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Multicellular red algae (Rhodophyta) have some of the most complex life cycles known in
living organisms. Economically valuable seaweeds, such as phycocolloid producers, have
a triphasic (gametophyte, carposporophyte, and tetrasporophyte) life cycle, not to mention
the intricate alternation of generations in the edible “sushi-alga” nori. It is a well-known fact
that reproductive processes are controlled by one or more abiotic factor(s), including day
length, light quality, temperature, and nutrients. Likewise, endogenous chemical factors
such as plant growth regulators have been reported to affect reproductive events in some
red seaweeds. Still, in the genomic era and given the high throughput techniques at
our disposal, our knowledge about the endogenous molecular machinery lags far behind
that of higher plants. Any potential effective control of the reproductive process will
entail revisiting most of these results and facts to answer basic biological questions as
yet unresolved. Recent results have shed light on the involvement of several genes in
red alga reproductive events. In addition, a working species characterized by a simple
filamentous architecture, easy cultivation, and accessible genomes may also facilitate our
task.
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RHODOPHYTA AND REPRODUCTION. MERGING APPLIED
AND FUNDAMENTAL KNOWLEDGE INTEREST
As recently reviewed (Rebours et al., 2014), the seaweed industry
produces some 10 billion US$. Among the species exploited, the
red seaweeds (Rhodophyta) Eucheuma/Kappaphycus, Porphyra,
and Gracilaria occupy a leading position (Kappaphycus alone
generates 1.3 billion US$ while the nori market is estimated
at 1.5 billion US$). Nevertheless, this industry mostly relies
on the exploitation of natural populations or primitive aqua-
culture methods, its expansion being restricted by the lack of
technical and knowledge advances. An example of this can be
seen in the absence of control of reproductive traits that would
allow us to increase production, strain selection and breeding,
a major step forward which has been achieved in land plant
culture.

Rhodophyta are classified as Archaeplastida, along with glau-
cophytes and Viridiplantae (land plants and green algae) from
which they diverge 1,500 Mya (Yoon et al., 2004). Like other
algal groups, red algae comprise a myriad of species with dif-
ferent types of body architecture, ranging from the unicellular
and filamentous to the blade or pseudo-parenchymatous as the
most complex, particularly in the case of industrially valuable
seaweeds (Cole and Sheath, 1995). Their extremely complex life
cycles include the transition from unicellularity to complex mul-
ticellular bodies, the underlying molecular bases of which are
virtually unknown. The diploid “conchocelis” and the meiotic-
derived conchospores sustain the industry of “sushi,” since the

tiny unicellular meiospore, the conchospore, grows and develops
into the haploid leafy thallus, which is the edible phase (Drew,
1949, 1954).

Other economically valuable red algae, such as the producers
of the phycocolloids agar or carrageen, have a trigenetic life cycle
in which the haploid unicellular meiotic tetraspores germinate
to produce both a male and a female multicellular gameto-
phyte thalli (Cole and Sheath, 1995). Fertilization occurs when
a spermatium fertilizes a carpogonium on the female gameto-
phyte. The fertilized carpogonium develops into a structure called
the cystocarp (diploid) after complex cell differentiation events,
leading to the accumulation of mitotic diploid carpospores.
Eventually, diploid carpospores are released and develop
into tetrasporophytes that produce the meiotic tetraspores
(Figure 1).

Recent reviews continue to focus on a plethora of external
factors that control algal reproduction such as light (intensity,
quality, photoperiod), temperature, season, nutrients (be they
inorganic or organic), biotic factors (extracellular algal prod-
ucts, bacterial association, animal grazing), osmotic stress, pH
of the medium, wave motion and mechanical shock, pollution,
and radiations, and the bulk of knowledge accumulated as to
the particular conditions on which these external factors exert
their control (Dring, 1988; Bornette and Puijalon, 2011; Agrawal,
2012).

Light and temperature are managed effectively to run the
intensive cultivation system of Porphyra, but there is a general
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FIGURE 1 | (A) Apical portion of a sporophyte branch of Bonnemaisonia
hamifera, scale bar = 120 µm. (B) Putative gametophyte sporeling, scale
bar = 25 µm. (C) Apex of a immature gametophytic thalli, scale
bar = 100 µm. (D) Diagram of putative trigenetic life cycle in the red alga

Bonnemaisonia comprising the gametophytes (haploids), the so-called
carposporophyte that develops on the female gametophyte after fertilization,
and the sporophyte (diploid) (adapted from B. geniculata in Shevlin and
Polanshek, 1978. Not a scale).

consensus that increasing our knowledge of the underlying
molecular basis of cell growth, development and reproduction in
this species, and in economical important seaweeds in general,
will improve aquaculture practices (Sahoo et al., 2002; Nakamura
et al., 2013).

As we will see below, the same situation occurs when the
effect of plant hormones on seaweed reproduction is consid-
ered, although some advances at the molecular level have been
made on the involvement of certain genes. Almost nothing is
known about how the external signals are translated into the
molecular mechanisms known to underlie any developmental or
reproductive event comprising cell growth and differentiation.
Whilst this task was addressed for land plants some time ago,
in the genomic era and given the high throughput techniques
at our disposal, our knowledge regarding algae in general, and
seaweeds in particular, lags far behind that of higher plants and
animals. Let us therefore review what is already known about
plants and should be revisited in red algae to unveil the secrets of
what, no doubt, is also operating at the molecular level to control
reproduction.

REPRODUCTION GENES IN RED ALGAE. DISPARATE MODEL
SPECIES AND APPROACHES
As seen in the most recent bibliographic reports, and is evident in
this special edition, major advances are taking place in the brown
alga since the adoption of Ectocarpus siliculosus as the model

species and the generalized use of high throughput techniques.
This includes key genes in the life cycle transition, developmental
pattern, etc. (Peters et al., 2004; Cock et al., 2010; Coelho et al.,
2011; Le Bail et al., 2011; Arun et al., 2013). If E. siliculosus
was chosen mainly because of the particular taxonomic position
of brown algae and the evolutionary lineage-related information
that could be retrieved from it (Peters et al., 2004), in red algae, no
general consensus has been reached as to either the model species
or technical approaches and strategies. Consequently, limited
advances have been achieved to date, particularly regarding the
reproductive event.

Porphyra species (Rhodophyta, Bangiophyceae)—or rather
Porphyra/Pyropia species, as several species has been reassigned
as Pyropia (Sutherland et al., 2011)—have been proposed as
model species, perhaps because of their economic value. The
genome and symbiont-free genome have been sequenced (Chan
et al., 2012; Nakamura et al., 2013), and 1% of the genes
(10,327 total genes predicted) were annotated as related to repro-
duction in P. yezoensis, using the estimation provided by GO
Slim in the Blast2Go software (Nakamura et al., 2013). There-
fore, this genomic approach always faces a serious constraint,
since these genes are commonly assigned to putative biologi-
cal processes and functions based on the information available
for other organisms, that may simply lack genes and functions
related to important life cycle or reproduction events in red
algae.
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Table 1 | An overview of the complex light sensing–plant hormones interaction, highlighting the key molecular factors implicated.

Phytochrome Cryptochrome Phototropins

Abscisic acid BBX2, HY51 BBX2, HY51 BBX2, HY51

PIF1/PIL52 MYC2?3® MYC2?3®

CIB4,5®

Ethylene PIF3, ERF16 Ethylene synthesis inhibitor?7

PIF5, DELLA?7

Auxins PAR, HFR1, PIL17 PKS, 14-3-3 l, PIN, PGP, AUX/LAX8

Gibberellins DAG, PIF3, PIF4, PIF1/PIL5 COP1, HY52

Cytokinins COP1, HY52

Jasmonic acid MYC2?3

Brassinosteroids PIF4, BZR19

All of the information comes from higher plants, mostly Arabidopsis thaliana. Prominent role are played by transcription factors (TF) and proteins able to interact with

them. PIF are a family of bHLH TF able to bind directly to G-BOX in DNA; HY5 is a nuclear constitutive TF; BZR1 is a TF able to bind to PIF4 during brassinosteroids

effect on photomorphogenesis; CIB is a bHLH TF that specifically controls Flowering Time locus; MYC2 is a bHLH TF in Arabidopsis; DELLA are proteins that

interacts with PIF; COP1 is a ring finger ubiquitin that promotes HY5 degradation; HFR1 is a protein able to interact with PIF or BBX2, a zinc fingers proteins able

to repress or modulate the action of transcription factors. The remaining factors are more specific of the plant hormones or the photoreceptor signaling pathways.

® Denotes participation in reproductive events (i.e., flowering). Details on how they interact can be found in the original references (1Xu et al., 2014; 2Lau and Deng,

2010; 3Gupta et al., 2012; 4Liu et al., 2013; 5Fernando and Coupland, 2012; 6Zhong et al., 2012; 7Alabadí and Blázquez, 2009; 8Hohm et al., 2013; 9Jaillais and Grégory,

2012). ? Denotes pending confirmation.

The same wide genome approach has recently been used to
report the genome and gene annotation of the edible carrageeno-
phyte alga Chondrus crispus, the Irish moss (Collén et al., 2013).
An important scientific background of knowledge exists for C.
crispus, to the extent that it has been proposed as the model
red alga (Collén et al., 2014). The 9,606 genes annotated for
C. crispus have produced a very useful bulk of information for
the interpretation of the forces driving the evolution of eukary-
otic genomes (Collén et al., 2013). Interestingly, C. crispus has
cryptochromes (Collén et al., 2013), which are important in
photosensing and the regulation of the reproduction by light and
hormones, as discussed below (Table 1). The phases of the life
cycle of C. crispus are easily accessible and thus frequently used
for experiments, but they might be not so easy to handle if the
completion of the life cycle is required, as is the case for reproduc-
tion studies, for which mutants are required. Moreover, there is an
apparent absence or shortage of well-known key elements in the
regulatory network (i.e., absence of phytochromes, phototropins,
and a rather small amount of transcription-associated proteins).
Therefore, the utility of C. crispus as a model species for the study
of certain aspects of algal growth and development during life
cycle completion (i.e., light control of reproduction) remains a
matter for debate.

Analysis of the transcriptomes has revealed preferential genes
expressed in gametophytes or sporophytes. In Porphyra purpurea,
an unusual elongation factor (EF-1a) was expressed only in
the sporophyte while a second gene, EF, was expressed equally
in the sporophyte and the gametophyte (Liu et al., 1996).
The PyKPA1 gene, which encoded a sodium pump, was dif-
ferentially expressed in the gametophyte as compared to the
sporophyte, which seems to depend on the presence of specific
promoter elements (Uji et al., 2012, 2013). Apart from Por-
phyra/Pyropia, other species also considered to be of economic
interest, such as the agarophytic species, have been studied.
In this regard, carposporophyte-specific genes were identified
in Gracilariopsis andersonii (Kamiya et al., 2011). In Gracilaria

lemaneiformis, a female gametophyte-specific gene, GMF-01, has
been reported (Chen et al., 2011) while an ubiquitin gene
was also characterized as particularly active during the car-
posporophyte formation (Ren et al., 2009). In Griffithsia japonica,
the GjFP-1 gene, encoding a heat-shock protein 90, may be
involved in the differentiation of female gametophyte (Lee et al.,
1998).

Other approaches have made it possible to reach candidate
gene(s) involved in reproduction. This is the case of the GiODC
gene in Grateloupia imbricata, which encodes the ornithine decar-
boxylase (ODC, EC. 4.1.1.17). The ODC starts the synthesis of
the common polyamines putrescine, spermidine, and spermine
by decarboxylating the ornithine to produce putrescine; these
substances affect spore maturation and liberation as described
below (García-Jiménez et al., 1998; Marián et al., 2000; Guzman-
Urióstegui et al., 2002, 2012; Sacramento et al., 2004, 2007).
GiODC was cloned using a somewhat laborious approach by
means of degenerated primers designed from conserved protein
motifs, followed by chromosome walking by iPCR to complete
the sequence (García-Jiménez et al., 2009). GiODC expression
varied according to cystocarp differentiation with lower levels in
the fertile, as compared to the infertile, tissue (García-Jiménez
et al., 2009).

All of these findings are clearly contributing to our knowledge
about reproduction in red seaweeds, whether achieved through a
wide genome strategy using high throughput methods as done
in Porphyra/Pyropia or Chondrus, or using a candidate gene
approach as in the case of ODC in Grateloupia imbricata. Nev-
ertheless, the weakest point still remains on how this—perhaps
species-specific—information can be translated into data that is
relevant to most red seaweeds; how to construct a reliable “red
seaweed conceptual framework” of knowledge on reproduction
from these disparate approaches and species strategies. From our
point of view this could only be started to achieve using a species
that is easy to handle, with relatively short generation times, and
fulfills the criteria needed to undergo genetic transformation,
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which constitutes the current bottleneck in the molecular biology
of seaweeds (see Mikami, 2014).

LIGHT AND PLANT HORMONES SIGNALING AND
INTERACTION. THE WAY TO UNVEIL THE MOLECULAR
SECRETS OF RED ALGAL REPRODUCTION?
In photosynthetic eukaryotes, like algae, light is the driving
force for growth and development; it is the source of energy,
but also the signal triggering both vegetative and reproduc-
tive developmental events. Light is perceived through families
of photoreceptors: phytochromes (red/far red radiation), UVR8
(UV-B), and membrane associated phototropins, cryptochromes,
and the members of the ZTL/FKF1/LKP2 family which absorb
UV-A/blue light (Hohm et al., 2013 and references therein). In
turn, the existence and the type of photoreceptors in aquatic
organisms have attracted scientific attention, due to the pecu-
liar characteristics of the interaction of light in the aquatic
environment. Thus, the presence of diverse genuine photore-
ceptors, such as phototropins, aurochromes (blue absorbing),
neochromes—a kind of chimeric phytochrome, cryptochromes,
and phytochromes in marine algae has been reported and
reviews have been produced, which include future applied dimen-
sions (Kianianmomeni and Hallmann, 2014). Interestingly, as
far as signal transduction is concerned, the phototropin mech-
anism seems to be conserved between algae and higher plant
(Huang et al., 2002; Onodera et al., 2005; Prochnik et al.,
2010).

In seaweeds, plant hormones have been reported to affect
growth and development (Chan et al., 2006; Baweja et al., 2009).
Concerning reproduction events, in Grateloupia imbricata (as G.
doryphora), the levels of the polyamines putrescine, spermidine,
and spermine changed as the cystocarps maturate. Subsequently,
it was observed that these polyamines, particularly spermine,
favored the maturation, liberation, and growth of carpospores
in Grateloupia imbricata and Hydropuntia cornea (as Gracilaria
cornea; García-Jiménez et al., 1998; Marián et al., 2000; Guzman-
Urióstegui et al., 2002, 2012; Sacramento et al., 2004, 2007). In
addition, ethylene has been reported to accelerate the maturation
of tetrasporangia in Pterocladiella capillacea (García-Jiménez and
Robaina, 2012)

In recent years extensive knowledge has been accumulated
about light, photoreceptors and plant hormone interaction, and
crosstalk at the molecular level in higher plants, particularly dur-
ing the events occurring at two physiological scenarios: seedling
photomorphogenesis and shade avoidance (Gyula et al., 2003;
Lau and Deng, 2010). Transcription factors of several families,
protein–protein interaction, as well as post-translational pro-
tein modification are involved (Alabadí and Blázquez, 2009;
Lau and Deng, 2010; Fernando and Coupland, 2012; Gupta
et al., 2012; Jaillais and Grégory, 2012; Zhong et al., 2012;
Liu et al., 2013). Table 1 provides an overview of the complex
system operating in the light–photoreceptors–plant hormones
integrated network. All of this important information has so
far proved to be relevant to higher plants, particularly for the
model species Arabidopsis thaliana, and it is completely unknown
whether the key elements highlighted also operate in seaweeds,

despite the fact that the influence of photoreceptors and plant
hormones on reproduction has been reported, as previously
mentioned.

Transcription factors controlled by photoreceptors, such as the
PIF family (Alabadí and Blázquez, 2009; Lau and Deng, 2010;
Jaillais and Grégory, 2012; Zhong et al., 2012), along with others
under the control of plant hormones, such as HY5 (Lau and Deng,
2010; Xu et al., 2014), are very important players in the integrated
network (Table 1). Other factors affecting plant growth and devel-
opment, like circadian clock sensors that control endogenous
levels of plant hormones (i.e., auxin), or temperature also seem
to act by modulating the activity of PIF transcription factors, thus
connecting important abiotic factors and development (Leivar
and Quail, 2011).

Finally, by way of future perspective, in our laboratory we have
recently adopted Bonnemaisonia hamifera (Bonnemaisoniaceae)
as a working species. Cultures of the sporophyte (Trailliella) phase
have been established so far, and work is progressing toward
the induction of the differentiation of gametophytes, using tem-
perature and photoperiod, and plant hormones (Figures 1A–C).
Should the completion of the life cycle may be accomplished in
the next future as a basic requirement for a working species, it
remains to find an appropriate genomic structure (a compact or
simple genome, a small number of genes, important functional
transcriptomic information, etc.), but there is little information
on the B. hamifera genome so far. Nevertheless, even in the long
run, with B. hamifera or any other similar and more adequate
species, it is time to revisit this scenario in seaweeds but focusing
on the molecular standpoint; why not start identifying within
the rising genomic/transcriptomic data for all or any of these
regulating factors shown in Table 1?
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