremely difficult
to ascribe specific roles to actin filaments or to MTs since their
functions appear to be closely linked.

In somatic cells, some plant formins, which are key regulators
of actin filament nucleation, also interact with MTs, suggesting
that they may function to connect MTs and microfilaments in
different cell processes (Deeks et al., 2010; Li et al., 2010; Bar-
tolini and Gundersen, 2010; Wang et al., 2012a,b; Rosero et al.,
2013; Breitsprecher and Goode, 2013; Qin et al., 2014). Besides
formins, other proteins, as Protein 25 and the metabolic proteins
homocysteine methyltransferase, phosphofructokinase, pyruvate
decarboxylase, and glucan protein synthase, seem to act both on
MTs and actin filaments, regulating their dynamics and functions
(Ishizaki et al., 2001; Romagnoli et al., 2010), and also need to be
investigated in pollen tubes.
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