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It has been hypothesized that the relatively low concentration of sulfur amino acids in
legume seeds might be an ecological adaptation to nutrient poor, marginal soils. SARC1 and
SMARC1N-PN1 are genetically related lines of common bean (dry bean, Phaseolus vulgaris)
differing in seed storage protein composition. In SMARC1N-PN1, the lack of phaseolin
and major lectins is compensated by increased levels of sulfur-rich proteins, resulting in an
enhanced concentration of cysteine and methionine, mostly at the expense of the abundant
non-protein amino acid, S-methylcysteine. To identify potential effects associated with an
increased concentration of sulfur amino acids in the protein pool, the response of the
two genotypes to low and high sulfur nutrition was evaluated under controlled conditions.
Seed yield was increased by the high sulfate treatment in SMARC1N-PN1. The seed
concentrations of sulfur, sulfate, and S-methylcysteine were altered by the sulfur treatment
in both genotypes. The concentration of total cysteine and extractible globulins was
increased specifically in SMARC1N-PN1. Proteomic analysis identified arcelin-like protein
4, lipoxygenase-3, albumin-2, and alpha amylase inhibitor beta chain as having increased
levels under high sulfur conditions. Lipoxygenase-3 accumulation was sensitive to sulfur
nutrition only in SMARC1N-PN1. Under field conditions, both SARC1 and SMARC1N-PN1
exhibited a slight increase in yield in response to sulfur treatment, typical for common
bean.
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INTRODUCTION
Common bean (dry bean, Phaseolus vulgaris) is an important
source of protein and fiber in human diets. Like other grain
legumes, its protein quality is sub-optimal, being limited by the
levels of the essential sulfur amino acids, methionine, and cys-
teine. During the past decades, a lot of effort has been dedicated
to improving protein quality in grain legumes, primarily using
transgenic approaches (Krishnan, 2005; Ufaz and Galili, 2008;
Amir et al., 2012; Galili and Amir, 2013). Transgenic expression
of foreign proteins can be limited by the supply of sulfur, and
often results in a shift of sulfur away from endogenous, sulfur-rich
proteins (Streit et al., 2001; Tabe and Droux, 2002; Chiaiese et al.,
2004). Table 1 lists the different experiments that were performed
involving transgenic expression of sulfur-rich proteins in legumes
and their outcomes. In Vicia narbonensis, co-expression of Brazil
nut 2S albumin and a feedback-insensitive, bacterial aspartate
kinase was associated with increased sulfur concentration in seed
(Demidov et al., 2003). A common concern with these approaches
is the potential allergenicity of the foreign proteins (Nordlee et al.,
1996; Kelly and Hefle, 2000; Krishnan et al., 2010). A possible
solution to this problem is the expression of a de novo synthetic
protein, MB-16. An alternative approach involves the transgenic
manipulation of sulfur amino acid pathways. Overexpression of
cytosolic serine acetyltransferase in developing soybean seed led to

a 70% increase in total cysteine concentration (Kim et al., 2012).
Expression of a feedback-insensitive Arabidopsis cystathionine γ-
synthase (AtD-CGS), encoding a protein lacking 30 amino acids
in the N-terminal domain, raised total methionine concentra-
tion by 1.8 to 2.3-fold, with an overall increase in seed protein
concentration (Song et al., 2013). By contrast, expression of the
feedback-insensitive mto1-1 allele, harboring a point mutation,
led to elevated levels of free methionine, but not total methionine
in soybean, whereas in azuki bean, the levels of cystathionine were
raised while total methionine concentration was actually decreased
(Hanafy et al., 2013a,b). A completely different approach proposed
to improve protein quality in common bean involves the introduc-
tion of highly digestible phaseolin types from wild accessions by
conventional breeding (Montoya et al., 2010). Based on in vitro
protein digestibility corrected amino acid score, genotypes having
highly digestible phaseolin types could increase bioavailable sul-
fur amino acids by approximately 30% as compared with S type
phaseolin present in Mesoamerican cultivars.

Grain yield in legumes has a low heritability due to environ-
mental variables. Consequently, agronomic practices combined
with proper fertilizer management heavily influence yield. Sul-
fur, which has long been known to play a major role in plant
metabolism (Takahashi et al., 2011), increases yield in common
bean (Malavolta et al., 1987) and influences seed quality via the
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Table 1 | Attempts to improve sulfur amino acid concentration in legumes by transgenic expression of sulfur-rich proteins.

Crop plant Foreign protein Increase in sulfur amino acids Reference

Soybean Brazil nut 2S albumin Methionine 26% Townsend and Thomas (1994)

Soybean 15 kDa δ-zein Methionine by 20% and cysteine by 35% Dinkins et al. (2001)

Soybean 27 kDa γ-zein Methionine by 19% and cysteine by 30% Li et al. (2005)

Soybean 11 kDa δ-zein Methionine (alcohol soluble fraction) Kim and Krishnan (2004)

Common bean Brazil nut 2S albumin Methionine by 20% Aragão et al. (1999)

Lupin Sunflower seed albumin Methionine by 90% Molvig et al. (1997), Tabe and Droux (2002)

Chickpea Sunflower seed albumin Methionine by 90% Chiaiese et al. (2004)

Vicia narbonensis Brazil nut 2S albumin and feedback-

insensitive aspartate kinase

Methionine by 100% and cysteine by 20% Demidov et al. (2003)

Soybean MB-16 Methionine by 16% and cysteine by 66% Zhang et al. (2014)

proportion of sulfur containing amino acids, cysteine, and methio-
nine. Sulfate is the most significant and readily mobilized form
of sulfur. Sulfate taken up by the roots is reduced to sulfide
and further incorporated into cysteine. Cysteine is converted to
methionine or incorporated into glutathione and proteins. Sulfate,
and/or organic forms of sulfur, such as glutathione (Anderson and
Fitzgerald, 2001) or S-methylmethionine (Bourgis et al., 1999; Lee
et al., 2008; Tan et al., 2010), is transported through the phloem,
followed by uptake by transporters into the developing embryo
and translocation between seed tissues (Zuber et al., 2010). Deliv-
ery of adequate sulfur to seed tissues is needed for maximizing
production and to improve protein quality (Hawkesford and De
Kok, 2006). Nutrient status of the plant regulates the uptake and
assimilation of sulfate (Smith et al., 1995; Buchner et al., 2004).
Studies have shown that a decrease in sulfate availability results
in a several-fold enhanced expression of sulfate transporter genes,
which enhances the capacity for sulfate uptake (Hawkesford, 2000,
2003). Sulfur fertilization favorably affects protein quality by
increasing the expression of proteins rich in sulfur amino acids.
Control of seed protein accumulation by the sulfur status has
been well documented in several legumes, including globulins
in soybean and lupine (Blagrove et al., 1976; Gayler and Sykes,
1985), and globulins, and albumins in pea (Chandler et al., 1983,
1984; Higgins et al., 1987). Reduced expression of pea legumin
and albumin 1 genes in response to sulfur deficiency was further
confirmed in transgenic tobacco (Rerie et al., 1991; Morton et al.,
1998). In general, high sulfur stimulates the expression of sulfur-
rich globulins and albumins while sulfur deficiency increases the
expression of sulfur-poor globulins. In soybean, the accumula-
tion of the sulfur-poor β-subunit of β-conglycinin is repressed
by exogenous methionine (Holowach et al., 1984, 1986). This
was confirmed in transgenic Arabidopsis (Naito et al., 1995). The
immediate metabolic precursor of cysteine, O-acetylserine, seems
involved in the up-regulation of the β-subunit of β-conglycinin
under conditions of sulfur deficiency (Kim et al., 1999). A high
nitrogen to sulfur ratio not only increases the accumulation of
the β-subunit of β-conglycinin, but also reduces the levels of
sulfur-rich Bowman-Birk inhibitor (Krishnan et al., 2005). Recent
research has focused on adaptation of legumes to sulfur deficiency,
highlighting the possible role of a vacuolar sulfate transporter

in Medicago truncatula (Zuber et al., 2013). This research is rel-
evant to improvement of sulfur use efficiency (De Kok et al.,
2011).

Crop plants mitigate the effect of silencing or deficiency in
storage proteins through rebalancing of the seed proteome (Mar-
solais et al., 2010; Herman, 2014; Wu and Messing, 2014). SARC1
and SMARC1N-PN1 are related genotypes of common bean dif-
fering in seed protein composition (Osborn et al., 2003). They
share 87.5 and 83.6% of the recurrent, Sanilac parental back-
ground, respectively. SARC1 integrates the lectin arcelin-1 from
a wild accession. SMARC1N-PN1 lacks phaseolin and major
lectins, through introgressions from a P. coccineus accession and
Great Northern 1140, respectively. These changes are associated
with an increased concentration of methionine and cysteine, by
10 and 70%, respectively, concomitant with 70% decrease in S-
methylcysteine concentration (Taylor et al., 2008). Proteomic and
transcript profiling indicated that several sulfur-rich proteins have
increased levels in SMARC1N-PN1, including the 11S globulin
legumin, albumin-2, defensin D1, Bowman-Birk type proteinase
inhibitor 2, albumin-1, basic 7S globulin, and Kunitz trypsin
protease inhibitor (Marsolais et al., 2010; Yin et al., 2011; Liao
et al., 2012). SARC1 and SMARC1N-PN1 offer a unique system
to investigate how related legume genotypes, harboring natural
genetic variation in storage protein composition, respond to sul-
fur deficiency. The presence of an endogenous sink for sulfur in
SMARC1N-PN1 is associated with an increased plasticity of the
seed composition in response to sulfur nutrition.

MATERIALS AND METHODS
PLANT MATERIALS AND GROWTH CONDITIONS
SARC1 and SMARC1N-PN1 were evaluated for their response to
sulfur nutrition by fertilizing with a nutrient solution containing
low sulfur (LS) or high sulfur (HS) as described in previous work
with common bean (Sánchez et al., 2002) and chickpea (Chiaiese
et al., 2004), with modifications (Pandurangan et al., submitted
to Sulfur Metabolism in Plants. Molecular Physiology and Eco-
physiology of Sulfur. Proceedings of the International Plant Sulfur
Workshop). Seeds were sown in small trays containing vermiculite
for better germination. Ten day old seedlings were transplanted to
pots (17 cm× 20 cm) containing sand, perlite, and vermiculite in
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a 2:1:1 ratio. The experimental unit consisted in a pot with two
plants. There were two groups (LS and HS) of five pots for each
genotype. For the initial establishment, the transplanted seedlings
were fertilized once with 20:20:20 (N:P:K; Plant Prod, Brampton,
ON, Canada) before the actual sulfur treatment. The nutrient solu-
tions for the treatment were made fresh from stock solutions and
applied once weekly. The LS nutrient solution contained 0.2 mM
K2SO4 and 1.8 mM MgCl2; HS contained 0.2 mM K2SO4 and
1.8 mM MgSO4. Other nutrients included 4.5 mM Ca(NO3)2,
1.7 mM K2HPO4, 4 μM MnSO4.H2O, 5 μM H3BO3, 10 μM Fe-
EDTA, 0.25 μM CuSO4.5H2O, 1 μM ZnSO4.7H2O, and 0.2 μM
Na2MoO4.2H2O. Plants were grown in cabinets (Conviron E8H,
Winnipeg, MB, Canada) with 16 h light (300–400 μmol photons
m−2 s−1) and 8 h dark, with a temperature cycling between 18
and 24◦C (Pandurangan et al., 2012).

FIELD TRIAL
The response of SARC1 and SMARC1N-PN1 genotypes to sul-
fur fertilization was assessed in a field trial conducted at the
Cereal Research Centre Morden, MB, Canada, in 2012. Soil was
sampled in the fall 2011 and analyzed at Exova, Calgary, AB,
Canada, to determine the amount of nutrients needed for the
treatment. Nutrient analysis found 24:129:1345 kg ha−1 as nitro-
gen, phosphorus, potassium, and 47 kg ha−1 as sulfur. Crops
were either grown with or without applied sulfur (30 kg ha−1) as
gypsum (CaSO4 ·2H2O). Recommended seed rate (250,000 seeds
ha−1 = 25 seed m−2) and cultural practices were used at all plots.
Plot size was 1 m × 5.5 m trimmed to 5.0 m2 with spacing of
two rows at 0.5 m between plots. All plots were planted in a ran-
domized complete block design with four replications for each
treatment, each replication consisting of two rows of 5.5 m long
accounting for 550 seeds per treatment. Two adjacent rows repre-
sented one replicate. A post emergent herbicide, Basagran (BASF
Canada, Mississauga, ON, Canada) was applied at the rate of 2.2 l
ha−1. Fertilizer added in all the treatment plots was 120 kg N ha−1.
Dry mature seeds from the net area of each plot were harvested
separately, weighed, and recorded as seed yield (kg ha−1).

AMINO ACID ANALYSIS
Extraction and quantification of sulfur amino acids from
mature seed tissue was performed as previously described, using
HPLC after derivatization with phenylisothiocyanate (Hernández-
Sebastià et al., 2005; Taylor et al., 2008). Cysteine was quantified
separately as cysteic acid after oxidation with performic acid.

ALBUMIN AND GLOBULIN EXTRACTION AND QUANTIFICATION
Albumin and globulin fractions were extracted from mature seed
as described by Rolletschek et al. (2005). Protein in the extracts
was quantified using the Bio-Rad Protein Assay reagent (Mis-
sissauga, ON, Canada) with bovine serum albumin as standard.
Protein concentration was normalized according to the volume
of extract recovered. A volume of sample equivalent to the same
weight of tissue extracted was subjected to SDS-PAGE on a 12%
polyacrylamide gel. Following staining with Coomassie R-250,
band intensities in globulin extracts were measured with Quan-
tity One 4.2.1 (Bio-Rad). Quantity One is very tolerant of an
assortment of electrophoretic artifacts, and can measure total and

average quantities, determine relative and actual amounts of pro-
tein. Prior to quantification the image acquired from scanning
the gels was optimized by the software by performing lane back-
ground subtraction to reduce any noise or background density
while maintaining image quality followed by filtering to remove
small noise features while leaving larger features relatively unaf-
fected. The software was used for identifying lanes and defining,
quantitating, and matching bands. Lane-based quantitation used
to calculate intensity of similar bands across lanes involves calcu-
lating the average intensity of pixels across the band width and
integrating over the band height. The quantity of a band as mea-
sured by the area under its intensity profile curve is expressed as
intensity × mm. Apparent molecular mass was calculated based
on standards using the same software.

SAMPLE PREPARATION AND MASS SPECTROMETRY
Proteomic experiments were performed at the London Regional
Proteomics Centre of the University of Western Ontario. Sample
preparation was carried out at the Functional Proteomics Facil-
ity. Protein bands of interest identified by band intensities in the
globulin extracts were excised by the robotic Ettan Spot Picker
(GE Healthcare Life Sciences, Baie d’Urfé, QC, Canada) and sus-
pended in 50% methanol and 5% acetic acid for digestion. Trypsin
digestion was performed using the MassPREP automated digester
(Waters, Mississauga, ON, Canada). Gel pieces were destained
using 50 mM ammonium bicarbonate and 50% acetonitrile fol-
lowed by protein reduction with 10 mM dithiothreitol, alkylation
with 55 mM iodoacetamide and tryptic digestion. Peptides were
extracted using a solution of 1% formic acid and 2% acetoni-
trile and lyophilized. Peptides were dissolved in a solution of 30%
acetonitrile and 0.1% trifluoroacetic acid mixed with α-cyano-4-
hydroxycinnamic acid in 50% acetonitrile, 12.5 mM ammonium
citrate, 0.1% trifluoroacetic acid, and analyzed on a 4700 Pro-
teomics Discovery System (Life Technologies, Burlington, ON,
Canada) at the MALDI-MS facility. MS analysis was carried out
in an m/z range of 500–3500 and mass tolerance of 50 ppm.
Data acquisition and processing were done using 4000 Series
Explorer and Data Explorer (Life Technologies). The instrument
was equipped with a 355 nm Nd:YAG laser and the laser rate was
200 Hz. Reflectron and linear positive ion modes were used. Each
mass spectrum was collected as a sum of 1000 shots. Samples from
protein bands no. 1, 4, and 5 were further analyzed by LC–MS–
MS at the Biological Mass Spectrometry Laboratory. They were
reconstituted in 18 μl of 0.1% formic acid in water and 10 μl was
injected into the UPLC-MS/MS system. The system was comprised
of a Waters nanoAcquity UPLC with a Waters C18 trapping and
Waters 25 cm analytical column coupled to a Waters QToF Ultima
Global Mass Spectrometer. The sample was run at a flow rate of
0.3 μl/min. Solvent A was water:formic acid 0.1% and solvent B
was acetonitrile:formic acid 0.1%. Solvent B was set to go from
5% to 60% in 40 min and then reach 95% by 42.5 min. B was kept
at 95% for 5 min and brought back to 5% at 50 min. The column
was re-equilibrated for 25 min prior to the following injection.
Sample loading took 3 min with a flow rate of 10 μl/min at 99%
A and 1% B. MS survey scan was performed at a cone voltage of
35 V and set to 1.4 s with 0.1 s interscan and recorded from 300
to 1800 m/z. In a given survey scan, all doubly and triply charged
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ions with intensities greater than 40 counts were considered candi-
date to undergo MS/MS fragmentation. MS/MS acquisition would
stop as soon as the total ion current would reach 25000 counts
per second or after a maximum time of 6 s. MS/MS scan was
acquired from 50 to 1800 m/z for 1.4 s with an interscan time
of 0.1 s. Selected ions were fragmented with a collision energy of
30 eV.

Peptide mass fingerprint data were analyzed by searching pep-
tide mass values against a translated version of the preliminary
release of the common bean genome (June 26, 2012; Schmutz
et al., 2014) using MASCOT (Matrix Science, Boston, MA, USA).
The following parameters were used: 1 missed cleavage; fixed
carbamidomethyl alkylation of cysteine; variable oxidation of
methionine; peptide mass tolerance: ± 1.2 Da; peptide charge
state: +1, significant threshold: p < 0.05. For MS-MS, raw data
were converted to mgf files using PEAKS 5.3 (Bioinformatics
Solutions Inc., Waterloo, ON, Canada). MS/MS ion search was
performed with MASCOT against the same database, as well the
Mascot database (MSDB, August 31, 2006) using similar cleavage
and post-translational modification parameters.

SULFATE ANALYSIS
Replicate samples (∼50 seeds) were ground to a fine powder in a
Kleco Ball Mill (Visalia, CA, USA) and lyophilized. Approximately
100 mg of ground tissue was used for sulfate analysis by chemical
suppression ion chromatography and conductivity detection using
a Dionex DX-600 Ion Chromatograph (Thermo Fisher Scientific,
Sunnyvale, CA, USA), as described in Herschbach et al. (2000)
with modifications. Approximately 100 mg of tissue was extracted
in 0.5 ml of deionized water. The suspension was centrifuged at
16,000 × g for 10 min at 4◦C. A 300 μl aliquot of the cleared
supernatant was transferred to an ion chromatography vial for
testing using an IonPac anion-exchange column (AS14A, 4 mm;
Thermo Fisher Scientific) and eluted with a mixture of 3.5 mM
sodium hydrogen carbonate, and 1.0 mM sodium carbonate. A
10 μl aliquot of the solution contained in vials was injected into the
eluent stream and background conductivity of eluents reduced by a
suppressor (Anion Self-Regenerating Suppressor Ultra, 4 mm). An
AS50 auto sampler equipped with a refrigerated chamber was used
to house the vials and Dionex Peaknet 6.0 software was employed
to track and analyze data.

ELEMENTAL ANALYSIS
Approximately 500 mg of ground seed tissue was submitted
to elemental analysis which was performed by dry combustion
with a CNS-2000 Elemental Analyzer (LECO Instruments ULC,
Mississauga, ON, Canada) as described by Taylor et al. (2008).

STATISTICAL ANALYSIS
Analysis of variance was performed using SAS version 9.2
(Toronto, ON, Canada). Homogeneity of the variances was
inspected by residual graphic analysis.

ACCESSION NUMBERS
Accession numbers for proteins in this study are as follows: arcelin-
like 4 [Uniprot:Q8RVX7]; lipoxygenase-3 [Phytozome:Phvul.005g
157000.1]; albumin-2 [Phytozome:Phvul007g275800]; α-amylase

inhibitor β-subunit [Uniprot:Q9S9E1]; α-amylase inhibitor 1
[Uniprot:Q6J2U4].

RESULTS
INCREASED YIELD OF SMARC1N-PN1 IN RESPONSE TO HIGH SULFUR
UNDER CONTROLLED CONDITIONS
To determine whether differences in response to sulfur nutrition
are associated with the presence of an additional, endogenous
sink for sulfur in SMARC1N-PN1, an experiment was performed
under controlled conditions with two levels of sulfate fertilization.
Treatment conditions were designed so that the LS conditions
correspond to a sulfur deficiency at the reproductive stage. The
LS condition was found to be non-limiting for vegetative growth
(Figure 1). The nitrogen levels selected are non-limiting (Sánchez
et al., 2002; Chiaiese et al., 2004). The two genotypes were com-
pared for their agronomic parameters. The following variables
were evaluated: number of seeds, seed weight, and seed yield
(Table 2). The fact that SARC1 and SMARC1N-PN1 are not com-
pletely isogenic explains the occurrence of genotypic differences
for some of these characteristics. There were significant inter-
actions between factors for seed weight and yield. Whereas the
average seed weight decreased under HS for SARC1, it actually
increased for SMARC1N-PN1 (G × T; p ≤ 0.01). This was asso-
ciated with increased yield, specifically in SMARC1N-PN1, by 8%
(G × T; p ≤ 0.05). A trial was performed to determine if the differ-
ences observed under controlled conditions would be replicated in
the field. The large difference in yield between genotypes indicates
that SMARC1N-PN1 is not well adapted to agronomic conditions
in Manitoba. Both genotypes exhibited a limited yield response to
sulfate fertilization, by 3–15% (Table 3). This response is typical
for common bean and other legume crops.

INCREASED SEED CONCENTRATION OF SULFUR AND SULFATE IN
RESPONSE TO HIGH SULFATE TREATMENT
To determine if the sulfur treatment effectively altered seed com-
position and particularly the concentration of sulfur and its
metabolites, mature seeds were analyzed for total carbon, nitrogen,

FIGURE 1 | Plants grown under controlled conditions with low sulfur

(LS) and high sulfur (HS), 60 days after germination and 26 days after

flowering. Vegetative growth appeared similar between genotypes.
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Table 2 | Effect of sulfur on number of seeds, seed weight, and yield

under controlled conditions.

Genotype Treatment Number

of seeds

Seed

weight (mg)

Yield (g)

SARC1 LS 134 ± 16 214.6 ± 10.1 28.6 ± 2.1

HS 143 ± 9 196.9 ± 8.9 28.2 ± 1.5

SMARC1N-PN1 LS 152 ± 12 195.5 ± 9.0 29.6 ± 1.2

HS 157 ± 9 203.8 ± 11.8 32.0 ± 0.7

Source of variation d. f. ANOVA p-value

Genotype (G) 1 0.008 n. s. 0.002

Treatment (T) 1 n. s. n. s. n. s.

G × T 1 n. s. 0.01 0.05

Error 15

Values are the average ± SD; n = 5; LS, low sulfur (0.2 mM SO4); HS, high sulfur
(2 mM SO4); d. f., degrees of freedom; n. s., not significant.

Table 3 | Seed yield in sulfur deficient and -sufficient field conditions.

Genotype Yield without

sulfur (kg ha–1)

Yield with

sulfur (kg ha–1)

SARC1 1736 ± 407 1995 ± 564

SMARC1N-PN1 667 ± 330 689 ± 211

Values are the average ± SD; n = 4.

and sulfur by elemental analysis and for sulfate concentration by
ion analysis. Previously, SARC1 and SMARC1N-PN1 were shown
to have similar nitrogen concentration in seed (Hartweck and
Osborn, 1997), and Taylor et al. (2008) reported a similar seed con-
centration of carbon, nitrogen, and sulfur. The sulfur treatment
did not change carbon and nitrogen concentration, but had a sig-
nificant effect on sulfur and sulfate concentration (Table 4). Sulfur
concentration was raised by the HS treatment by approximately
15 to 20% in both genotypes. Sulfate concentration was increased
by 17% in SARC1 and 38% in SMARC1N-PN1. The differences
in sulfur and sulfate concentrations indicate that treatment condi-
tions are suitable to investigate whether the two genotypes respond
differently to sulfur nutrition.

INCREASED CONCENTRATION OF CYSTEINE AND GLOBULINS IN
SMARC1N-PN1 UNDER HIGH SULFATE CONDITIONS
To evaluate whether sulfur nutrition has an effect on the total
concentration of sulfur amino acids, methionine, cysteine, and
the non-protein amino acid, S-methylcysteine were quanti-
fied after acid hydrolysis of ground seed tissue. As expected,
the concentration of these three amino acids was different
between genotypes, methionine, and cysteine being higher,
and S-methylcysteine lower in SMARC1N-PN1 than in SARC1
(Table 5), as previously reported (Taylor et al., 2008). HS increased
the levels of S-methylcysteine by approximately 40% in both
genotypes. Cysteine concentration was raised in response to the

HS treatment specifically in SMARC1N-PN1, by 16% (G × T;
p ≤ 0.03). On average, the combined levels of methionine
and cysteine were elevated by 13% in SMARC1N-PN1, while
they were decreased by 2% in SARC1 in response to the HS
treatment.

To investigate whether the differences in sulfur nutrient allo-
cation influenced seed storage protein composition, an important
determinant of seed quality, albumins, and globulins were sequen-
tially extracted and their concentration quantified (Table 6).
The concentration of extractible albumins was unchanged by
the treatment. However, the concentration of extractible globu-
lins increased specifically in SMARC1N-PN1, by 24% (G × T;
p ≤ 0.008).

The globulin extracts were analyzed by SDS-PAGE. A volume
of sample equal to a similar weight of seed tissue extracted was
separated by electrophoresis (Figure 2). The volume of five pro-
tein bands appeared to be increased by the sulfur treatment. This
was confirmed by image analysis with Quantity One (Table 7).
The fold change and statistical significance of the changes was con-
firmed by analyzing replicate extracts of each genotype on separate
gels (Supplementary Figure S1; Supplementary Tables S1 and S2).
The protein bands were excised, digested with trypsin and ana-
lyzed by MALDI-MS or LC–MS–MS and identified by MASCOT
search against the MASCOT database, or a translated database of
the common bean genome (Schmutz et al., 2014). Protein bands
no. 2 and 3 could be identified by MALDI-MS, whereas protein
bands no. 1, 4, and 5 required more sensitive LC–MS–MS analysis.
Tables 8 and 9 provide information about protein identifications
and list the number of methionine, cysteine, and total residues
in each protein. In all cases, the apparent molecular mass mea-
sured by electrophoresis matched the predicted molecular mass
relatively closely.

Protein band no. 2 was identified as a lipoxygenase, which
was named lipoxygenase-3, based on its similarity to the cor-
responding soybean and pea proteins. Its baseline levels were
higher in SMARC1N-PN1 than in SARC1 by approximately
twofold. These results are consistent with the prior identifi-
cation of this lipoxygenase as elevated in SMARC1N-PN1 as
compared with SARC1, both by spectral counting (1.6-fold) and
immunoblotting (2.5-fold; Marsolais et al., 2010). This protein
had been identified on the basis of the soybean lipoxygenase-
3 sequence (Yenofsky et al., 1988). The common bean acces-
sion shares 88% identity with soybean lipoxygenase-3, and
84% identity with pea lipoxygenase-3 (Ealing and Casey, 1988).
Lipoxygenase-3 levels were increased by the sulfur treatment
by approximately twofold. This was observed exclusively in
SMARC1N-PN1. The apparent molecular mass determined for
lipoxygenase-3 is consistent with the fact that the pea lipoxyge-
nase A1 polypeptide, whose N-terminal sequence matched the
deduced amino acid sequence of the lipoxygenase-3 cDNA, had
an apparent molecular mass greater than 97.4 kDa (Domoney
et al., 1990). Lipoxygenase-3 is particularly rich in sulfur amino
acids with 1.7% of its residues as methionine and 0.5% as
cysteine.

Protein band no. 3 was identified as albumin-2. Its baseline lev-
els were sixfold higher in SMARC1N-PN1 than in SARC1. These
results are consistent with the prior identification of albumin-2
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Table 4 | Elemental and sulfate concentrations in mature seed.

Genotype Treatment C (%) N (%) S (%) SO4
2– (nmol/mg)

SARC1 LS 46.4 ± 0.2 3.90 ± 0.11 0.20 ± 0.12 0.18 ± 0.03

HS 46.4 ± 0.1 3.91 ± 0.17 0.23 ± 0.01 0.21 ± 0.03

SMARC1N-PN1 LS 46.0 ± 0.1 3.63 ± 0.20 0.19 ± 0.01 0.21 ± 0.05

HS 46.0 ± 0.1 3.71 ± 0.14 0.23 ± 0.01 0.29 ± 0.02

Source of variation d. f. ANOVA p-value

Genotype (G) 1 0.0001 0.006 n. s. 0.002

Treatment (T) 1 n. s. n. s. 0.0001 0.001

G × T 1 n. s. n. s. n. s. n. s.

Error 15

Values are the average ± SD; n = 5.

Table 5 | Sulfur amino acid concentration in mature seed.

Genotype Treatment Methionine

(nmol per mg)

Cysteine

(nmol per mg)

S-Methylcysteine

(nmol per mg)

SARC1 LS 16.7 ± 0.2 22.3 ± 3.0 18.2 ± 2.0

HS 16.7 ± 1.4 21.6 ± 2.2 23.6 ± 3.8

SMARC1N-PN1 LS 17.2 ± 1.0 24.4 ± 1.1 9.1 ± 0.4

HS 19.0 ± 1.1 28.2 ± 1.9 12.8 ± 0.9

Source of variation d. f. ANOVA p-value

Genotype (G) 1 0.04 0.0004 0.0001

Treatment (T) 1 n. s. n. s. 0.007

G × T 1 n. s. 0.03 n. s.

Error 15

Values are the average ± SD; n = 3; n = 5 for cysteine.

as being elevated by about 10-fold in SMARC1N-PN1 as com-
pared with SARC1 according to two-dimensional electrophoresis
based proteomics (Marsolais et al., 2010). This protein had been
identified by de novo sequencing, on the basis of its similarity
with pea albumin-2 (Higgins et al., 1987) and mung bean seed
albumin [Uniprot:Q43680], and its full-length cDNA had been
subsequently cloned (Yin et al., 2011). Its transcript levels were
elevated in developing seeds of SMARC1N-PN1 as compared with
SARC1 (Liao et al., 2012). Albumin-2 levels were increased by the
HS treatment in both genotypes, by approximately 20–30%. The
sequence of albumin-2 is relatively rich in sulfur amino acids, with
0.9% of its residues as methionine and 1.3% as cysteine.

Protein band no. 1 was identified as arcelin-like protein 4 (Lioi
et al., 2003). It was only present in the SARC1 extracts. This is
consistent with previous spectral counting and two-dimensional
electrophoresis based proteomic data (Marsolais et al., 2010).
Arcelin-like protein 4 contains 0.4% its residues as methionine and
0.8% as cysteine. Protein bands no. 4 and 5 were only observed
in SMARC1N-PN1. They were identified as α-amylase inhibitor β

subunit (Kasahara et al., 1996). The levels of this protein had been

shown to be elevated by 20-fold in SMARC1N-PN1 as compared
with SARC1 by spectral counting, and this had been validated
by two-dimensional electrophoresis based proteomics (Marsolais
et al., 2010). The apparent molecular mass measured for protein
band no. 4 is in agreement with the results obtained with α-
amylase inhibitor purified from Great Northern beans (Furuichi
et al., 1993). A protein band of 15.5 kDa had been identified as
the β subunit by N-terminal sequencing and appeared not to be
glycosylated. Protein band no. 5 is likely be a minor form of the
α-amylase inhibitor β subunit lacking one or more residues at the
C-terminal. Indeed, a peptide containing the sequence of the N-
terminus was detected for this band. In the work by Furuichi et al.
(1993) a protein band of 13.5 kDa band was tentatively assigned as
the α subunit and appeared to be glycosylated. Here, the proteomic
data were unambiguous and did not identify a match to the α sub-
unit. Interestingly, the α subunit was conspicuously absent from
the SMARC1N-PN1 proteome determined by spectral counting
(Marsolais et al., 2010). Purification of the β subunit yielded a
complex with the α-amylase inhibitor like protein, with a pre-
dicted molecular mass of 25 kDa, in which the α subunit was
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Table 6 | Concentration of extractible albumins and globulins in

mature seed.

Genotype Treatment Albumins (%) Globulins (%)

SARC1 LS 1.79 ± 0.25 3.01 ± 0.51

HS 1.88 ± 0.10 2.71 ± 0.21

SMARC1N-PN1 LS 1.95 ± 0.11 3.59 ± 0.57

HS 1.92 ± 0.24 4.47 ± 0.31

Source of variation d. f. ANOVA p-value

Genotype (G) 1 n. s. 0.0001

Treatment (T) 1 n. s. n. s.

G × T 1 n. s. 0.008

Error 15

Values are the average ± SD; n = 5.

absent (Yin and Marsolais, unpublished results). The apparent
molecular mass of this complex measured by size exclusion chro-
matography was equal to 41.2 kDa. In SDS-PAGE, the purified
fraction contained a minor band of approximately 13.8 kDa, sim-
ilar to the results in Figure 2. The α-amylase inhibitor β chain
is devoid of sulfur amino acids. However, the corresponding α-
amylase-1 precursor contains 1.6% of its residues as methionine

FIGURE 2 | SDS-PAGE of globulin fractions extracted from mature

seeds of SARC1 and SMARC1N-PN1 grown under LS or HS. Size of
molecular mass markers is indicated on the left. Bands quantified by image
analysis and excised for proteomic identification are numbered and
indicated by arrows. A volume of sample equivalent to the same weight of
tissue extracted was subjected to SDS-PAGE on a 12% polyacrylamide gel.
The total volume of bands in each lane measured with Quantity One was as
follows, SARC1-LS: 632; SARC1-HS: 636; SMARC1N-PN1-LS: 945; and
SMARC1N-PN1-HS: 1007.

without any cysteine (Prescott et al., 2005). The four methionines
are located at the N-terminus of the polypeptide precursor. Sulfur
amino acid residues are neither present in the α subunit (Kasahara
et al., 1996).

DISCUSSION
The most important finding reported from this study is that the
protein pool of SMARC1N-PN1 was able to accommodate an
increase in sulfur amino acids, particularly cysteine, in response
to enhanced sulfate nutrition, whereas this was not the case in
SARC1. This property is associated with the presence of an endoge-
nous sink for sulfur in SMARC1N-PN1. The increase in cysteine
concentration was associated with a specific increase in the concen-
tration of extractible globulins and seed yield in SMARC1N-PN1.
It has been reported that sulfur nutrition influences the response
of chickpea plants to the transgenic expression of sunflower seed
albumin (Chiaiese et al., 2004). An increase in the seed concentra-
tion of reduced sulfur was more pronounced in the transgenic line
than in wild-type under conditions of low nitrogen and high sulfur
nutrition. Further results were suggestive of a higher methionine
concentration in the transgenic line in response to high sulfur
and high nitrogen, although this could not be analyzed statis-
tically due to a lack of replication. Recently, Kim et al. (2014)
reported that adequate sulfate nutrition is required to maximize
the accumulation of maize δ-zein in transgenic soybean lines where
expression of the endogenous β-conglycinin was suppressed by
RNA interference.

The seed concentration of sulfate reported here for common
bean is much lower than the concentration of oxidized sulfur
in lupin or pea, by approximately 100-fold (Tabe and Droux,
2002; Chiaiese et al., 2004). Whereas in lupin or pea, sulfate
represents a reserve of sulfur, whose levels can be significantly
reduced upon transgenic expression of a sulfur-rich protein, S-
methylcysteine plays a similar role in common bean. This is
supported by the fact that the S-methylcysteine concentration was
reduced by approximately twofold in SMARC1N-PN1 as com-
pared with SARC1. However, the effect of sulfur nutrition on
the concentration of S-methylcysteine was similar between geno-
types. Likewise in chickpea, nitrogen and sulfur treatments had a
similar effect on oxidized sulfur concentration in wild-type and a
transgenic line expressing sunflower seed albumin (Chiaiese et al.,
2004).

The increase in the extractible globulin fraction associated
with enhanced levels of cysteine stimulated an analysis of sulfur-
responsive proteins in the extracts. Two lectins, uniquely present
in either genotype, arcelin-like protein 4, and the β subunit of the
α-amylase inhibitor, were identified as sulfur-responsive. In the
case of the α-amylase inhibitor, sulfur is needed for the accumu-
lation of the polypeptide precursor but not the mature β subunit.
Albumin-2 was found to be increased by a similar fold change
in response to HS in both genotypes, although its baseline levels
were higher in SMARC1N-PN1. In pea, albumin-2 levels were ini-
tially found to be reduced in response to severe sulfur deficiency
(Randall et al., 1979). In later work, protein levels were found
to be relatively unchanged in response to moderate sulfur defi-
ciency (Higgins et al., 1987). Albumin-2 is characterized by the
presence of four repeats of the hemopexin domain. The results
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Table 7 | Quantification and apparent molecular mass of sulfur-responsive protein bands identified in Figure 2.

Protein

band no.

Apparent molecular

mass (kDa)

SARC1 SMARC1N-PN1

Volume Increase (%) Volume Increase (%)

LS HS LS HS

1 25.0 29.7 44 48 – – –

2 105.4 6.30 6.54 4 12.4 24.9 101

3 26.5 24.5 29.1 19 142 189 33

4 15.7 – – – 83.2 110 32

5 13.8 – – – 9.64 13.1 36

Table 8 | Identification of protein bands in Figure 2 by MALDI-MS and MASCOT search following trypsin digestion.

Protein

band no.

Sample Accession Predicted

mass (kDa)

Protein

score

p-value Matches Protein

coverage (%)

Residues vs.

Met vs. Cys

2 SMARC1N-PN1-LS Lox-3 97527 68 0.03 46 33 860/15/4

2 SMARC1N-PN1-HS Lox-3 97527 85 0.0006 27 25 860/15/4

3 SMARC1N-PN1-LS Alb-2 25574 83 0.0009 21 73 227/2/3

3 SMARC1N-PN1-HS Alb-2 25574 82 0.001 19 70 227/2/3

Lox-3, lipoxygenase-3; Alb-2, albumin-2. See section “Materials and Methods” for accession numbers.

Table 9 | Identification of protein bands in Figure 2 by MS-MS and MASCOT search following trypsin digestion.

Band no. Sample Accession Predicted

mass (kDa)

Total ions

score

Matches Sequences Protein

coverage (%)

Residues vs.

Met vs. Cys

1 SARC1-LS ARL4 26585 56 1 1 4 240/1/2

1 SARC1-HS ARL4 26585 241 4 4 20 240/1/2

4 SMARC1N-PN1-LS α-AI β subunit 15395 628 46 8 66 137/0/0

4 SMARC1N-PN1-LS α-AI β subunit 15395 645 42 8 66 137/0/0

5 SMARC1N-PN1-LS α-AI β subunit 15395 373 32 5 47 137/0/0

5 SMARC1N-PN1-HS α-AI β subunit 15395 484 21 6 56 137/0/0

ARL4, Arcelin-like protein 4; α-AI, α-amylase inhibitor. The α-amylase inhibitor polypeptide precursor has a total of 246 residues with four methionines and no cysteine.

of crystallization studies have revealed that these proteins bind
spermine (Gaur et al., 2010, 2011). Binding of heme and sper-
mine was found to be mutually exclusive in grasspea hemopexin.
A pea mutant lacking albumin-2 had altered levels of polyamines,
and this was associated with increased seed protein concentra-
tion (Vigeolas et al., 2008). Whether SARC1 and SMARC1N-PN1
differ in their level of polyamines could be the subject of future
investigation.

The identification of lipoxygenase-3 as a sulfur-responsive pro-
tein is particularly interesting, because this response was observed
in only one of the genotypes. The present result strongly suggests
that the sulfur-responsive albumin protein of 95 kDa identified in
pea is actually lipoxygenase-3 (Higgins et al., 1987). We speculate
that differences in sulfur-responsiveness between the two com-
mon bean genotypes are probably determined by polymorphisms
in the promoter or 3′-untranslated region of the lipoxygenase-3

gene. These polymorphisms must arise from recombination at the
lipoxygenase-3 locus between the different parents. If this is true,
sequence comparisons between the two genotypes might lead to
the identification of a much sought after cis-acting regulatory ele-
ment determining a positive response to sulfur nutrition in higher
plants. To date, the only known cis-acting regulatory motif deter-
mining a transcriptional response to sulfur, the SURE motif, is
involved in the up-regulation of sulfate transporter and assimila-
tory genes in response to sulfur deficiency (Maruyama-Nakashita
et al., 2005).

The present results have special implications for the agronomic
management of common bean, if storage protein deficiency is used
as a trait for the improvement of protein quality through conven-
tional breeding. Although SARC1 and SMARC1N-PN1 responded
equally to sulfate fertilization under field conditions, the results
obtained under controlled conditions suggest that adequate sulfur
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nutrition is required to maximize the concentration of sulfur
amino acids and therefore protein quality in genotypes lacking
phaseolin and major lectins like SMARC1N-PN1. As deposition
of sulfur due to atmospheric pollution decreases, sulfate fertil-
ization might become necessary for common bean production in
Southwestern Ontario. It is currently an integral part of agronomic
production in the plains of Manitoba.

ACKNOWLEDGMENTS
We thank staff at the Southern Crop Protection and Food Research
Centre, Igor Lalin for sulfate analysis, Tim McDowell for elemental
analysis, Patrick Chapman for bioinformatics, and Alex Molnar
for graphics. We are grateful to staff at the London Regional Pro-
teomics Centre, Paula Pittock and Kristina Jurcic. We acknowledge
Rey Interior, at the SPARC BioCentre, Hospital for Sick Children,
for help with amino acid analyses. We thank Larry Stitt of LW
Stitt Statistical Services for help with statistical interpretations.
We are indebted to Cynthia Grant at the Brandon Research Centre
of Agriculture and Agri-Food Canada, for advice on field sulfur
trials, and to Derek Lydiate at the Saskatoon Research Centre of
Agriculture and Agri-Food Canada, for discussions that stimu-
lated this work. Steven Karcz of the Saskatoon Research Centre,
who passed away in 2012, helped with MASCOT. This work was
supported in part by a grant from the Ontario Research Fund for
Research Excellence, Round 4 to FM (project 043), and grants from
the Manitoba Pulse Growers Association, and Pulse Science Clus-
ter of the AgriInnovation Program of Agriculture and Agri-Food
Canada to AH and FM.

SUPPLEMENTARY MATERIAL
The Supplementary Material for this article can be found online
at: http://www.frontiersin.org/journal/10.3389/fpls.2015.00092/
abstract

REFERENCES
Amir, R., Han, T., and Ma, F. (2012). Bioengineering approaches to improve the

nutritional values of seeds by increasing their methionine content. Mol. Breed.
29, 915–924. doi: 10.1007/s11032-011-9690-7

Anderson, J. W., and Fitzgerald, M. A. (2001). Physiological and metabolic origin of
sulphur for the synthesis of seed storage proteins. J. Plant Physiol. 158, 447–456.
doi: 10.1078/0176-1617-00356

Aragão, F. J. L., Barros, L. M. G., De Sousa, M. V., Grossi De Sá, M. F., Almeida,
E. R. P., Gander, E. S., et al. (1999). Expression of a methionine-rich storage albu-
min from the Brazil nut (Bertholletia excelsa HBK Lecythidaceae) in transgenic
bean plants (Phaseolus vulgaris L. Fabaceae). Genet. Mol. Biol. 22, 445–449. doi:
10.1590/S1415-47571999000300026

Blagrove, R. J., Gillesie, J. M., and Randall, P. J. (1976). Effect of sulphur supply on
the seed globulin composition of Lupinus angustifolius. Aust. J. Plant Physiol. 3,
173–184. doi: 10.1071/PP9760173

Bourgis, F., Roje, S., Nuccio, M. L., Fisher, D. B., Tarczynski, M. C., Li, C. J., et al.
(1999). S-Methylmethionine plays a major role in phloem sulfur transport and is
synthesized by a novel type of methyltransferase. Plant Cell 11, 1485–1497. doi:
10.1105/tpc.11.8.1485

Buchner, P., Stuiver, C. E., Westerman, S., Wirtz, M., Hell, R., Hawkesford,
M. J., et al. (2004). Regulation of sulfate uptake and expression of sulfate
transporter genes in Brassica oleracea as affected by atmospheric H2S and pedo-
spheric sulfate nutrition. Plant Physiol. 136, 3396–3408. doi: 10.1104/pp.104.
046441

Chandler, P. M., Higgins, T. J., Randall, P. J., and Spencer, D. (1983). Regulation
of legumin levels in developing pea seeds under conditions of sulfur deficiency:
rates of legumin synthesis and levels of legumin mRNA. Plant Physiol. 71, 47–54.
doi: 10.1104/pp.71.1.47

Chandler, P. M., Spencer, D., Randall, P. J., and Higgins, T. J. (1984). Influ-
ence of sulfur nutrition on developmental patterns of some major pea seed
proteins and their mRNAs. Plant Physiol. 75, 651–657. doi: 10.1104/pp.7
5.3.651

Chiaiese, P., Ohkama-Ohtsu, N., Molvig, L., Godfree, R., Dove, H., Hocart, C., et al.
(2004). Sulphur and nitrogen nutrition influence the response of chickpea seeds
to an added, transgenic sink for organic sulphur. J. Exp. Bot. 55, 1889–1901. doi:
10.1093/jxb/erh198

De Kok, L. J., Stulen, I., and Hawkesford, M. J. (2011). “Sulfur nutrition in crop
plants,” in The Molecular and Physiological Basis of Nutrient Use Efficiency in
Crops, eds M. J. Hawkesford and P. Barraclough (Chichester: Wiley-Blackwell),
295–309. doi: 10.1002/9780470960707.ch14

Demidov, D., Horstmann, C., Meixner, M., Pickardt, T., Saalbach, I., Galili, G.,
and Müntz, K. (2003). Additive effects of the feed-back insensitive bacterial
aspartate kinase and the Brazil nut 2S albumin on the methionine content of
transgenic narbon bean (Vicia narbonensis L.). Mol. Breed. 11, 187–201. doi:
10.1023/A:1022814506153

Dinkins, R. D., Reddy, M. S. S., Meurer, C. A., Yan, B., Trick, H., Thibaud-Nissen,
F., et al. (2001). Increased sulfur amino acids in soybean plants over expressing
the maize 15 kDa zein protein. In vitro Cell. Dev. Biol. Plant 37, 742–747. doi:
10.1007/s11627-001-0123-x

Domoney, C., Firmin, J. L., Sidebottom, C., Ealing, P. M., Slabas, A., and Casey,
R. (1990). Lipoxygenase heterogeneity in Pisum sativum. Planta 181, 35–43. doi:
10.1007/BF00202322

Ealing, P. M., and Casey, R. (1988). The complete amino acid sequence of a pea
(Pisum sativum) seed lipoxygenase predicted from a near full-length cDNA.
Biochem. J. 253, 915–918.

Furuichi, Y., Takemura, M., Uesaka, N., Kamemura, K., Shimada, S., Komada,
H., et al. (1993). Some characteristics of an α-amylase inhibitor from Phaseolus
vulgaris (cultivar Great Northern) seeds. Biosci. Biotechnol. Biochem. 57, 147–148.
doi: 10.1271/bbb.57.147

Galili, G., and Amir, R. (2013). Fortifying plants with the essential amino acids lysine
and methionine to improve nutritional quality. Plant Biotechnol. J. 11, 211–222.
doi: 10.1111/pbi.12025

Gaur, V., Chanana, V., Jain, A., and Salunke, D. M. (2011). The structure of a
haemopexin-fold protein from cow pea (Vigna unguiculata) suggests functional
diversity of haemopexins in plants. Acta Crystallogr. Sect. F. Struct. Biol. Cryst.
Commun. 67, 193–200. doi: 10.1107/s1744309110051250

Gaur, V., Qureshi, I. A., Singh, A., Chanana, V., and Salunke, D. M. (2010). Crystal
structure and functional insights of hemopexin fold protein from grass pea. Plant
Physiol. 152, 1842–1850. doi: 10.1104/pp.109.150680

Gayler, K. R., and Sykes, G. E. (1985). Effects of nutritional stress on the storage
proteins of soybeans. Plant Physiol. 78, 582–585. doi: 10.1104/pp.78.3.582

Hanafy, M. S., Rahman, S. M., Nakamoto, Y., Fujiwara, T., Naito, S., Wakasa, K., et al.
(2013a). Differential response of methionine metabolism in two grain legumes,
soybean and azuki bean, expressing a mutated form of Arabidopsis cystathionine
γ-synthase. J. Plant Physiol. 170, 338–345. doi: 10.1016/j.jplph.2012.10.018

Hanafy, M. S., Rahman, S. M., Nakamoto, Y., Fujiwara, T., Naito, S., Wakasa,
K., et al. (2013b). Erratum to differential response of methionine metabolism
in two grain legumes, soybean, and azuki bean, expressing a mutated form
of Arabidopsis cystathionine γ-synthase. J. Plant Physiol. 170, 1469. doi:
10.1016/j.jplph.2013.06.003

Hartweck, L. M., and Osborn, T. C. (1997). Altering protein composition by geneti-
cally removing phaseolin from common bean seeds containing arcelin or phyto-
hemagglutinin. Theor. Appl. Genet. 95, 1012–1017. doi: 10.1007/s001220050655

Hawkesford, M. J. (2000). Plant responses to sulphur deficiency and the genetic
manipulation of sulphate transporters to improve S-utilization efficiency. J. Exp.
Bot. 51, 131–138. doi: 10.1093/jexbot/51.342.131

Hawkesford, M. J. (2003). Transporter gene families in plants: the sulphate trans-
porter gene family - redundancy or specialization? Physiol. Plant. 117, 155–163.
doi: 10.1034/j.1399-3054.2003.00034.x

Hawkesford, M. J., and De Kok, L. J. (2006). Managing sulphur metabolism in
plants. Plant Cell Environ. 29, 382–395. doi: 10.1111/j.1365-3040.2005.01470.x

Herman, E. M. (2014). Soybean seed proteome rebalancing. Front. Plant Sci. 5:437.
doi: 10.3389/fpls.2014.00437

Hernández-Sebastià, C., Marsolais, F., Saravitz, C., Israel, D., Dewey, R. E., and
Huber, S. C. (2005). Free amino acid profiles suggest a possible role for asparagine
in the control of storage-product accumulation in developing seeds of low- and
high-protein soybean lines. J. Exp. Bot. 56, 1951–1963. doi: 10.1093/jxb/eri191

www.frontiersin.org February 2015 | Volume 6 | Article 92 | 9

http://www.frontiersin.org/journal/10.3389/fpls.2015.00092/abstract
http://www.frontiersin.org/journal/10.3389/fpls.2015.00092/abstract
http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Physiology/archive


Pandurangan et al. Sulfur response of common bean

Herschbach, C., Van Der Zalm, E., Schneider, A., Jouanin, L., De Kok, L. J.,
and Rennenberg, H. (2000). Regulation of sulfur nutrition in wild-type and
transgenic poplar over-expressing γ-glutamylcysteine synthetase in the cytosol
as affected by atmospheric H2S. Plant Physiol. 124, 461–473. doi: 10.1104/pp.12
4.1.461

Higgins, T. J. V., Beach, L. R., Spencer, D., Chandler, P. M., Randall, P. J., Blagrove,
R. J., et al. (1987). cDNA and protein sequence of a major pea seed albumin (PA
2: Mr≈26 000). Plant Mol. Biol. 8, 37–45. doi: 10.1007/BF00016432

Holowach, L. P., Madison, J. T., and Thompson, J. F. (1986). Studies on the mech-
anism of regulation of the mRNA level for a soybean storage protein subunit by
exogenous L-methionine. Plant Physiol. 80, 561–567. doi: 10.1104/pp.80.2.561

Holowach, L. P., Thompson, J. F., and Madison, J. T. (1984). Effects of exogenous
methionine on storage protein composition of soybean cotyledons cultured in
vitro. Plant Physiol. 74, 576–583. doi: 10.1104/pp.74.3.576

Kasahara, K., Hayashi, K., Arakawa, T., Philo, J. S., Hara, S., and Yamaguchi, H.
(1996). Complete sequence, subunit structure, and complexes with pancreatic
α-amylase of an α-amylase inhibitor from Phaseolus vulgaris white kidney beans.
J. Biochem. (Tokyo) 120, 177–183. doi: 10.1093/oxfordjournals.jbchem.a021381

Kelly, J. D., and Hefle, S. L. (2000). 2S Methionine-rich protein (SSA) from sunflower
seed is an IgE-binding protein. Allergy 55, 556–560. doi: 10.1034/j.1398-
9995.2000.00498.x

Kim, H., Hirai, M. Y., Hayashi, H., Chino, M., Naito, S., and Fujiwara, T. (1999). Role
of O-acetyl-L-serine in the coordinated regulation of the expression of a soybean
seed storage-protein gene by sulfur and nitrogen nutrition. Planta 209, 282–289.
doi: 10.1007/s004250050634

Kim, W. S., Chronis, D., Juergens, M., Schroeder, A. C., Hyun, S. W., Jez, J. M., et al.
(2012). Transgenic soybean plants overexpressing O-acetylserine sulfhydrylase
accumulate enhanced levels of cysteine and Bowman-Birk protease inhibitor in
seeds. Planta 235, 13–23. doi: 10.1007/s00425-011-1487-8

Kim, W., Jez, J. M., and Krishnan, H. B. (2014). Effects of proteome rebalancing
and sulfur nutrition on the accumulation of methionine rich δ-zein in transgenic
soybeans. Front. Plant Sci. 5:633 doi: 10.3389/fpls.2014.00633

Kim, W. S., and Krishnan, H. B. (2004). Expression of an 11 kDa methionine-
rich delta-zein in transgenic soybean results in the formation of two types of
novel protein bodies in transitional cells situated between the vascular tissue and
storage parenchyma cells. Plant Biotechnol. J. 2, 199–210. doi: 10.1111/j.1467-
7652.2004.00063.x

Krishnan, H. B. (2005). Engineering soybean for enhanced sulfur amino acid
content. Crop Sci. 45, 454–461. doi: 10.2135/cropsci2005.0454

Krishnan, H. B., Bennett, J. O., Kim, W., Krishnan, H. A., and Mawhinney, T. P.
(2005). Nitrogen lowers the sulfur amino acid content of soybean (Glycine max
[L.] Merr.) by regulating the accumulation of Bowman-Birk protease inhibitor. J.
Agric. Food Chem. 53, 6347–6354. doi: 10.1021/jf050510i

Krishnan, H. B., Kerley, M. S., Allee, G. L., Jang, S., Kim, W. S., and Fu, C. J. (2010).
Maize 27 kDa gamma-zein is a potential allergen for early weaned pigs. J. Agric.
Food Chem. 58, 7323–7328. doi: 10.1021/jf100927u

Lee, M. S., Huang, T. F., Toro-Ramos, T., Fraga, M., Last, R. L., and Jander, G.
(2008). Reduced activity of Arabidopsis thaliana HMT2, a methionine biosyn-
thetic enzyme, increases seed methionine content. Plant J. 54, 310–320. doi:
10.1111/j.1365-313X.2008.03419.x

Li, Z., Meyer, S., Essig, J. S., Liu, Y., Schapaugh, M. A., Muthukrishnan, S., et al.
(2005). High-level expression of maize gamma-zein protein in transgenic soybean
(Glycine max). Mol. Breed. 16, 11–20. doi: 10.1007/s11032-004-7658-6

Liao, D., Pajak, A., Karcz, S. R., Chapman, B. P., Sharpe, A. G., Austin, R. S., et al.
(2012). Transcripts of sulphur metabolic genes are co-ordinately regulated in
developing seeds of common bean lacking phaseolin and major lectins. J. Exp.
Bot. 63, 6283–6295. doi: 10.1093/jxb/ers280

Lioi, L., Sparvoli, F., Galasso, I., Lanave, C., and Bollini, R. (2003). Lectin-related
resistance factors against bruchids evolved through a number of duplication
events. Theor. Appl. Genet. 107, 814–822. doi: 10.1007/s00122-003-1343-8

Malavolta, E., Vitti, G. C., Rosolem, C. A., Fageria, N. K., and Guimarães, P. T. G.
(1987). Sulfur responses of Brazilian crops. J. Plant Nutr. 10, 2153–2158. doi:
10.1080/01904168709363766

Marsolais, F., Pajak, A., Yin, F., Taylor, M., Gabriel, M., Merino, D. M., et al. (2010).
Proteomic analysis of common bean seed with storage protein deficiency reveals
up-regulation of sulfur-rich proteins and starch and raffinose metabolic enzymes,
and down-regulation of the secretory pathway. J. Proteomics 73, 1587–1600. doi:
10.1016/j.jprot.2010.03.013

Maruyama-Nakashita, A., Nakamura, Y., Watanabe-Takahashi, A., Inoue, E.,
Yamaya, T., and Takahashi, H. (2005). Identification of a novel cis-acting element
conferring sulfur deficiency response in Arabidopsis roots. Plant J. 42, 305–314.
doi: 10.1111/j.1365-313X.2005.02363.x

Molvig, L., Tabe, L. M., Eggum, B. O., Moore, A. E., Craig, S., Spencer, D., et al.
(1997). Enhanced methionine levels and increased nutritive value of seeds of
transgenic lupins (Lupinus angustifolius L.) expressing a sunflower seed albumin
gene. Proc. Natl. Acad. Sci. U.S.A. 94, 8393–8398. doi: 10.1073/pnas.94.16.8393

Montoya, C. A., Lallès, J. P., Beebe, S., and Leterme, P. (2010). Phaseolin diversity as
a possible strategy to improve the nutritional value of common beans (Phaseolus
vulgaris). Food Res. Int. 43, 443–449. doi: 10.1016/j.foodres.2009.09.040

Morton, R. L., Ellery, A. J., and Higgins, T. J. (1998). Downstream elements from the
pea albumin 1 gene confer sulfur responsiveness on a reporter gene. Mol. Gen.
Genet. 259, 309–316. doi: 10.1007/s004380050817

Naito, S., Hirai, M. Y., Inaba-Higano, K., Nambara, E., Fujiwara, T., Hayashi, H., et al.
(1995). Expression of soybean seed storage protein genes in transgenic plants and
their response to sulfur nutritional conditions. J. Plant Physiol. 145, 614–619. doi:
10.1016/S0176-1617(11)81272-1

Nordlee, J. A., Taylor, S. L., Townsend, J. A., Thomas, L. A., and Bush, R. K. (1996).
Identification of a Brazil-nut allergen in transgenic soybeans. N. Engl. J. Med. 334,
688–692. doi: 10.1056/NEJM199603143341103

Osborn, T. C., Hartweck, L. M., Harmsen, R. H., Vogelzang, R. D., Kmiecik,
K. A., and Bliss, F. A. (2003). Registration of Phaseolus vulgaris genetic
stocks with altered seed protein compositions. Crop Sci. 43, 1570–1571. doi:
10.2135/cropsci2003.1570

Pandurangan, S., Pajak, A., Molnar, S. J., Cober, E. R., Dhaubhadel, S., Hernandez-
Sebastia, C., et al. (2012). Relationship between asparagine metabolism and
protein concentration in soybean seed. J. Exp. Bot. 63, 3173–3184. doi:
10.1093/jxb/ers039

Prescott, V. E., Campbell, P. M., Moore, A., Mattes, J., Rothenberg, M. E., Foster, P. S.,
et al. (2005). Transgenic expression of bean α-amylase inhibitor in peas results in
altered structure and immunogenicity. J. Agric. Food Chem. 53, 9023–9030. doi:
10.1021/jf050594v

Randall, P. J., Thomson, J. A., and Schroeder, H. E. (1979). Cotyledonary stor-
age proteins in Pisum sativum. IV. Effects of sulfur, phosphorus, potassium and
magnesium deficiencies. Aust. J. Plant Physiol. 6, 11–24. doi: 10.1071/PP9790011

Rerie, W. G., Whitecross, M., and Higgins, T. J. (1991). Developmental and environ-
mental regulation of pea legumin genes in transgenic tobacco. Mol. Gen. Genet.
225, 148–157. doi: 10.1007/BF00282653

Rolletschek, H., Hosein, F., Miranda, M., Heim, U., Götz, K. P., Schlereth, A., et al.
(2005). Ectopic expression of an amino acid transporter (VfAAP1) in seeds of
Vicia narbonensis and pea increases storage proteins. Plant Physiol. 137, 1236–
1249. doi: 10.1104/pp.104.056523

Sánchez, E., Ruiz, J. M., and Romero, L. (2002). Proline metabolism in response to
nitrogen toxicity in fruit of French Bean plants (Phaseolus vulgaris L. cv Strike).
Sci. Hortic. 93, 225–233. doi: 10.1016/S0304-4238(01)00342-9

Schmutz, J., Mcclean, P. E., Mamidi, S., Wu, G. A., Cannon, S. B., Grimwood, J., et al.
(2014). A reference genome for common bean and genome-wide analysis of dual
domestications. Nat. Genet. 46, 707–713. doi: 10.1038/ng.3008

Smith, F. W., Ealing, P. M., Hawkesford, M. J., and Clarkson, D. T. (1995). Plant
members of a family of sulfate transporters reveal functional subtypes. Proc. Natl.
Acad. Sci. U.S.A. 92, 9373–9377. doi: 10.1073/pnas.92.20.9373

Song, S., Hou, W., Godo, I., Wu, C., Yu, Y., Matityahu, I., et al. (2013). Soybean seeds
expressing feedback-insensitive cystathionine γ-synthase exhibit a higher content
of methionine. J. Exp. Bot. 64, 1917–1926. doi: 10.1093/jxb/ert053

Streit, L. G., Beach, L. R., Register, J. C., Jung, R., and Fehr, W. R. (2001). Association
of the Brazil nut protein gene and Kunitz trypsin inhibitor alleles with soybean
protease inhibitor activity and agronomic traits. Crop Sci. 41, 1757–1760. doi:
10.2135/cropsci2001.1757

Tabe, L. M., and Droux, M. (2002). Limits to sulfur accumulation in transgenic lupin
seeds expressing a foreign sulfur-rich protein. Plant Physiol. 128, 1137–1148. doi:
10.1104/pp.010935

Takahashi, H., Kopriva, S., Giordano, M., Saito, K., and Hell, R. (2011). Sulfur
assimilation in photosynthetic organisms: molecular functions and regulations
of transporters and assimilatory enzymes. Annu. Rev. Plant Biol. 62, 157–184.
doi: 10.1146/annurev-arplant-042110-103921

Tan, Q., Zhang, L., Grant, J., Cooper, P., and Tegeder, M. (2010). Increased
phloem transport of S-methylmethionine positively affects sulfur and nitrogen

Frontiers in Plant Science | Plant Physiology February 2015 | Volume 6 | Article 92 | 10

http://www.frontiersin.org/Plant_Physiology/
http://www.frontiersin.org/Plant_Physiology/archive


Pandurangan et al. Sulfur response of common bean

metabolism and seed development in pea plants. Plant Physiol. 154, 1886–1896.
doi: 10.1104/pp.110.166389

Taylor, M., Chapman, R., Beyaert, R., Hernández-Sebastià, C., and Marsolais, F.
(2008). Seed storage protein deficiency improves sulfur amino acid content in
common bean (Phaseolus vulgaris L.): redirection of sulfur from γ-glutamyl-S-
methyl-cysteine. J. Agric. Food Chem. 56, 5647–5654. doi: 10.1021/jf800787y

Townsend, J. A., and Thomas, L. A. (1994). Factors which influence
the Agrobacterium-mediated transformation of soybean. J. Cell Biochem.
(Suppl. 18A), 78.

Ufaz, S., and Galili, G. (2008). Improving the content of essential amino acids
in crop plants: goals and opportunities. Plant Physiol. 147, 954–961. doi:
10.1104/pp.108.118091

Vigeolas, H., Chinoy, C., Zuther, E., Blessington, B., Geigenberger, P., and Domoney,
C. (2008). Combined metabolomic and genetic approaches reveal a link between
the polyamine pathway and albumin 2 in developing pea seeds. Plant Physiol. 146,
74–82. doi: 10.1104/pp.107.111369

Wu, Y., and Messing, J. (2014). Proteome balancing of the maize seed for higher
nutritional value. Front. Plant Sci. 5:240. doi: 10.3389/fpls.2014.00240

Yenofsky, R. L., Fine, M., and Liu, C. (1988). Isolation and characterization of a
soybean (Glycine max) lipoxygenase-3 gene. Mol. Gen. Genet. 211, 215–222. doi:
10.1007/BF00330597

Yin, F., Pajak, A., Chapman, R., Sharpe, A., Huang, S., and Marsolais, F. (2011).
Analysis of common bean expressed sequence tags identifies sulfur metabolic
pathways active in seed and sulfur-rich proteins highly expressed in the absence
of phaseolin and major lectins. BMC Genomics 12:268. doi: 10.1186/1471-2164-
12-268

Zhang, Y., Schernthaner, J., Labbé, N., Hefford, M. A., Zhao, J., and Simmonds,
D. H. (2014). Improved protein quality in transgenic soybean expressing a

de novo synthetic protein, MB-16. Transgenic Res. 3, 1–13. doi: 10.1007/s11248-
013-9777-5

Zuber, H., Davidian, J. C., Aubert, G., Aimé, D., Belghazi, M., Lugan, R., et al. (2010).
The seed composition of Arabidopsis mutants for the group 3 sulfate transporters
indicates a role in sulfate translocation within developing seeds. Plant Physiol.
154, 913–926. doi: 10.1104/pp.110.162123

Zuber, H., Poignavent, G., Le Signor, C., Aime, D., Vieren, E., Tadla, C., et al. (2013).
Legume adaptation to sulfur deficiency revealed by comparing nutrient allocation
and seed traits in Medicago truncatula. Plant J. 76, 982–996. doi: 10.1111/tpj.12350

Conflict of Interest Statement: The authors declare that the research was conducted
in the absence of any commercial or financial relationships that could be construed
as a potential conflict of interest.

Received: 14 November 2014; accepted: 04 February 2015; published online: 20
February 2015.
Citation: Pandurangan S, Sandercock M, Beyaert R, Conn KL, Hou A and Marsolais F
(2015) Differential response to sulfur nutrition of two common bean genotypes differing
in storage protein composition. Front. Plant Sci. 6:92. doi: 10.3389/fpls.2015.00092
This article was submitted to Plant Physiology, a section of the journal Frontiers in
Plant Science.
Copyright © 2015 Pandurangan, Sandercock, Beyaert, Conn, Hou and Marsolais.
This is an open-access article distributed under the terms of the Creative Commons
Attribution License (CC BY). The use, distribution or reproduction in other forums is
permitted, provided the original author(s) or licensor are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice.
No use, distribution or reproduction is permitted which does not comply with these
terms.

www.frontiersin.org February 2015 | Volume 6 | Article 92 | 11

http://dx.doi.org/10.3389/fpls.2015.00092
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Physiology/archive

	Differential response to sulfur nutrition of two common bean genotypes differing in storage protein composition
	Introduction
	Materials and methods
	Plant materials and growth conditions
	Field trial
	Amino acid analysis
	Albumin and globulin extraction and quantification
	Sample preparation and mass spectrometry
	Sulfate analysis
	Elemental analysis
	Statistical analysis
	Accession numbers

	Results
	Increased yield of smarc1n-pn1 in response to high sulfur under controlled conditions
	Increased seed concentration of sulfur and sulfate in response to high sulfate treatment
	Increased concentration of cysteine and globulins in smarc1n-pn1 under high sulfate conditions

	Discussion
	Acknowledgments
	References


