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There is a growing demand for renewable energy, and sugarcane is a promising
bioenergy crop. In Brazil, the largest sugarcane producer in the world, sugarcane
plantations are expanding into areas where severe droughts are common. Recent
evidence has highlighted the role of miRNAs in regulating drought responses in several
species, including sugarcane. This review summarizes the data from miRNA expression
profiles observed in a wide array of experimental conditions using different sugarcane
cultivars that differ in their tolerance to drought. We uncovered a complex regulation
of sugarcane miRNAs in response to drought and discussed these data with the
miRNA profiles observed in other plant species. The predicted miRNA targets revealed
different transcription factors, proteins involved in tolerance to oxidative stress, cell
modification, as well as hormone signaling. Some of these proteins might regulate
sugarcane responses to drought, such as reduction of internode growth and shoot
branching and increased leaf senescence. A better understanding on the regulatory
network from miRNAs and their targets under drought stress has a great potential to
contribute to sugarcane improvement, either as molecular markers as well as by using
biotechnological approaches.
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SUGARCANE: A COMPLEX GRASS
Sugarcane (Saccharum ssp.) belongs to the family Poaceae, sub-
family Panicoideae and tribe Andropogoneae. The family contains
13 subfamilies (Sánchez-Ken et al., 2007), comprising a mono-
phyletic clade that shows some particularities, such as the pres-
ence of a caryopsis fruit and a well-differentiated lateral embryo,
a unique combination among monocotyledonous plants (GPWG,
2001). The tribe Andropogoneae contains species that are mostly
polyploid and perennial and have a C4 photosynthetic mecha-
nism (Clayton and Renvoize, 1982). It is one of the largest tribes
of the Poaceae family and is widely distributed in tropical and
subtropical regions of the world (Clayton and Renvoize, 1982;
Sánchez-Ken and Clark, 2010).

Sugarcane, a crop of great worldwide economic importance, is
responsible for approximately 75% of the global sugar production
(Commodity Research Bureau, 2015), and is becoming increas-
ingly relevant in the production of renewable energy. Sugarcane
is a unique crop regarding the ability to accumulate sucrose, that
can reach levels up to 50% of dry weight in its stalks (Botha and
Black, 2000). Brazil stands out as the main producer of sugarcane,
with a cultivated area estimated to be approximately 8.8 million
hectares (as of the 2013/2014 harvest), producing more than 600
million tons, of which 46% was used for sugar production and
54% was used for ethanol production (Conab, 2013).

The cultivars that are grown worldwide are multi-species
hybrids resulting from classical breeding, known as Saccharum
spp. The species Saccharum officinarum was the basis for breed-
ing programs, due to the high levels of sucrose in its stem, but

this cultivar has low levels of resistance to diseases. S. spontaneum
is another important species in the breeding program, mainly due
to its characteristics of strength and resistance to pests (Miranda
et al., 2008).

Sugarcane has one of the most complex genomes of all culti-
vated plant species, with a high chromosome number and high
degree of aneuploidy (D’Hont et al., 1996). The modern hybrids
have between 100 and 120 chromosomes; 70–80% of the chro-
mosomes belong to S. officinarum, 10–23% of the chromosomes
originated from S. spontaneum, and 8–13% of chromosomes are
derived from recombination between the species (Piperidis et al.,
2010). Despite this complexity, sugarcane has been subjected
to genetic mapping using several types of molecular markers
(Cordeiro et al., 2001; Ming et al., 2002a), which enabled the
identification of QTLs, principally related to sugar yield, cane
yield, fiber content and sucrose content (Ming et al., 2002b,c;
Pastina et al., 2012). Comparative mapping between sugarcane
and sorghum (Sorghum bicolor), another C4 grass, showed high
synteny between the genomes, with 84% of the loci mapped using
242 probes presenting homology between these species, indi-
cating their high conservation, that reaches 95.2% of sequence
identity in the coding region (Ming et al., 1998; Asnaghi et al.,
2000; Dillon et al., 2007; Wang et al., 2010b). Because the sug-
arcane genome has not been sequenced until now, sorghum has
become a good reference genome for analyses involving sugarcane
due to the high gene identity found between these two species
(Jannoo et al., 2007; Wang et al., 2010b). Determining the genome
sequence in complex organisms such as sugarcane is a complex
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task mainly due to the presence of a large fraction of repetitive
DNA, that makes genome assembly very difficult (Setta et al.,
2014). Therefore, the sequence of the sorghum genome can be
used as reference, to guide the assembly of sugarcane sequences,
providing a working draft of the entire sequence. Moreover, due
to the high sequence identity between sugarcane and sorghum,
it is possible to align to the sorghum genome partial sequences
from sugarcane, allowing, for example, to identify the putative
sequences of an entire mRNA or even miRNA precursors. Even
though, the need of a reference genome from sugarcane is essen-
tial. This would allow, for example, to identify promoter regions,
that usually are less conserved between species, and in the case
of miRNAs, to clone the entire miRNA precursors. Also, as the
sequencing costs decline, soon the sequencing by genotyping
strategy will be feasible. This will allow the identification of single
nucleotide polymorphisms (SNPs) that can be associated to sev-
eral useful agronomical traits, generating new molecular markers
for sugarcane breeding programs (Setta et al., 2014).

DROUGHT STRESS IN SUGARCANE
Sugarcane development can be divided into four stages: germi-
nation, tillering, grand growth and maturity (Gascho and Shih,
1983). Each of these stages is affected in different ways by water
stress. Because a reduction in growth rates is one of the con-
served evolutionary responses that plants activate in response to
drought, the tillering and grand growth phases are known to
be critically affected by water scarcity (Ramesh, 2000; Inman-
Bamber and Smith, 2005). Unfortunately, up to 80% of sugarcane
yield is produced during these two phases (Singh and Rao, 1987).
The sugarcane crop cycle, from cane planting and harvest of
mature cane, usually takes from 12 to 18 months. A plant crop
refers to the plants grown for the first time after planting. Once
the above ground plant part is harvested, it will regrowth, giving
rise to a new plant that will be harvest again. This cycle usually
has one plant crop and 3 to 4 ratoon (regrowth) crops. Typically,
farmers have about 20% of their area with “new” plants (i.e., cane
that will be harvest for the first time). Therefore, unlike other
crops with shorter life cycle, such as maize, soybean and wheat,
sugarcane farmers do not have any flexibility to avoid dry seasons,
because sugarcane will face climate up and downs that take places
along the entire year.

Drought causes several effects in sugarcane. There is evidence
that stomata closure, intended to reduce water loss, is triggered
by a combination of the water status of adjacent cells, intensity
of photon flux (Assmann and Grantz, 1990) and the water deficit
sensed by roots (Smith et al., 1999). As expected, drought reduces
transpiration and photosynthesis and increases leaf temperature
(Rodrigues et al., 2009, 2011; Graça et al., 2010). Sugarcane culti-
vars differ in their responses to drought stress. Usually, the assays
to infer the tolerance to drought are done using different culti-
vars that are ranked according to their yield under drought stress
(Kumar, 2005; Silva et al., 2007; Ribeiro et al., 2013). Stalk yield
and the content of soluble solids in the stalk juice usually are the
key parameters used by breeders to classify the degree of tolerance
to drought in sugarcane genotypes. This is because sugarcane pro-
ductivity is based in these two indexes. Therefore, although most
cultivars show decreased yields under drought, some are more

affected than others. Interestingly, a cultivar considered as sensi-
tive to drought, i.e., reduced yield under drought stress, may be
considered a useful cultivar. For example, Ribeiro et al., found
that cultivar IACSP86-2042 had a 50% reduction in stalk yield
under drought stress, much higher than IACSP94-2094 (29%
reduction) and SP87–365 (no reduction). However, the absolute
stalk yield of these cultivars were similar under drought condi-
tions; i.e., IACSP86-2042 had a much higher productivity under
non-stressful conditions (234% higher than SP87–365 and 50%
higher than IACSP94-2094).

Losses due to drought are not unusual and almost every
year, some sugarcane growing regions suffer mild to severe water
shortages, as has been reported in Brazil (Table 1). Therefore,
drought can cause major economic losses for sugarcane grow-
ers. Interestingly, a mild drought stress can have a positive impact
on sugarcane yield. It is a common practice namely in countries
that use irrigation, to apply a period of drying off (water with-
held) at the end of the season. The drying off period has several
benefits: save water and therefore costs associated with irrigation,
reduces soil compaction during harvest and may even increase
sucrose content (Robertson and Donaldson, 1998; Singels et al.,
2000; Inman-Bamber, 2014). The increase in sucrose content may
be due to the fact that growth is more affected than photosyn-
thesis and therefore, assimilated CO2 can be diverted from leaf
and culm growth to sucrose accumulation in the culm. Therefore,
the regulation of sugarcane responses to drought certainly will
have differences with those observed from other crops and model
plants.

MicroRNAs
In addition to having conserved functions that extend beyond
development, microRNAs (miRNAs) play crucial roles in the
regulation of plant responses to several stimuli (Bartel, 2004),
acting like a buffer for plant molecular dynamics. miRNAs

Table 1 | Estimated losses in sugarcane fields due to drought stress.

Year Region Losses Rain (mm H20)/

percentage of

the expected rain

2008 São Paulo State 6.3% (Castro, 2008) 419.5/49%

2010 Zona da Mata
(Pernambuco State)

40% (Cavalcanti,
2010)

300/50%

2012 Alagoas State 20% (Agẽncia Globo,
2012; Sindaçucar,
2012)

774/48.6%

2012 Pernambuco State 35% (Associação
dos fornecedores de
cana de
pernambuco, 2012;
Camarotto, 2012)

629.4/50.7%

2013 Paraiba State 30% (G1 Agency,
2012; Silva, 2013)

n.a./up to 58.7%

2013 Zona da Mata
(Pernambuco State)

25% (Brasilagro,
2013)

821/48.7%

2014 Ribeirão Preto (São
Paulo State)

15% (Palhares, 2014) 480/51.6%
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are a class of small, non-coding RNAs of approximately 21
nucleotides in length that are endogenous to both plants and
animals (Bartel, 2009; Carthew and Sontheimer, 2009) and func-
tion to regulate gene expression by sequence-specific interaction
with target mRNAs (Bartel, 2004; Chapman and Carrington,
2007). Conserved miRNAs mainly regulate transcription factors
involved in basic functions, such as cell division, hormonal con-
trol or meristem development (Garcia, 2008). miRNAs arose from
genome duplications and rearrangements and, for this reason,
frequently have many copies (Voinnet, 2009). However, some
recent miRNAs are thought to be represented by single-copy
genes that are not conserved in phylogenies (Zhang et al., 2008b).

In plants, most MIR genes possess their own transcriptional
unit and are transcribed by RNA polymerase II (Pol II) into a
primary miRNA (pri-miRNA) (Lee et al., 2004). The pri-miRNA
forms an imperfect foldback structure, ranging from hundreds to
thousands of bases (Zhang et al., 2009). These structures are sta-
bilized by the addition of a 5′ 7-methylguanosine cap and a 3′
polyadenylated tail (Jones-Rhoades and Bartel, 2004; Xie et al.,
2005; Zhang, 2005).

In nuclear processing centers called D-bodies (or
SmD3/SmD3-bodies), the pri-mRNA is processed into a
stem-loop precursor (pre-miRNA) and generates a double-
stranded RNA duplex via a Dicer-like protein (DCL), a nuclear
RNase III-like enzyme, and two RNA-binding proteins named
HYPONASTIC LEAVES1 (HYL1) and the C2H2-zinc finger
protein SERRATE (SE) (Kurihara et al., 2006; Lobbes et al., 2006;
Fang and Spector, 2007).

The pre-miRNAs range from 60 to >400 nt in size (Xuan
et al., 2011), and the double-strand RNA duplex, also called
miRNA/miRNA*, ranges from 19 to 24 nt long (Reinhart et al.,
2002; Bartel, 2004). The precise release of miRNA duplexes
from the pre-miRNAs is both structure- and sequence-dependent
(reviewed by Naqvi et al., 2012; Rogers and Chen, 2013), while
the size is dependent on the action of the DCL family member
(Margis et al., 2006); DCL1 produces small RNAs of 18–21 nt,
while those of DCL2, DCL3, and DCL4 are 22 nt, 24 nt, and 21
nt, respectively (Voinnet, 2009). In plants, most miRNAs are pro-
cessed by DCL1 (Reinhart et al., 2002) and are predominately 21
nt long (Chen et al., 2010).

The short double stranded RNAs (dsRNAs) that result from
DCL processing have 2-nt 3′ overhangs and are methylated at
their 3′ ends by the methyltransferase HEN-1 (Yu et al., 2005;
Fang and Spector, 2007). This step protects dsRNAs from uridy-
lation and subsequent degradation (Li et al., 2005).

The exact form in which miRNA/miRNA∗ duplexes are trans-
ported across the nuclear membrane is unclear. In the cytoplasm,
one of the strands, called the mature miRNA, is incorporated into
an Argonaute protein (AGO) to form the RNA-induced silenc-
ing complex (RISC), and the miRNA* strand is usually degraded
(Reinhart et al., 2002; Bartel, 2004; Voinnet, 2009).

Similar to the DCL family, the Argonaute family also has sev-
eral members, and AGO1 is generally associated with miRNA
biogenesis (Vaucheret, 2008). The process of choosing the miRNA
strand that incorporates the complex is dependent on the thermo-
dynamic stability of the 5′ portion of the duplex; the strand with
the lower stability is incorporated by AGO1 (Eamens et al., 2009).

The incorporated mature miRNA guides the RISC to scan the
cytoplasm to find a specific target mRNA by base pairing, lead-
ing to mRNA cleavage or translational repression (Bartel, 2004).
Therefore, in most cases, miRNAs will reduce the expression of
their target mRNAs.

miRNAs MODULATED BY DROUGHT IN SUGARCANE
There are several miRNAs that have been identified in a wide
array of species, but only a few studies have been performed to
identify the mature miRNA sequences and analyze their expres-
sion in response to drought stress in sugarcane (Ferreira et al.,
2012; Thiebaut et al., 2012; Gentile et al., 2013). Sugarcane is a
complex polyploid and until now its genome sequence has not
been obtained. Therefore, unlike model species with sequenced
genomes such as Arabidopsis thaliana, miRNA characterization
studies are much more complicated. For example, miRNA precur-
sors are highly unstable, making their detection in the sugarcane
EST collection (Vettore et al., 2003) very difficult. A sequenced
genome would facilitate the discovery of these precursors. This
is particularly relevant for the discovery of novel miRNA, since
the finding of a precursor is a pre-requisite to consider a new
sequence as a miRNA. Similarly, the discovery of miRNA tar-
gets is greatly facilitated when the complete genome is available.
Therefore, the use of the genome of sorghum, a closely related
species as mentioned above, is a key strategy to overcome this
limitation.

Even though, in one study (Thiebaut et al., 2012), eight sug-
arcane cultivars were classified into two groups based on their
tolerance to drought. Plants were grown in a greenhouse for three
months and then submitted to drought stress by withholding irri-
gation for 24 h. Although the number of detected miRNAs was
higher in the more tolerant cultivars, no miRNA was found to
be induced by drought under these conditions (Thiebaut et al.,
2012).

In the other two works, two sugarcane cultivars that differ
in their tolerance to drought stress, RB867515 (higher tolerance,
HT) and RB855536 (lower tolerance, LT), were either grown in
a greenhouse for three months and then kept without water for
2 or 4 days (Ferreira et al., 2012) or field-grown for 7 months
under irrigation or without irrigation (rainfed) (Gentile et al.,
2013). Thirteen families of mature miRNAs were found in the two
sugarcane cultivars studied (Table 2).

Different expression profiles of the miRNAs were observed,
depending on the cultivar, the growth conditions and the type
and duration of stress. Some miRNAs were found only in plants
that grew in the greenhouse (ssp-miR164, ssp-miR397 and spp-
miR399-seq1), while others were found only in field-grown plants
(ssp-miR160-seq1, ssp-miR160-seq3, ssp-miR166, ssp-miR169,
ssp-miR171 and ssp-miR172). This most likely reflects differences
in the growth conditions, with field grown-plants giving a better
picture of the real growth conditions that plants face in nature.

However, some miRNAs had opposing expression profiles
depending on the cultivar, such as ssp-miR164, ssp-miR399-
seq2 and ssp-miR1432 (up-regulated by drought in one culti-
var and down-regulated in the other). In the experiment con-
ducted in the field, a higher number of miRNAs were mod-
ulated by drought, and many of them showed a repressed
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Table 2 | miRNAs identified in two sugarcane cultivars differing in their tolerance to drought stress.

RB867515 (higher tolerance, HT) and RB855536 (lower tolerance, LT), were either grown in a greenhouse for 3 months and then without water for 2 or 4 days or

field-grown for 7 months under irrigation or without irrigation (rainfed). The different miRNAs were marked as induced by drought (a green box with a + sign) or

repressed by drought (a red box with a − sign).

profile (ssp-miR166, ssp-miR169, ssp-miR171 and ssp-miR172,
among others), while others changed from down-regulated to up-
regulated (spp-miR399-seq2 and ssp-miR1432) depending on the
cultivar.

The timing of stress also affected the miRNA expression pro-
file. For example, comparing greenhouse-grown plants that were
stressed for 2 or 4 days, ssp-miR397 showed an altered expression
profile, changing from induced to repressed, while ssp-miR399-
seq1 remained invariantly down-regulated. The other miRNAs
found in the greenhouse-grown plants had variable expression
profiles, without a specific pattern. After 7 months, five miR-
NAs from the rainfed field-grown plants presented the same
profile in both cultivars; two were induced (ssp-miR160-seq3
and ssp-miR399-seq3) and three were repressed (ssp-miR166,
ssp-miR171 and ssp-miR396). Only two miRNAs (ssp-miR399-
seq2 and ssp-miR1432) had opposite profiles among the different
cultivars.

As a summary, by evaluating two sugarcane cultivars that
differ in their level of drought tolerance according to their per-
formance under field conditions (Gentile et al., 2013), a total of
16 mature miRNAs were found (Figure 1). Among the cultivars,
we found that 15 mature miRNAs were differentially expressed
and identified in the cultivar with higher tolerance to drought
(HT, Figure 1A), while 14 were found in the cultivar with lower
tolerance (LT, Figure 1B). We found that only two miRNAs (spp-
miR394 and ssp-miR528) were shared among the different stress
durations (2 days, 4 days, and 7 months) and two growing
conditions (greenhouse and field) (Figure 1C).

It is remarkable that the expression patterns of the major-
ity of the miRNAs did not display clear correlations with the

differences in drought tolerance observed in the two sugarcane
cultivars. Only ssp-528 presented a consistent induction in the
RB867515 cultivar, which has high tolerance to drought (Table 2).
The miRNA expression profiles were influenced by the genetic
background from the distinct sugarcane cultivars, and this was
more evident under greenhouse conditions. These data suggest
that miRNAs do not fully explain the different levels of drought
tolerance observed in the sugarcane cultivars.

Several studies in other plants species also have identified miR-
NAs that are modulated by drought (Table 3). Until now, the
majority of the miRNAs associated with this stress were induced
by drought. Rice (Oryza sativa) is the plant with the largest num-
ber of identified miRNAs that are modulated by drought (35
miRNAs, Tables 3, 4). Barley (Hordeum vulgare) was the plant
with the lowest number of identified miRNAs related to drought
(4 miRNAs, Table 3). Bean (Phaseolus vulgaris) was the only plant
species that had only induced miRNAs (6 miRNAs).

However, similar to the results in sugarcane, the expres-
sion pattern for a given miRNA was variable depending on
the genetic background (species), type of drought treatment
(PEG, dehydration, mannitol), tissue (leaves, seedlings, spikelets,
roots), cultivar and growth condition (greenhouse, field, hydro-
ponic). The miRNA that was differentially expressed in the most
species was miR396 (9 species), followed by miR171, which is
present in 8 plant species (Table 3). However, no miRNA was
always induced or repressed in all the plant species analyzed.
Moreover, no miRNA was differentially expressed in all plant
species. Interestingly, sugarcane had the most variable miRNA
expression profile, most likely reflecting the different cultivars,
treatments and tissues that have been analyzed.
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FIGURE 1 | Diagram of all the differentially expressed mature miRNAs

found in sugarcane. miRNAs found among the different stress times (2
days, 4 days, and 7 months) under greenhouse (GH) and field-grown
(FIELD) conditions in the more tolerant cultivar (RB867515, HT) (A), in the
less tolerant cultivar (RB855536, LT) (B) or in both genotypes together (C).

SUGARCANE miRNA TARGETS
Plant miRNAs directly affect their target genes by nearly perfect
base pairing complementarity, leading to cleavage or transla-
tion repression of these genes. Plant microRNAs can be classified
into several different families, and the members of each family
have very similar mature sequences. It has been reported that
conserved miRNAs from the same family may have the same
target genes in different species, as shown in the two model
plants Arabidopsis thaliana and O. sativa (Cuperus et al., 2011).
Combining data sets from high-throughput sequencing studies,
Cuperus et al. (2011) identified eight miRNA families with a com-
mon ancestry in all embryophytes and a range of other families
that share similar members between eudicots. The high similarity
between the miRNA species in different plants allowed the devel-
opment of tools for the prediction and validation of the target
genes that are regulated by these miRNAs.

Several freely available tools are dedicated to the pre-
diction of miRNA targets in plants and have been widely
used (Rhoades et al., 2002; Jones-Rhoades and Bartel, 2004;
Fahlgren and Carrington, 2010). Ready-to-use online tools
include RNAHybrid (Krüger and Rehmsmeier, 2006), UEA
sRNA-tools (Moxon et al., 2008), Target-Align (Xie and
Zhang, 2010), psRNAtarget (Dai and Zhao, 2011) and PMTED

Table 3 | miRNAs identified in several plant species under drought

stress.

(Continued)
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Table 3 | Continued

In the table, the different miRNAs were marked as induced by drought (a green

box with a +), repressed by drought (a red box with a −), variably induced (a

yellow box with a V), simply identified but not differentially expressed (ID) or NF

(not found). No information is available for the miRNAs boxed with no mark in

Panicum. The variable induction (V) is explained further the bottom of the table,

depending on the cultivars, treatments, tissue or miRNAs species analyzed.

References - Sugarcane: Thiebaut et al. (2012), Ferreira et al. (2012), Gentile et al.

(2013); Rice: Zhao et al. (2007), Sunkar et al. (2008), Shen et al. (2010), Zhou

et al. (2010), Shaik and Ramakrishna (2012), Xia et al. (2012), Mutum et al. (2013);

Hordeum: Kantar et al. (2010); Wheat: Kantar et al. (2011); Brachypodium: Budak

and Akpinar (2011); Bertolini et al. (2013); Panicum: Sun et al. (2012); Arabidopsis:

Sunkar and Zhu (2004), Liu et al. (2008), Chen et al. (2012), Li et al. (2012); Prunus:

Eldem et al. (2012); Phaseolus: Arenas-Huertero et al. (2009); Soybean: Li et al.

(2011b), Ni et al. (2012); Ni et al. (2013); Tobacco: Frazier et al. (2011); Populus: Li

et al. (2011a), Ren et al. (2012), Shuai et al. (2013).

(Sun et al., 2013). All of these use algorithms that rely mostly on
sequence complementarity analysis, implementing filtering crite-
ria that aim to simulate the target recognition process that occurs
within the RISC complex (Bartel, 2009). The first algorithms that
was developed for target identification in plants required only that
the miRNA:mRNA alignment did not exceed four mismatches,
regardless of the position or nature of those mismatches. Recently,
more sophisticated approaches have been successfully increasing
target prediction results in several plant species, including sugar-
cane (Zanca et al., 2010). They were developed using a scoring
system that differentiates gaps, simple mismatches, G:U pairing
and consider the position at which these features occur in the
alignment (Zhang et al., 2006). However, each of these tools uses
different implementations of these criteria, which may be a source
of divergent results.

The proliferation of target prediction tools over the last 10
years makes the choice and evaluation of their results a challenge.
A recent study, by Srivastava et al. (2014), showed how 11 plant
miRNA target prediction tools compare to each other. Most of
the tested tools use modifications of the Smith-Waterman align-
ment algorithm (which is very precise, with low computational
cost for short sequences). The best ranked tools make their pre-
dictions by coupling alignment results with programs that access
secondary structure of RNA molecules and parameters based on
the most recent findings on miRNA:Target recognition. The fact
that all of the plant-specific tools have been developed and trained
using Arabidopsis miRNAs explains the high overlap between
their analysis, and also the lower success rate in predicting miRNA
targets in non-model organism. Non plant-specific algorithms
present large number of predictions with very low precision.

The results described by Srisvastava et al. also show that,
although still highly skewed toward Arabidopsis, a number of

tools perform well when predicting targets from other plant
species, given that the user sets optimized parameters for the anal-
ysis. The most reliable and rapidly obtained results were observed
with Targetfinder (Fahlgren et al., 2007), psRNAtarget (Dai and
Zhao, 2011) and TapirHybrid (Bonnet et al., 2010).

It is noteworthy that algorithms that use prediction crite-
ria beyond the concept of high sequence complementarity are
amongst the best performers. But, as highlighted by the authors,
the occurrence of false negatives suggests there are important
target recognition details still to be uncovered. Therefore, when
working with species other than Arabidopsis, users are advised to
avoid default settings of those tools. The recommended approach
is to use an experimentally validated dataset as control, from the
same species or the closest relative, to adjust the parameters of the
algorithm.

The degradation rate of a particular miRNA seems to be highly
dependent on its target abundance and complementarity. After
the cleavage of a target, the miRISC (miRNA and RISC com-
plex) must survive; if this complex is not maintained, the released
miRNA could form another miRISC, and another round of tar-
geting would occur (Meng et al., 2011). Because the induction or
repression of a particular miRNA may depend on stresses and cell
type, it is expected that additional non-conserved miRNAs will
be discovered as experiments with a wide array of conditions are
performed.

Few studies have presented data on the expression of tar-
get genes in sugarcane (Zanca et al., 2010; Ferreira et al., 2012;
Thiebaut et al., 2012; Carnavale-Bottino et al., 2013; Gentile et al.,
2013; Ortiz-Morea et al., 2013), and only a fraction of these are
related to drought stress (Ferreira et al., 2012; Thiebaut et al.,
2012; Gentile et al., 2013). In fact, in most cases, researchers
rely on RT-qPCR expression pattern analysis of possible tar-
gets that were previously predicted by in silico tools. Basically,
these tools analyze the complementarity between a miRNA and
a transcript and calculate the unpaired energy (UPE) that would
be necessary to open the secondary structure around the small
RNA target site on the mRNA (Zanca et al., 2010; Dai and
Zhao, 2011). A recent approach for target validation is 5′ RLM-
RACE (Llave et al., 2011), which provides the amplification of
the 3′ cleavage product from the miRNA:target interaction events.
However, the validation of the cleavage of miRNA targets under
drought stress by this approach in sugarcane has not yet been
reported. It is worth noting that miRNAs may interfere with
gene expression by causing mRNA cleavage or by blocking mRNA
translation.

In spite of the wide array of bioinformatics tools that can be
used as first approach to identify putative targets, few reports
in humans, animals and plants have used experimental tools
to further prove the true targets of a particular miRNA. It is
beyond the scope of this review to discuss the experimental strate-
gies that can be used as well as their limitations, since this has
been addressed by several reviews on this subject (Thomson
et al., 2011; Ding et al., 2012; Moqadam et al., 2013). In gen-
eral, a first approach is to check if the miRNA::target pair
has opposed expression patterns, i.e., when the miRNA is up-
regulated, the target is down regulated and vice-versa. In another
approach, a construct containing the miRNA binding site in
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Table 4 | miRNAs identified under drought stress in Oryza sativa.

In the table, the different miRNAs were marked as induced by drought (a green box), repressed by drought (a red box), variably induced (a yellow box). a15% PEG: 0,

0.5, 2, 6, 24, and 48 h; bDehydrated for 12 h; c In pots: at tillering stage, water was withheld. Collected samples at 8, 10, 12, and 14 DAW (days after water withheld).

At flowering stage, collected at 5 and 6 DAW.
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the coding region of the luciferase gene or in the 3′UTR is co-
expressed with another construct overexpressing the miRNA.
Decreased levels of luciferase can be observed in those cases
where a true miRNA::target interaction takes place, as observed
by Liu et al. (2014). The cleavage site in the mRNA can also
provide an experimental evidence of miRNA action, by using
RNA ligase mediated- 5′ rapid identification of cDNA ends
(5′ RLM-RACE), as firstly observed for miR171 and a mem-
ber of the Scarecrow-like (SCL) transcripton factor (Llave et al.,
2002).

However, these and several other strategies aiming a sin-
gle miRNA::target pair are work intensive. They are not suit-
able to address the challenge of evaluating the high number of
miRNA::targets interactions predicted in miRNA expression pro-
filing methods using DNA chips or RNAseq. A straightforward
method to address this challenge is the analysis of the degradome.
This strategy allows the sequencing of the entire set of cleavage
products derived from all miRNAs in a sample, allowing the map-
ping of the exact cleavage site (Addo-Quaye et al., 2008; German
et al., 2008). Clearly, with the decreasing costs of DNA sequenc-
ing, the research on sugarcane miRNAs will soon benefit from
these high throughput technologies.

miRNAs AND SUGARCANE RESPONSES TO DROUGHT
The miRNA expression patterns and the predicted targets
described in the previous works with sugarcane under greenhouse
and field conditions (Ferreira et al., 2012; Gentile et al., 2013)
provide a working model of the defense strategies that might be
regulated by miRNAs in sugarcane exposed to drought.

Plants grown under field conditions had increased levels of
ssp-miR166 when stressed by drought. This miRNA targets tran-
scription factors from the homeobox-leucine zipper. The overex-
pression of a transcription factor from this family caused reduced
internodes in the model plant Arabidopsis thaliana. Interestingly,
reduced stalk length is one of the most remarkable phenotype
in sugarcane plants exposed to drought (Inman-Bamber and
Smith, 2005; Silva et al., 2008, and references therein). Therefore,
reduced ssp-miR166 would increase the levels of the transcription
factor that is involved in shortening the internodes.

ssp-miR171, was also repressed by drought under field con-
ditions, targets a sugarcane gene encoding a protein with high
identity to members of the scarecrow-like transcription factor
(SCL—GRAS domain protein) family. The Arabidopsis homologs
of this protein induce shoot branching and are targets of miR171,
and overexpression of miR171 caused reduced shoot branching in
transgenic plants (Wang et al., 2010a). Shoot branching is reduced
under drought stress in sugarcane, compromising plant survival
and reducing crop productivity (Inman-Bamber and Smith, 2005;
Silva et al., 2008; Kapur et al., 2011). Decreased levels of ssp-
miR171 and conversely increased levels of the SCL transcription
factor, could be a sugarcane response to counteract the deleterious
effects of drought on tillering.

ssp-miR160 was up-regulated in response to drought in field-
grown plants. This miRNA targets a sugarcane gene that has
high identity to the VNI2 protein from Arabidopsis. This pro-
tein repress the activity of a transcription factor, VASCULAR-
RELATED NAC-DOMAIN7 (VND7), that is a master inducer

of xylem formation (Yamaguchi et al., 2010). Although, to our
knowledge, there are no works showing xylem differentiation in
response to drought in sugarcane, this response has been observed
in poplar trees (Arend and Fromm, 2007). Therefore, ssp-miR160
induction could lead to decreased levels of VIN2, releasing the
action of VND7, that would work in xylem differentiation. This
could, in turn, improve the ability of sugarcane plants to transport
water.

Delaying leaf senescence is an agronomical trait that has a
positive impact on plant yield under drought stress, as observed
in sorghum (Borrel et al., 2000). Moreover, increased levels
of isopentenyltransferase, the rate-limiting step of cytokinin
biosynthesis, delay senescence in transgenic tobacco plants and
increase drought tolerance (Rivero et al., 2007). Leaf senescence
is observed in sugarcane plants under drought stress and is cor-
related with decreased crop productivity (Inman-Bamber, 2004;
Lopes et al., 2011). ssp-miR399 is induced by drought in field
grown sugarcane and targets a protein associated with leaf senes-
cence in maize. Increased levels of this miRNA could be a response
to keep a green leaf phenotype, allowing sugarcane plans to
sustain photosynthesis for a longer period under stress.

As observed in many other species, drought induces oxidative
stress in sugarcane, increasing H2O2 content and the levels of lipid
peroxidation (Cia et al., 2012). A miRNA, ssp-miR169, repressed
by drought in one sugarcane cultivar grown in the filed, targets
a glutathione S-transferase (GST). These enzymes are involved
in the detoxification of compounds generated during stress and
transgenic plants overexpressing GSTs have increased tolerance
to oxidative stress and water deficit (George et al., 2010; Ji et al.,
2010). Reduced levels of ssp-miR169 could increase GST levels
and therefore reduce the toxic effects of reactive oxygen species.

miRNA expression profiles also revealed a range of transcrip-
tion factors that may be involved in plant responses and tolerance
to drought stress (Table 5). We found many transcriptions fac-
tors, such as NAC domain, homeobox-leucine zipper, Nuclear
Factor YA, GRAS/SCL, APETALA2 and bZIP transcription fac-
tors. All of these have been described as being related to drought
stress and/or increasing tolerance to water stress when overex-
pressed in other plants (Dezar et al., 2005; Nelson et al., 2007;
Stephenson et al., 2007; Li et al., 2008; Ma et al., 2010; Ditt et al.,
2011; Golldack et al., 2011; Krishnaswamy et al., 2011). Other tar-
gets encode a wide array of proteins. A NSP-interacting kinase
(NIK), which is a member of the serine/threonine kinase sub-
family that is involved in plant development and responses to
external stimuli. An auxin receptor that specifically binds to a
repressor that is then degraded, allowing the expression of genes
related to auxin, was also found (Dharmasiri et al., 2005). In
addition to these targets, a GAPDH (glyceraldehyde-3-phosphate
dehydrogenase), which is involved in generating more ATP, and
a pyruvate dehydrogenase enzyme, involved in carbon balance
during the stress (Chaves et al., 2009) were also identified. An
inorganic pyrophosphatase 2-like was found among the targets
and has already been reported to confer tolerance to drought
stress when overexpressed in several plants (Gaxiola et al., 2001;
Park et al., 2005; Zhang et al., 2011). Finally, some enzymes were
identified as involved in cell modifications, such as laccases, that
reduce cell elongation during drought stress (Cachorro et al.,
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Table 5 | Target prediction for the miRNAs that were differentially expressed in drought-stressed sugarcane plants.

MicroRNA Experiment Target Acc GenBank Acc Target Description (PS RNATarget)

sspmiR160-seq 1 Field SCCCLR1C04H01.g ------- NAC domaincontaining protein 68-like
(Brachypodium distachyon)

ssp-miR164 Greenhouse SCEPRT2048G05.g CA138286 NAC transcription factor (Hordeum
vulgare)

ssp-miR164 Greenhouse SCCCAM1001A03.g CA070971 MDR-like ABC transporter (Oryza sativa -
Japonica Group)

sspmiR166-seq 3 Field SCRFLR1034E12.g CA125267 Homeobox-leucine zipper protein HOX32
(Oryza sativa)

sspmiR169-seq 2 Field SCACST3157E03.g CA180615 Nuclear transcription factor Y subunit A-10
(Zea mays)

sspmiR171-seq 2 Field SCJFAD1013C10.g CA067246.1 CA067169.1 Scl1 protein (Oryza Sativa – Japonica
Group)

sspmiR172 Field SCJLRT1022F08.g CA135950.1 CA135877.1 Floral homeotic protein APETALA 2-like
(Brachypodium distachyon)

ssp-miR394 Greenhouse SCQGAM2027G09.g CA086777 Glyceraldehyde-3-Phosphate
dehydrogenase (Triticum aestivum)

sspmiR394 Field SCUTLR1037A06.g CA126572 Protein N5P-interacting kinase 1-like
(Brachypodium distachyon)

ssp-miR528 Greenhouse SCJFRT2058D11.g CA141137 UBX domain-containing protein (Oryza
brachyantha)

sspmiR528 Field SCCCCL1002D10.b CA092987 Pyruvate dehydrogenase El alpha subunit

ssp-miR397 Greenhouse SCQSAD1056B07.g CA067772.1 CA067688.1 Laccase-23-like (Brachypodium distachyon)

ssp-miR1432 Greenhouse Field SCSFFL4085D03.g CA244979.1 CA244895.1 ABRE-binding factor BZ-1 bZIP
transcription factor1 (Zea mays)

ssp-miR393 Greenhouse TC120009 CA079863 CA080651 CA173890 Auxin-responsive factor TIR1-like protein
(Populus tomentosa)

ssp-miR399seq1 Greenhouse SCACHR1037A06.g CA101430 Inorganic pyrophosphatase 2-like
(Brachypodium distachyon)

sppmiR399-seq 3 Field SCJFLR1017A12.g CA122207 Senescence-associated like protein (Zea
mays)

Target Acc: the accession number in the SUCEST or SoGI databases; GenBank Acc: the accession number in the GenBank database; Target description: a description

of the target according to a BLAST search of the GenBank database, including the name of the organism producing the best hit.

1993). These results showed that the sugarcane miRNAs identified
under drought stress could regulate different genes that function
in several metabolic pathways, indicating the plasticity and the
complexity of sugarcane responses to this stress.

CONCLUSIONS AND PERSPECTIVES
In this review, we have evaluated studies describing the expres-
sion profiles of miRNAs from sugarcane under drought stress.
Cultivars that differ in their level of drought tolerance were
grown under different conditions and stressed in different ways.
Our analysis provides insights into the complexity of the sug-
arcane miRNA regulatory network under drought stress. Few
studies have evaluated plant responses under real field con-
ditions, and we found that these responses differ consider-
ably from those observed in the greenhouse. The different
genetic background of the cultivars used in the sugarcane stud-
ies highlight a new layer of complexity in miRNA expression.
Interestingly, this complexity observed in sugarcane was also
detected in other plant species. Taken together, the data from
miRNA expression under drought stress suggest that plants
may adjust their microtransptome in a variety of ways to

cope with different phases and intensity of drought stress and
that these responses may be fine-tuned in particular genetic
backgrounds.

This complexity of expression patterns urges us to move
toward functional assays and the use of mutants with decreased
or increased expression of selected miRNAs. These mutants could
be produced, for example, by overexpressing or silencing miRNA
precursors in transgenic plants, and will be extremely helpful in
assessing the role of miRNAs in drought responses.
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