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A greenhouse pot experiment was carried out to evaluate the efficiency of arsenic
phytoextraction by the fern Pteris vittata growing in arsenic-contaminated soil, with or
without the addition of selected rhizobacteria isolated from the polluted site. The bacterial
strains were selected for arsenic resistance, the ability to reduce arsenate to arsenite,
and the ability to promote plant growth. P. vittata plants were cultivated for 4 months
in a contaminated substrate consisting of arsenopyrite cinders and mature compost.
Four different experimental conditions were tested: (i) non-inoculated plants; (ii) plants
inoculated with the siderophore-producing and arsenate-reducing bacteria Pseudomonas
sp. P1III2 and Delftia sp. P2III5 (A); (iii) plants inoculated with the siderophore and
indoleacetic acid-producing bacteria Bacillus sp. MPV12, Variovorax sp. P4III4, and
Pseudoxanthomonas sp. P4V6 (B), and (iv) plants inoculated with all five bacterial strains
(AB). The presence of growth-promoting rhizobacteria increased plant biomass by up to
45% and increased As removal efficiency from 13% without bacteria to 35% in the
presence of the mixed inoculum. Molecular analysis confirmed the persistence of the
introduced bacterial strains in the soil and resulted in a significant impact on the structure
of the bacterial community.

Keywords: arsenic, arsenopyrite cinders, phytoextraction, plant growth-promoting rhizobacteria, Pteris vittata,

rhizosphere-enhanced phytoremediation

INTRODUCTION
Arsenic is widely dispersed in the Earth’s crust with an average
concentration of ∼5 mg kg−1. It is a component of more than 200
minerals, although it primarily exists as arsenopyrite and other
sulfides. Rocks can release arsenic compounds during weathering,
allowing dispersion by wind and water. The natural arsenic con-
tent of soils ranges from 0.01 to more than 600 mg kg−1 (Yan-Chu,
1994). Approximately one third of the arsenic in the atmosphere
is also from natural sources, such as volcanoes and forest wild-
fires (United States Environmental Protection Agency [US-EPA],
1998).

The remaining arsenic in the environment is anthropogenic
in origin. Arsenic is used in the pharmaceutical, glass, timber,
and leather industries, and for the production of pigments, metal
alloys, semiconductors, and optoelectronics. Uncontaminated
soils usually contain 0.2–40 mg kg−1 arsenic but concentra-
tions of 100–2500 mg kg−1 can be found in the vicinities of
copper-smelting plants and in heavily pesticide-contaminated
agricultural soils, which are the greatest sources of arsenic pol-
lution (World Health Organization [WHO], 2000). The diverse
industrial uses of arsenic provide many opportunities for human
exposure to the element (Garelick et al., 2008). Arsenic in soils
exists predominantly as arsenate (AsV), which includes HAsO4

2−
and H2AsO4

−. However, arsenite (AsIII), arsine (AsH3), and
several organoarsenic compounds are also found (Roy et al.,
2015).

Arsenic is acutely toxic to humans and also has a chronic impact
on health, as well as genotoxic and carcinogenic effects (Léonard
and Lauwerys, 1980; Ratnaike, 2003; Hughes et al., 2011). It is
considered to be five times as dangerous as lead (United States
Department of Health and Human Services [US-DHHS], 2007).
The chronic effects of arsenic include gastrointestinal disorders,
anemia, peripheral neuropathy, skin lesions, hyperpigmentation,
gangrene of the extremities, vascular lesions, liver and kidney dam-
age, and spontaneous abortions (Szymañska-Chabowska et al.,
2002; Fernández et al., 2012). The inhalation of arsenic-containing
compounds is a minor exposure route with the exception of work-
ers in the copper-smelting and pesticide-manufacturing indus-
tries, and in power plants burning arsenic-rich coal (Naujokas
et al., 2013). Arsenic exposure through contaminated drinking
water is common in mine drainage areas and where the bedrock
has a high arsenic content (Nordstrom, 2002; Rahman et al., 2009)
exceeding the 10 μg l−1 safety limit established by the United States
Environmental Protection Agency (US-EPA, 1998) and the World
Health Organization (WHO, 2000). Arsenic may also be present
in the diet, particularly in seafood, e.g., marine fish, mussels,
and certain crustaceans (European Food Safety Authority [EFSA],
2009).

The presence of arsenic in the environment and its associ-
ated health risks have led to the deployment of conventional
remediation strategies for the cleanup of contaminated sites
including removal (excavation and landfilling) and containment
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(capping). Because both these approaches are expensive, plant-
assisted bioremediation (phytoremediation) has been considered
as an inexpensive and environmentally beneficial in situ treatment
for polluted soils (Pilon-Smits, 2005). This is based on the ability
of hyperaccumulator plants to extract metals (including metal-
loids such as arsenic) from contaminated soils and sequester the
minerals in their aboveground biomass (Lasat, 2002). However,
effective phytoremediation in metal/metalloid-contaminated soils
requires a detailed understanding of the complex interactions in
the rhizosphere, because soil microbes influence metal bioavail-
ability (Rani and Juwarkar, 2013). For example, microbes catalyze
redox reactions leading to changes in the mobility of metals and
their ions, and thus the efficiency with which they are taken up
by roots (Sessitsch et al., 2013). Microbes therefore play a crucial
role in arsenic geochemical cycling through biochemical transfor-
mation, e.g. reduction, oxidation, and methylation (Smedley and
Kinniburgh, 2002; Lloyd and Oremland, 2006; Páez-Espino et al.,
2009).

Here we focus on a severe case of arsenic contamination in the
Scarlino industrial area (south–west Tuscany, GR, Italy) caused by
the dumping of 1.5 million tons of arsenopyrite cinders gener-
ated during the manufacture of sulfuric acid. The cinder layer
covering the soil is currently being removed as the first step
toward restoring the site, but a more refined strategy is required
to regenerate the underlying soil, which is now heavily contam-
inated with arsenic minerals. We tested a remediation strategy
for soil mixed with arsenopyrite cinders based on microbially
enhanced phytoextraction using the arsenic hyperaccumulator
fern species Pteris vittata. We carried out a mesocosm experi-
ment under glasshouse conditions as a preliminary test to evaluate
the efficiency of arsenic phytoextraction by P. vittata with or
without the help of bacterial inoculums comprising species iso-
lated from the rhizosphere of autochthonous plants grown on
surrounding soil. The bacteria were enriched by selection with
arsenite As(III) or arsenate As(V) to identify species that are
arsenic resistant, able to reduce arsenate to arsenite, and able to

promote plant growth by producing indoleacetic acid (IAA) or
siderophores. The overall aim was to identify bacterial strains that
promote the translocation of arsenic from contaminated environ-
mental matrices into plant tissues, especially the epigeal portion
of P. vittata.

MATERIALS AND METHODS
THE CONTAMINATED SITE
The contaminated site is located in the Scarlino industrial area
(Province of Grosseto, south–west Tuscany, GR, Italy) adjacent to
a former Nuova Solmine SpA sulfuric acid production facility that
was operational between 1962 and 1995. The production method
involved the roasting of arsenopyrite mined from the Colline Met-
allifere source, 20 km to the east of the processing plant (Figure 1).
The Nuova Solmine SpA site has been classified by the Regional
Government of Tuscany as an industrial landfill suitable for recla-
mation (Site GR66, Resolution No. 384, 21 December, 1999; Ciurli
et al., 2014). During the operational lifetime of the facility, ∼1.5
million tons of arsenopyrite cinders with an average arsenic con-
tent of 370 mg kg−1 was dumped in the landfill site, exposing ∼550
tons of arsenic to rainfall and creating a serious risk of leaching and
groundwater contamination (Focardi and Tiezzi, 2009). Nuova
Solmine SpA is facilitating the reclamation of this site by excavat-
ing the cinders and reusing them for industrial processes such as
steel production and brick manufacturing, leaving 700,000 tons
of cinders remaining on site. These remnants have sunk 2–5 m
below the ground level, so the excavated field is being progres-
sively refilled with clean agricultural cover soil from a nearby site
to prevent the dispersion of contaminated dust.

ISOLATION OF ARSENIC-RESISTANT BACTERIAL STRAINS FROM
ENRICHMENT CULTURES
Soil aliquots (5 g) from samples collected within the rhizosphere of
different autochthonous plants growing in the Scarlino area were
incubated in 250-ml Erlenmeyer flasks containing 100 ml R2A
liquid medium (Reasoner and Geldreich, 1985) in the presence of

FIGURE 1 | Satellite map of the Scarlino industrial area. Letters indicate the main contaminated sectors within the site. (A) Current 700,000-ton dump of
arsenopyrite cinders. (B) Disposal field for fine arsenopyrite particles. (C) Former lagoon for pyrite enrichment sludge.
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2 mM As(III) or As(V). All enrichment cultures were prepared in
duplicate and maintained for 2 weeks at 27◦C in the dark on an
orbital shaker at 200 rpm. For the isolation of arsenic-resistant
bacteria, appropriate dilutions of each enrichment culture were
plated on R2A agar medium and incubated at 27◦C for 5 days.
Colonies with different morphotypes were picked from the plates
at the end of the incubation period and repeatedly streaked until
axenic cultures were obtained. Pure cultures of each isolate were
stored in 30% (w/v) glycerol at –80◦C.

DETERMINATION OF MINIMUM INHIBITORY CONCENTRATIONS (MICs)
FOR ARSENITE AND ARSENATE
The bacterial isolates were streaked from liquid culture aliquots
onto R2A agar medium in Petri dishes supplemented with
increasing concentrations of arsenite (1–50 mM) and arsenate
(10–100 mM). The plates were then incubated at 27◦C for 5 days.
The growth of the different colonies was verified by referring to
reference plates lacking arsenic compounds.

ANALYSIS OF PLANT GROWTH-PROMOTING TRAITS
Assay for 1-amino-cyclopropane-1-carboxylic acid (ACC)
deaminase activity
Bacterial isolates with high MIC values for both arsenite and arse-
nate were assayed for their ability to promote plant growth. Each
strain was grown for 48 h in 4 ml DF minimal medium (Pen-
rose and Glick, 2003) containing 2 g l−1 (NH4)2SO4 as a nitrogen
source. The cells were then collected by centrifugation (5000 rpm,
5 min, 4◦C), washed twice with 0.9% NaCl and inoculated into
30 ml DF minimal medium without a nitrogen source to achieve
an optical density at 600 nm (OD) of 0.1. After 2 days, 1 ml of
the culture was transferred to a second flask containing 30 ml
DF minimal medium and this step was repeated until no further
growth was detected in the absence of a nitrogen source. The cells
were harvested by centrifugation as above and divided into three
flasks containing 30 ml DF minimal medium, DF medium con-
taining 2 g l−1 (NH4)2SO4 or DF medium supplemented with
3 mM ACC. The latter is heat labile and was therefore prepared as
a 0.5 M stock, sterilized by passing through a 0.2-μm filter mem-
brane (Millipore) and frozen in small aliquots at –20◦C which
were thawed just before use. The cultures were incubated on an
orbital shaker (250 rpm) in the dark and checked for growth after
7 days.

Assay for IAA production
The bacterial strains were cultured for 5 days in R2A medium
containing 0.5 mg ml−1 tryptophan, a precursor of IAA. After
2 and 5 days of incubation, 1 ml of each suspension was mixed
vigorously with 2 ml Salkowski’s reagent and incubated at room
temperature for 20 min before checking for the appearance of
pink coloring, which indicated the presence of IAA (Cavalca et al.,
2010). The quantity of IAA produced by 107 CFU ml−1 of each
suspension was determined as previously reported (Glickmann
and Dessaux, 1995).

Assay for siderophore production
Siderophore production was detected by streaking bacterial iso-
lates on blue agar plates containing Chromeazurol S (CAS;
Sigma–Aldrich) and incubating at 27◦C for 5 days before checking

for orange halos around the colonies, as described by Schwyn and
Neilands (1987).

IN VITRO ARSENATE REDUCTION TEST
The ability of bacterial isolates to reduce As(V) was determined by
inoculating vials containing 5 mM As(V) in 30 ml Tris minimal
medium (Sokolovská et al., 2002) and incubating at 27◦C for 72 h.
At each sampling point, 1 ml of the suspension was used to deter-
mine cell growth based on OD values, and the As(III) and As(V)
concentrations were determined by spectrophotometry according
to Cummings et al. (1999). Control vials without bacteria were
used to account for potential abiotic arsenate reduction.

TAXONOMIC ANALYSIS OF BACTERIAL ISOLATES
Bacterial isolates that promoted plant growth and/or showed resis-
tance to high concentrations of both As(III) and As(V) were
analyzed by 16S rRNA gene sequencing. DNA was isolated using
the beadbeater method (Lampis et al., 2014), and the 16S rRNA
genes were amplified by PCR using primers F8 and R11 (Weisburg
et al., 1991) under the following conditions: initial denaturation at
95◦C for 5 min followed by 30 cycles of 95◦C for 45 s, 52◦C for 45 s,
and 72◦C for 2 min, with a final extension step at 72◦C for 5 min.
The products were transferred to the pGEM-T vector (Promega,
Italy) and both strands were sequenced (Primm, Italy). Phyloge-
netic neighbors were identified by using BLAST (Altschul et al.,
1997) and megaBLAST (Zhang et al., 2000) to search the database
of type strains with valid prokaryotic names. The 50 sequences
with the highest scores were then used to calculate pairwise
sequence similarity using a global alignment algorithm avail-
able on the EzTaxon server (http://www.ezbiocloud.net/eztaxon;
Kim et al., 2012). Multiple sequence alignments were carried out
using ClustalW v1.83 (Thompson et al., 1997). Phylogenetic trees
were constructed using the neighbor-joining method in MEGA
v5.0 (Tamura et al., 2011) with 1000 data sets examined by boot-
strapping. Missing nucleotides at the sequence termini were not
included.

PHYTOEXTRACTION EXPERIMENTAL DESIGN AND TEST CONDITIONS
Botanical species and pot experiments
The arsenic hyperaccumulator P. vittata (Chinese brake fern) was
initially propagated as prothalli from spores in growth cham-
bers under controlled environmental conditions (25◦C, 65–70%
relative humidity, 100 μmol m−2 s−1 photosynthetically active
radiation, 16-h photoperiod) to yield the sporophytes used in the
pot experiments. The sporophytes were cultivated in pots contain-
ing 3 kg soil under glasshouse conditions (25◦C, 65–70% relative
humidity, 350 μmol m−2 s−1 photosynthetically active radia-
tion, 16-h photoperiod). P. vittata plants were cultivated either
in unpolluted soil (agricultural cover soil, C) or in a contami-
nated soil (the amended matrix, M) consisting of arsenopyrite
cinders from the Scarlino site mixed with 30% (w/w) mature com-
post from the aerobic stabilization of source-separated household
organic waste by windrow composting with forced aeration and
periodic turning. The soil was sterilized by autoclaving at 121◦C
for 15 min before use.

Both the C and M soils were tested with four different
treatments, each with five replicates: (i) non-inoculated plants;
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(ii) plants inoculated with the siderophore-producing, arsenate-
reducing bacterial strains P1III2 and P2III5 (inoculum A); (iii)
plants inoculated with the siderophore and IAA-producing bac-
terial strains MPV12, P4III4, and P4V6 (inoculum B); and (iv)
plants inoculated with A + B (inoculum AB). The experiment
lasted 4 months and the inoculums were applied at a final con-
centration of 108 CFU g−1 soil, either at the beginning of the
experiment or after 2 months. Before inoculation, the total bacte-
rial count of the M and C soils was determined by plating aliquots
of soil aqueous suspensions onto R2A agar and incubating at 27◦C
in the dark for 5 days. Bacterial growth was measured by counting
the colony forming units (CFUs). At the end of the experiment,
the plants were harvested and dissected into hypogeal (root) and
epigeal (frond) portions. Soil samples were collected from each
pot at the beginning (T = 0) and end (I = 1) of the test and stored
at –80◦C.

Determination of the arsenic content in the soil and plant tissues
Soil samples were dried at 80◦C for 3 days, ground and homog-
enized, and 1 g of each sample was digested according to a mod-
ification of USEPA Method 3051 in an ETHOS 900 microwave
system (Milestone, Bergamo, Italy) with pulsed mode emission, as
described by Ciurli et al. (2014).

Plant roots and fronds were rinsed with deionized water in an
ultrasonic cleaner to remove soil particles, dried at 50◦C in an
oven for 1 week, weighed and then ground to powder and sieved
through a 1-mm mesh screen using a Thomas Wiley Mini-Mill
(Thomas Scientific, Swedesboro, NJ, USA). We then digested 0.1–
0.5 g of each dried plant sample following the same procedure
used for soil.

The arsenic content of each sample was determined by induc-
tively coupled plasma optical emission spectrometry (ICP-OES)
using an ELAN 6000 instrument (Perkin-Elmer Corporation,
USA). A standard calibration curve was run with each set of sam-
ples. Each sample was measured in triplicate and quality control
samples were analyzed at the beginning of each test run, after every
10 samples and at the end of each run. Acceptance criteria for the
measured concentration was ±5% of the actual concentration.
Calibration curves showed excellent linearity, with r2 values of
0.999 or higher. The arsenic content of the fronds and roots was
calculated multiplying the arsenic concentration in each tissue by
the corresponding biomass.

Bioconcentration factor, translocation factor, and phytoremediation
efficiency
The dynamics of arsenic phytoextraction were investigated by
measuring the bioconcentration factor (BCF), i.e., the ratio of
arsenic concentrations in plant tissues and soil (Brooks, 1998) and
the translocation factor (TF), i.e., the ratio of arsenic concentra-
tions in the epigeous and hypogeal portions (Zhang et al., 2002).
We also determined the phytoremediation efficiency (PE) using
the equation PE = 1–(final arsenic content of soil/initial arsenic
content of soil).

Statistical analysis
Data were processed by one way analysis of variance (ANOVA) and
the difference between specific pairs of mean values was evaluated
using Tukey’s test (P < 0.05).

MICROBIAL CHARACTERIZATION OF SOIL SAMPLES BY PCR-DGGE
Total DNA was extracted from soil samples using the FastDNA
SPIN Kit for Soil (MP Biomedicals, Santa Ana, CA, USA) accord-
ing to the manufacturer’s instructions. Approximately 0.5 g of
material was used per extraction and the extracted total DNA was
then amplified by polymerase chain reaction (PCR) and analyzed
by denaturing gradient gel electrophoresis (DGGE), focusing on
the V3 hypervariable region of the 16S rRNA gene (Lampis et al.,
2009). The V3 region was amplified using the p2/p3 primer pair
(Muyzer et al., 1993) under the following conditions: initial denat-
uration at 94◦C for 5 min followed by 25 cycles of denaturation at
94◦C for 30 s, annealing at 57◦C for 30 s, and extension at 72◦C for
35 s, then a final extension step at 72 ◦C for 5 min. An 8% gel (19:1
acrylamide/bisacrylamide) was cast using a denaturing gradient
of 30–60%, with 100% denaturant defined as 7 M urea and 20%
(v/v) formamide. The similarity index was calculated from the
DGGE gels using SPSS v8.0 to determine the Pearson coefficient,
and NTSYS software was used to construct a dendrogram based
on the UPGMA method (Kropf et al., 2004). DGGE bands were
excised and incubated for 4 h in 100 μl sterile water before amplifi-
cation under the conditions described above, except for the use of
non-GC-clamped primers. The PCR products were transferred to
the pGEM-T vector and sequenced on both strands as above. The
sequences were used as BLASTN search queries (Altschul et al.,
1997).

RESULTS
ISOLATION AND SELECTION OF BACTERIAL STRAINS
More than 80 bacterial strains were isolated as axenic cultures
derived from enriched soil samples incubated in the presence of
As(III) and As(V). The MIC values were determined by titration
and we found that all 80 strains were highly resistant to As(V) but
only a few were also resistant to As(III) at concentrations exceeding
5 mM.

The most resistant strains to both As(III) and As(V) were
characterized for their ability to promote plant growth. None of
the isolates showed significant ACC deaminase activity but five
were shown to produce siderophores, namely MPV12, P1III2,
P2III5, P4III4, and P4V6 (Table 1). Among these five isolates,
MPV12 and P4V6 also synthesized IAA, and P1III2, P2III5, and
MPV12 were able to reduce arsenate to arsenite in liquid medium.
Strain P2III5 was the most efficient, completely reducing 5 mM
As(V) in 48 h. Strain P1III2 achieved the complete reduction of
5 mM As(V) in 72 h under both aerobic and microaerophilic
conditions. Complete reduction of As(V) occurred when the
bacterial strains reached their maximum cell density. There was
no evidence of As(V) reduction in the control experiments
lacking bacteria, confirming it was solely a microbial process.
These five strains were therefore chosen for the phytoremediation
experiments.

PHYLOGENETIC ANALYSIS OF THE BACTERIAL STRAINS
Sequencing the 16S rRNA genes from the five selected strains
revealed >98.5% identity to reference strains in the Ez-Taxon
database (Kim et al., 2012) representing the genera Bacil-
lus, Delftia, Pseudomonas, Pseudoxanthomonas, and Variovorax
(Figure 2).
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Table 1 | List of bacterial strains isolated from arsenic-contaminated matrices in the Scarlino landfill site for roasted arsenopyrite (Tuscany, GR,

Italy).

Strain Closest match in

Ez-Taxon database

Identity MIC (mM) Plant growth-promoting (PGP)

traits

Reduction of As (V) Inoculum

As(V) As(III) IAA Siderophores

P1III2 Pseudomonas putida

AP013070

Pseudomonas

asplenii Z76655

99.83%

99.50%

>100 25 – + 100% reduction of

5 mM As(V) to As(III)

in 48 h

A

P2III5 Delftia lacustris

EU888308

98.73% >100 10 – + 100% reduction of

5 mM As(V) to As(III)

in 72 h

A

P4III4 Variovorax

boronicumulans

AB300593

99.50% >100 5 + + – B

P4V6 Pseudoxanthomonas

mexicana AF273082

100% >100 5 17.38 ± 1.86 μg ml−1 + – B

MPV12 Bacillus thuringiensis

ACNF01000156

Bacillus toyonensis

CP006863

100% >100 11 12.76 ± 2.12 μg ml−1 + 60% reduction of

5 mM As(V) to As(III)

in 48 h

B

The bacteria were selected for phytoextraction tests based on their arsenite/arsenate resistance, As(V) reduction capability, and PGP characteristics.

Strain P4III4 showed 99.5% identity to Variovorax boronicu-
mulans strain BAM-48(T), a boron-accumulating betaproteobac-
terium isolated from an experimental field at the University of
Tokyo, Japan (Miwa et al., 2008), and 98.5% identity to both V.
paradoxus strain S110 and Xenophilus arseniciresistens strain YW8
(Figure 2A). Several V. boronicumulans strains are arsenic resis-
tant (Davolos and Pietrangeli, 2013), and V. paradoxus is often
found in soils contaminated with toxic minerals such as arsenite
(Macur et al., 2004) or organic pollutants such as trichloroethy-
lene and polychlorinated biphenyls. Notably, the Scarlino area has
a relatively high background content of boron (ARPAT, 2014). V.
paradoxus is also known to promote plant growth, e.g., V. para-
doxus strain 5C-2 has been shown to produce ACC deaminase
and enhance growth, yield, root length and/or water use effi-
ciency in Pisum sativum and Brassica juncea (Belimov et al., 2005,
2009).

Strain MPV12 is closely related to the Bacillus cereus group
(Figure 2B) and showed 100% identity to the recently described
B. toyonensis strain BCT-7112(T) (Jiménez et al., 2013) and B.
thuringiensis strain ATCC 10792(T). B. thuringiensis is often found
in arsenic-polluted soils (Oliveira et al., 2008; Villegas-Torres et al.,
2011) and is well known for its ability to promote plant growth
(Kumar et al., 2011).

Strain P1III2 showed 99.8% identity to Pseudomonas putida
and 99.5% identity to P. asplenii (Figure 2C). Pseudomonas sp.
are As(III)-resistant gammaproteobacteria (Cai et al., 2009) that
are often found in metal-polluted soils (Roosa et al., 2014) and
are known to promote plant growth (Glick, 2010). Strain P2III5

showed 98.7% identity to Delftia lacustris, a betaproteobacterium
(Figure 2C). Delftia sp. are also found in soils polluted with
As(III) (Cai et al., 2009). D. tsuruhatensis HR4 isolated from
the rhizoplane of rice (Oryza sativa L., cv. Yueguang) in North
China has been shown to fix nitrogen and suppress the growth of
plant pathogens (Han et al., 2005). Strain P4V6 showed 100%
identity to Pseudoxanthomonas mexicana, a gammaproteobac-
terium (Figure 2C) that promotes plant growth and has been
isolated from rice grown in arsenic-polluted soil (Bachate et al.,
2009).

PHYTOREMEDIATION WITH NON-INOCULATED AND INOCULATED P.
vittata PLANTS
Pteris vittata plants were cultivated on control agricultural soil
(C) or a mixture of arsenopyrite cinder and compost (M) for
4 months. Four experimental treatments were carried out: (i)
non-inoculated plants; (ii) inoculum A comprising Pseudomonas
sp. P1III2 and Delftia sp. P2III5, both producing siderophores and
capable of arsenate reduction in vitro; (iii) inoculum B comprising
Variovorax sp. P4III4, Pseudoxanthomonas sp. P4V6, and Bacillus
sp. MPV12 all producing siderophores and IAA; and (iv) inocu-
lum AB, comprising all five bacterial strains. The average bacterial
count in the soil before inoculation was 107 CFU per gram dry
weight.

At the end of the experimental trial, we measured the biomass
and arsenic content of the fronds and roots. We observed a
significant increase (P < 0.05) of ∼35% in the frond biomass
of plants grown in the M soil in the presence of bacteria
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FIGURE 2 | Neighbor-joining tree inferred using MEGA v5.0 based on the

sequences of 16S rRNA genes, showing the phylogenetic relationships

among strains P4IIIA (A), MPV12 (B), P1III2, P4V6, P2III5 (C), and related

species. Bootstrap analysis values for 1000 replicates are shown at the
nodes, only for values greater than 50. The scale bars indicate the number of
substitutions per nucleotide position.
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compared to the non-inoculated plants (Figure 3C). The bac-
teria also promoted frond growth in the C soil, with the greatest
enhancement of ∼30% achieved by inoculum B and inoculum
AB (P < 0.05). Interestingly, non-inoculated plants growing
in the M soil accumulated significantly more frond biomass
(P < 0.05) than those growing in the C soil, suggesting that
both the soil and the bacteria had an impact on the growth of
epigeal tissues. Neither the soil type nor the presence or absence
of bacteria appeared to have a significant impact on root biomass
(Figure 3D).

Inoculum AB promoted a significant increase (P < 0.05) in
the accumulation of arsenic in the fronds of plants grown in the
M soil, resulting in an average concentration of 4700 mg kg−1

which represented a 3.5-fold increase over the non-inoculated
plants (Figure 3A). The arsenic content of the roots was enhanced
by inoculum B and inoculum AB, reaching concentrations of up
to 500 mg kg−1 which represented an eightfold increase over the
non-inoculated plants (Figure 3B).

The arsenic concentration in the soil was measured at the
beginning (T = 0) and end (T = 1) of the experiment,
revealing a significant reduction in all four treatment groups

but the most efficient As-removal by plants treated with inocu-
lum AB. This reduced the arsenic content of the soil from
182.9 ± 4.35 mg kg−1 at T = 0 to 118.2 ± 2.96 mg kg−1 at
T = 1 (Figure 4).

The combined positive effect of the bacteria on plant biomass
and arsenic uptake resulted in a striking difference between
inoculated and non-inoculated plants in terms of arsenic seques-
tration, with inoculum AB achieving the most efficient mobi-
lization. This resulted in the arsenic content of the fronds
increasing from 21.1 ± 1.9 mg in non-inoculated plants to
134.17 ± 7.29 mg in plants treated with inoculum AB (Table 2).
The bioconcentration and TFs were calculated revealing that
the bioconcentration of arsenic was enhanced fourfold in plants
treated with inoculum AB compared to non-inoculated plants,
reaching an average value of 31. In contrast, the transloca-
tion of arsenic decreased in inoculated plants, with the most
severe decline (∼80%) observed in plants treated with inocu-
lum B.

The plants treated with different combinations of bacteria
all achieved a statistically significant (P < 0.05) increase in
PE, but the best result (35%) was achieved by inoculum AB, a

FIGURE 3 | (A) Arsenic concentration (mg kg−1 dry weight) in Pteris vittata fronds. (B) Arsenic concentration (mg kg−1 dry weight) in P. vittata roots.
(C) P. vittata frond biomass (g dry weight). (D) P. vittata root biomass (mg dry weight). Data are shown for plants grown in either agricultural soil (C) or on
arsenic-contaminated soil (M), inoculated (with A, B, or AB) or not inoculated (n.i.).
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FIGURE 4 | Arsenic concentration (mg kg−1 dry weight) in clean

agricultural soil (C) and arsenic-contaminated soil (M) at the beginning

(T = 0) and end (T = 1) of the experimental trials with P. vittata

augmented with inoculums A, B, and AB or not inoculated (n.i.).

threefold increase in efficiency compared to the non-inoculated
plants.

ANALYSIS OF THE SOIL BACTERIAL COMMUNITY BY PCR-DGGE
Polymerase chain reaction-denaturing gradient gel electrophoresis
analysis was carried out on soil samples collected at the beginning
and end of the experimental trials to monitor the persistence of
the inoculated strains and to evaluate potential changes in the
bacterial community.

The DGGE profiles of soil samples collected at each sam-
pling point confirmed that the five inoculated strains persisted
in the soil and remained part of the community at the end
of the experiment (Figure 5A). DGGE bands from the inocu-
lated strains with the same mobility as the reference strains were
excised, purified, re-amplified, and sequenced, confirming their
identity (data not shown). Specifically, bands a, b, c, and d con-
firmed identity with strain P1III2, bands e, f, g, and h with strain
P2III5, bands j, k, and i with strain P4III4, bands l and m with
strain MPV12, and band n confirmed identity with strain P4V6
(Figure 5A).

FIGURE 5 | (A) Denaturing gradient gel electrophoresis (DGGE) profiles of
bacterial communities collected at the beginning (T = 0) and end (T = 1) of
the experimental trials from the rhizosphere of P. vittata plants augmented
with inoculums A, B, and AB, or not inoculated (n.i.). DGGE profiles of
bacterial strains contained in the inoculums are also shown. Letters on the
gel indicate bands that were excised and sequenced. (B) Dendrogram
indicating the similarity indices of the different DGGE profiles.

Similarity indices were calculated using the Pearson correla-
tion coefficient and a dendrogram was constructed based on the
UPGMA method (Figure 5B) revealing a change in the structure
of the bacterial community caused by the presence of the plants
and/or the five inoculated bacterial strains. Specifically, the soils

Table 2 | Effects of different bacterial inoculums (A, B, and AB) on the final arsenic content of Pteris vittata fronds and roots, the

bioconcentration factor (BCF), the phytoremediation efficiency (PE), and the translocation factor (TF).

Arsenic content

Fronds (mg) Roots (μg) BCF PE TF

M 21.1 ± 1.9a 1.44 ± 0.16a 7.48 ± 0.97a 13.6 ± 0.9a 21.69 ± 1.56a

MA 50.59 ± 0.72b 3.82 ± 0.35b 13.52 ± 3.4b 21.34 ± 0.34b 15.21 ± 2.56b

MB 39.33 ± 1.88b 12.96 ± 0.41c 9.39 ± 2.86a 21.26 ± 0.89b 3.23 ± 0.87c

MAB 134.17 ± 7.29c 12.79 ± 0.37c 31.08 ± 5.48b 35.37 ± 1.45c 11.48 ± 1.34b

Within each column, means with the same letter are not significantly different according to Tuckey’s test (P < 0.05).
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inoculated with A, B, and AB each showed a 0.45 similarity index
compared to untreated soils, but the changes were not the same
with each inoculum. Indeed, the addition of inoculum AB induced
bacterial speciation corresponding to a 20% increase in diversity
which differed substantially from the effects of inoculums A and
B when applied separately.

DISCUSSION
We have demonstrated that the inoculation of soil with a mix-
ture of bacteria selected for their ability to promote plant growth
and the mobility of arsenic compounds can enhance arsenic phy-
toextraction from highly contaminated environmental matrices
by the hyperaccumulator fern species P. vittata. Even extreme
contamination, such as soil predominantly comprising arsenopy-
rite cinders from the Scarlino industrial area in Tuscany, can be
substantially remediated using this approach. The bacteria were
selected for multiple beneficial traits including the production
of IAA and siderophores, and the ability to reduce arsenate to
arsenite. The inoculation of contaminated soil with five of the best-
performing strains achieved an eightfold increase in the arsenic
BCF and a threefold increase in PE compared to non-inoculated
plants.

The PE increased from 13% in the absence of the selected
bacteria to 35% when P. vittata plants were augmented with inocu-
lum AB, comprising all five selected bacterial strains. This can be
attributed to the ability of the bacteria to withstand particularly
adverse experimental conditions. All five strains are indigenous
to the contaminated site and have therefore evolved to prosper in
an arsenic-rich environment. Our data indicate that the species
in inoculums A and B confer overlapping beneficial properties,
with inoculum A containing bacteria with the ability to reduce
As(V) and inoculum B containing bacteria that produce IAA. The
combination of both abilities therefore creates additive benefits
to enhance the growth and remediation capacity of the P. vittata
plants.

The presence of the five selected bacterial strains also had a
profound impact on the functional equilibrium of the P. vit-
tata rhizobacterial community, as shown by the similarity indices
and DGGE molecular fingerprints of soil samples from non-
inoculated plants and those treated with inoculums A, B, and
AB. The potential of specific bacterial inoculums to promote
arsenic accumulation by plants has been described in previous
studies. For example, Yang et al. (2012) inoculated P. vittata
plants with five different allochthonous bacterial strains from
the genera Delftia, Comamonas, and Streptomyces that were able
to reduce arsenate to arsenite. This resulted in a 50% increase
in biomass after 4 months, and an increase in phytoextrac-
tion efficiency from 7% without inoculation to 15% with the
addition of different bacterial strains. Similarly, we found that
inoculation with the arsenate-reducing strains Pseudomonas sp.
P1III2 and Delftia sp. P2III5 (inoculum A) increased the phy-
toextraction efficiency from 13.6 to 21%. It is well known that
rhizosphere microbes influence the mobility of heavy metals
in soil by regulating absorption/desorption equilibria, oxida-
tion/reduction reactions, and other mechanisms (Robert and
Berthelin, 1986). The bioavailability of heavy metals in soil is
known to be influenced by the rhizosphere microbial community,

the interaction between microbes and plant roots, and exu-
dates of microbial origin (Tang et al., 2001). Finally, hydropon-
ically grown P. vittata has been shown to utilize both arsenite
and arsenate, although arsenate is taken up more efficiently
because it competes with phosphate (Wang et al., 2002; Tu et al.,
2004).

The IAA-producing strains Variovorax sp. P4III4, Pseudoxan-
thomonas sp. P4V6, and Bacillus sp. MPV12 (inoculum B) elicited
a significant increase in both the BCF and the accumulation of
arsenic in the fronds, but the TF fell significantly compared to
non-inoculated plants and those treated with inoculums A and
AB. This probably reflects the ability of the bacteria to accumulate
large amounts of intracellular arsenic and thus prevent its uptake
into the roots, as previously reported for the arsenic hypertolerant
bacterial strain Bacillus sp. DJ-1 (isolated from a treatment plant
for industrial effluents in India) which can accumulate arsenic at
concentrations of up to 9.8 ± 0.5 mg g−1 dry weight (Joshi et al.,
2009).

All three inoculums we tested also boosted epigeal plant
biomass by an average of 45%. Bacteria that promote plant growth
do so by synthesizing beneficial compounds or facilitating the
uptake of certain nutrients from the soil (Burd et al., 2000; Çak-
makçi et al., 2006). They can also prevent or ameliorate plant
diseases (Jetiyanon and Kloepper, 2002; Guo et al., 2004). The
inoculation of P. vittata with arbuscular mycorrhizal fungi can
also boost plant growth, e.g., Leung et al. (2013) infected P. vit-
tata roots with Glomus mosseae and G. intraradices strains that
are indigenous to soil contaminated with mining waste, not only
achieving a higher biomass but also an increase in the TF from
3 to 10. Similar results were obtained by Trotta et al. (2006).
Our bacterial inoculums produced IAA, which is a plant growth
hormone (Patten and Glick, 2002) and/or siderophores, which
facilitate the uptake of nutrients in the presence of competing
metals (Burd et al., 2000). A recent study by Jeong et al. (2014)
showed that Pseudomonas aeruginosa siderophores can effec-
tively form siderophore–arsenic complexes in aqueous solutions.
A series of pot experiments was then carried out to investi-
gate the effect of microbial siderophores as iron-chelators on
the phytoextraction of arsenic by P. cretica. Plants grown in
soil supplemented with siderophores accumulated 3.7-fold more
arsenic than control plants growing in normal soil (Jeong et al.,
2014).

Several experiments have shown that P. vittata can phyto-
volatilize arsenic and this may also contribute to the overall
PE because the vapor released from P. vittata fronds contains
both As(III) and As(V) (Roy et al., 2015). Furthermore, numer-
ous soil bacteria can volatilize arsenic by reducing arsenate and
arsenite to arsine and other organoarsenic compounds. For exam-
ple, a genetically engineered Pseudomonas putida strain was
shown to volatilize almost completely the initial arsenite com-
ponent of the soil into organoarsenic compounds (Chen et al.,
2014).

We conclude that the inoculation of plants with arsenic-
resistant, growth-promoting bacteria that can reduce As(V) to
As(III), particularly bacteria that are indigenous to contaminated
sites earmarked for remediation, can improve the efficiency of
arsenic phytoextraction even by hyperaccumulator plant species
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such as P. vittata. This approach appears to be particularly useful
for heavily contaminated sites such as the landfill for arsenopy-
rite cinders at the Scarlino industrial site considered in this
investigation.
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