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Diseases caused by crown rust (Puccinia coronata f. sp. avenae) and powdery mildew
(Blumeria graminis f. sp. avenae) are among the most important constraints for the oat
crop. Breeding for resistance is one of the most effective, economical, and environmentally
friendly means to control these diseases. The purpose of this work was to identify elite
alleles for rust and powdery mildew resistance in oat by association mapping to aid
selection of resistant plants. To this aim, 177 oat accessions including white and red oat
cultivars and landraces were evaluated for disease resistance and further genotyped with
31 simple sequence repeat and 15,000 Diversity Arrays Technology (DArT) markers to reveal
association with disease resistance traits. After data curation, 1712 polymorphic markers
were considered for association analysis. Principal component analysis and a Bayesian
clustering approach were applied to infer population structure. Five different general and
mixed linear models accounting for population structure and/or kinship corrections and two
different statistical tests were carried out to reduce false positive. Five markers, two of
them highly significant in all models tested were associated with rust resistance. No strong
association between any marker and powdery mildew resistance at the seedling stage was
identified. However, one DArT sequence, oPt-5014, was strongly associated with powdery
mildew resistance in adult plants. Overall, the markers showing the strongest association
in this study provide ideal candidates for further studies and future inclusion in strategies
of markerassisted selection.
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INTRODUCTION

Oat is a grain crop of Mediterranean origin used for both human
food and animal feed as well as a green or conserved fodder and,
more recently, as a winter cover crop in no-till rotations (Stevens
etal., 2004). Avena sativa L. including both white and red oat (for-
merly A. byzantina K. Koch) is the main cultivated oat. Several
pathogenic fungi can infect oats and drastically reduce its yield
including biotrophic pathogens such as powdery mildew (Blume-
ria graminis f. sp. avenae Em. Marchal) and crown rust (Puccinia
coronataf. sp. avenaeEriks). These fungi have very efficient spread-
ing mechanisms, hampering their control by crop management
measures such as rotation and the use of resistant varieties is one
of the best control alternatives (Stevens et al., 2004).

Genetic markers have proved useful for the identification of
quantitative trait loci (QTL) associated with important agronomic
traits using a number of experimental bi-parental oat populations.
Examples include vernalization response, flowering, and heading
date (Maloney etal., 2011), quality traits, including seed toco-
pherol (Jackson etal., 2008), groat protein and oil content (Zhu
etal., 2004; Hizbai et al., 2012) and resistance to stresses including

winter field survival (Maloney etal., 2011), Fusarium resistance
(He etal., 2013), powdery mildew resistance (Yu and Herrmann,
2006), and crown rust resistance (Wight etal., 2004; Portyanko
etal., 2005; Jackson etal., 2010). However, there are often limita-
tions in the use of such QTL in marker-assisted selection (MAS)
as the parental genotypes used in these studies are often not rep-
resentative of the germplasm pool that is actively used in breeding
programs and markers linked to QTL are not always transferable
to other genetic backgrounds (Snowdon and Friedt, 2004).
Association analysis is an alternative approach that overcomes
many of the limitations of conventional QTL mapping and has
received increasing attention from plant geneticists during the
last few years (Kraakman etal.,, 2004; Gupta etal., 2005; Bre-
seghello and Sorrells, 2006; Stracke etal., 2009) following its
success in dissecting human diseases (Klein etal., 2005; Cordell
etal., 2013; Lee etal., 2013). Association analysis relies on unre-
lated individuals to create population-wide marker-phenotype
associations (Jannink etal., 2001) and is based on linkage dise-
quilibrium, defined as the non-random association of alleles at
two loci (Falconer and MacKay, 1996). Linkage disequilibrium
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among loci is a complex phenomenon, since it is affected by
mutation history, population structure, admixture among pop-
ulations, natural and artificial selection (including breeding),
genetic drift, and the organism’s own reproductive biology (Flint-
Garcia etal., 2003; Newell et al., 2011). Association analysis utilizes
historic patterns of recombination that have occurred within a
sample of individuals to detect correlations between genotypes
and phenotypes within these individuals (Zondervan and Cardon,
2004).

In recent years, genome wide association studies (GWAS) have
identified marker-trait associations for a range of agronomic
traits in many crops including maize, rice, sorghum, and fox-
tail millet (Huang etal., 2010; Jia etal., 2013; Li etal., 2013;
Morris etal., 2013). However, there are fewer reports of the use
of GWAS with stress resistance traits although marker associa-
tions with disease resistance have been identified in maize, rice,
and wheat (Kump etal., 2011; Gurung etal., 2014; Wang etal,,
2014). In oats, only a few association analysis studies have been
reported (Achleitner et al., 2008) and they have primarily focussed
on grain quality traits such as beta-glucan concentration (Newell
etal., 2012; Asoro etal., 2013) and none have attempted to iden-
tify marker-trait associations with some of the most important
biotic constraints of this crop, namely powdery mildew and
rust pathogenic fungi. In this work, we performed an associ-
ation analysis in an oat collection of commercial cultivars and
landraces based on simple sequence repeat (SSR) and Diversity
Arrays Technology (DArT) genotyping following a detailed study
of population structure and linkage disequilibrium and identi-
fied several markers associated with rust and powdery mildew
resistance.

MATERIALS AND METHODS

PLANT MATERIAL

For this study, a germplasm collection of landraces consisting of
141 A. sativa accessions (110 white and 31 red oats) kindly pro-
vided by the “Centro de Recursos Fitogenéticos,” INIA, Madrid,
Spain, and 36 commercial varieties supplied by the Andalusian
Network of Agriculture Experimentation (RAEA) was used. Oat
cultivars studied were: Acl, Acebeda, Adamo, Aintree, Alcu-
dia, Anchuela, Araceli, Brawi, Caleche, Cannele, Chambord,
Chappline, Charming, Cobena, Condor, Cory, Edelprinz, Flega,
Fringante, Fuwi, Hammel, Kankan, Kantora, Karmela, Kassandra,
Kazmina, Mirabel, Mojacar, Norly, Orblanche, Pallini, Patones,
Prevision, Primula, Rappidena, and Saia. Details of the origin of
all accessions and of their genetic relationship have been previously
reported in Montilla-Bascén etal. (2013).

Seedlings were grown in 0.5 L pots filled with peat:sand (3:1)
in a growth chamber with 20°C, 65% relative humidity (RH) and
under 12 h dark/12 h light with 250 tmol m~2 s~! photon flux
density supplied by high-output white fluorescent tubes.

GENOTYPING AND DATA CURATION

First leaves from 40 12-days-old seedlings were harvested, pooled
together, and DNA extracted according to the method stipulated
by Diversity Arrays P/L, Canberra, ACT, Australia and described
by Tinker etal. (2009). SSR analysis was as previously described
Montilla-Bascén etal. (2013). SSRs used were chosen for their

amplification consistency and polymorphism in our oat geno-
types and/or because they displayed reasonable genome coverage
in a mapping population developed from the winter oat culti-
vars Buffalo and Tardis (C. J. Howarth personal communication).
DArT marker analysis using the high density oat array (15,000
markers) was performed by Diversity Arrays P/L, as described in
Tinker etal. (2009).

To remove possible errors and redundancies in markers that
may cause false associations in GWAS, data cleaning was per-
formed according to Miyagawa etal. (2008). Markers with >20%
missing data were removed as were those with a minor allele fre-
quency (MAF) of less than 1%. Markers that diverged less than 1%
across the genotypes lines were merged, thus combining markers
that were in near perfect LD. Finally, inspections were performed
to determine accessions that differed by less than 1% to remove
any redundant accessions, however, in our study no accessions fell
into this category.

GENETIC DISTANCE, POPULATION STRUCTURE, AND KINSHIP
Estimates of genetic distance were calculated according to Nei and
Li (1979) parameter with Arlequin software. Population struc-
ture was inferred by the software STRUCTURE 2.3.4 (Pritchard
etal., 2000) using the admixture model and the option of corre-
lated allele frequencies between populations. Similarly, the degree
of admixture alpha was inferred from the data. Each simula-
tion included 20,000 burn-in and 100,000 iterations. Longer
burn-in or MCMC did not change significantly the results. Ten
independent simulations per k-value were run. Then, the mean
estimate across runs of the log posterior probability of the data
for a given k, were plotted to enable the determination of the
k-value of the population. As this point is known to be diffi-
cult to determine, the Ak, related to the second order rates of
change of the likelihood function with respect to k, was also used
(Evanno etal., 2005). The percentages of admixture of each acces-
sion (Q matrix) given by the software were used as cofactors in
the association analyses. For trait analyses per subpopulation,
an accession was assigned to a subpopulation when it showed
more than 80% membership in this subpopulation (de Alencar
Figueiredo etal., 2010). Principal component analysis (PCA) was
also performed as an alternative method to infer the structure of
the collection with the software package PAST (Hammer etal.,
2001).

The kinship coefficient approach proposed by Yu etal. (2006)
allows taking possible family relatedness into account and can help
removing additional false positives. These coefficients (K matrix)
were computed with the software TASSEL 4.1.27 (Bradbury etal.,
2007).

LINKAGE DISEQUILIBRIUM

Linkage disequilibrium measured as > was calculated by soft-
ware TASSEL 4.1.27 for each marker pair together with the
significance of the parameter. r* was used, since it is only
moderately influenced by small sample sizes and low allele fre-
quencies (Flint-Garcia etal., 2003) and it is relevant for QTL
mapping since it relates the amount of variance explained by the
marker to the amount of variance generated by the associated
QTL (Zhu etal., 2008). The disequilibrium matrix summarizing
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pair-wise measures of LD was also performed with the software
TASSEL.

PHENOTYPING

Crown rust resistance assessment

The P. coronata f. sp. avenae (Pca) isolate Co-04, previously
multiplied on the susceptible cultivar Araceli, was used. The
virulence of this isolate on an oat differential set collection has
been described in Sédnchez-Martin etal. (2012). Four indepen-
dent plants per accession were grown in a growth chamber
as described above and when the first leaf had fully expanded
they were inoculated with urediospores mixed with pure tal-
cum powder (1:1, w/w) by dusting them over the plants to
give approximately 30 spores mm~2 (checked by counts made
from glass slides laid adjacent to leaves). After inoculation,
plants were incubated for 9.5 h in darkness at 100% RH and
18°C, and thereafter at 20°C under a 12 h photoperiod with
250 wmol m~2 s~! photon flux density. Infection frequency (IF)
was determined as previously described in Prats etal. (2002). IF
scores were converted into relative infection frequency (RIF) val-
ues expressed as the percentage of the susceptible reference cultivar
Araceli.

Powdery mildew resistance assessment

Four independent plants per accession were grown as described
above and when the first leaf was fully expanded it was inocu-
lated using a settling tower (Lyngkjer etal., 1997) to give about
30 conidia mm™2 with one isolate of B. graminis f. sp. ave-
nae race five maintained on seedlings of oat cv. Selma, in a
spore proof glasshouse. After inoculation, plants were main-
tained in the growth chamber for 8 days before assessment of
the percentage area covered by powdery mildew on the inoc-
ulated leaf. Disease scores were converted into relative values,
expressed as the percentage of the susceptible reference culti-
var Selma and referred to as the relative disease severity (RDS;
Rubiales etal., 1993; Martinez etal., 2007). For assessment of
adult plant resistance the fifth leaves were inoculated and macro-
scopically assessed as above without excising the leaves from the
plant.

STATISTICAL ANALYSES

For phenotype assessments the experimental design was arranged
according to randomized complete block design with four inde-
pendent blocks each containing the whole set of accessions
randomly ordered. For ease of understanding, means of raw per-
centage data are presented in tables and figures. However, for
statistical analysis, data recorded as percentages were transformed
to arcsine square roots (transformed value = 180/IT x arcsine
[4/(%/100)]) to normalize data and stabilize variances through-
out the data range, and subjected to analysis of variance using SPSS
software, after which residual plots were inspected to confirm that
data conformed to normality. Significance of differences between
means was determined by contrast analysis (Scheffe’s). The per-
centage of variation of each trait explained by the structure was
computed through multiple linear regression of the phenotypes
on the percentages of admixture using R (Ihaka and Gentleman,
1996).

ASSOCIATION ANALYSIS

Associations between molecular markers and phenotypes were
computed using the software package TASSEL 4.1.27 (Bradbury
etal., 2007). Five models were used: a simple general linear model
(GLM), a GLM model using the percentages of admixture of each
accession (Q matrix) as cofactors to take population structure
into account (GLM-Q), a GLM model using the PCAs covariates
as cofactors (GLM-PCA), a GLM model using both Q matrix and
PCAs covariates (GLM-Q-PCA) and a mixed linear model (MLM)
using both the percentages of admixture and the kinship coeffi-
cients as cofactors (Q and K matrices). All GLM procedures tested
fixed-effect models in which mean phenotypes of a given trait were
predicted by the independent variables. Tests were run with 1,000
permutations allowing determination of the site-wise p-value for
each marker, which is the probability of a greater F-value under the
null hypothesis that the polymorphic site is independent of pheno-
type. All models were assessed for their ability to control for type I
error by plotting the distribution of the p-values for the markers,
where uniformly distributed p-values indicate proper control for
type I errors (Newell etal., 2012). The Benjamini and Hochberg
(1995) false discovery rate (FDR) criteria at g = 0.25 was used to
control for multiple testing (Newell etal., 2012) after estimation
of the g-values of each p-values with the module QVALUE (Storey,
2002) in the R v2.15.2 package.

SEQUENCE HOMOLOGY

As many of the DArT markers used here have been previ-
ously sequenced (Tinker etal., 2009), the NCBI non-redundant
protein database (database released on 11 January 2015) was
searched using the function BlastX of the BLAST algorithm
(Altschul etal, 1990) implemented in the NCBI webserver
(http://blast.ncbi.nlm.nih.gov/Blast.cgi) to further characterize
the most significant markers identified.

RESULTS

DATA CURATION

Of the initial 15,000 DArT markers assessed, 1,587 showed poly-
morphism in the oat collection. In addition 499 SSR alleles were
also polymorphic. From the total 2086 polymorphic markers, 11
markers that showed a call rate lower than 80% and 56 markers
that showed a MAF < 0.01 were removed. A total of 476 redun-
dant markers were also merged in 169 groups representing these
markers. Following data curation a total of 1,712 markers were
used for association purposes in the oat collection of 177 white
and red commercial varieties and landraces.

STRUCTURE OF THE POPULATION

A previous genetic diversity study of the oat collection with
only SSR markers revealed a structure of four subpopulations
(Montilla-Bascon etal., 2013). In the present study the number
of markers was increased to more than 1,500 and STRUCTURE
software indicated the same number of subpopulations (Figure 1).
Indeed, the correlation between SSR and DArT+SSR results was
high with a correlation coefficient of 0.84 (p < 0.001). How-
ever, slight modifications of the genotype-cluster assignation
and the corresponding percentage of admixture were observed.
According to both analyses ~30% of the accessions showed
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FIGURE 1 | Estimated population structure of oat genotypes according
to STRUCTURE software. Each individual is represented by a thin vertical
segment, which can be partitioned into four colored segments that
represent the individual estimated membership to the four clusters.

less than 80% of membership for a particular cluster. The
differences of genotype-cluster assignation were always related to
these accessions and when they were discarded from the anal-
ysis the correlation coefficient increased up to 1. According to
STRUCTURE, subpopulation 1 showed the highest degree of
admixture with 75.6% of the genotypes with less than 80% of
membership to this subpopulation followed by subpopulations
3 and 4 with 18% of genotypes with less than 80% of mem-
bership in these groups. Subpopulation 2 in which only 15%
of genotypes showed less than 80% membership to the cor-
responding subpopulation was the subpopulation with lowest
admixture.

Multivariate analysis based on PCA also revealed a separation
of four subpopulations which indicates a high consistency of the
data (Figure 2). Cluster analysis was implemented on the first four
principal components cumulatively explaining ~50% of the vari-
ation with 23.3, 13.8, 8.11, and 4.5% for each of the components,
respectively. Although separation between clusters was clear, some
accessions were not part of the clusters but formed links between
them (Figure 2). The number of lines in each cluster ranged from
33 to 64. The first cluster included mainly the white commercial
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FIGURE 2 | Scatterplot of Principal Component Analysis scores of
components 1 and 2 based on 1712 DArT and SSR markers used in
this study. Represented are the genotypes belonging to cluster 1 (red),
cluster 2 (green), cluster 3 (violet), and cluster 4 (blue).

varieties, cluster 2 the red oats, cluster 3 the white oat landraces
characteristic to high altitude locations, and cluster 4 white oat
landraces more adapted to low altitude locations.

CLUSTER RELATIONSHIPS

As previously stated, PCA showed a separation between clusters
but also a clear pair-wise relationship between clusters. Quanti-
tative results for genetic distance (according to Nei’s parameter)
between clusters are shown in Table 1. Cluster 2 comprising the
red oats was by far the most distant from all other clusters, with an
average distance of 180 whereas the two white oat landrace clusters
were the most closely related groups with an average distance of 66.
Clusters 1 and 4 corresponding to the white oat landraces adapted
to low altitude and the commercial varieties, respectively were also
closely related with a distance of 75 (Table 1). These relationships
between clusters were in agreement with those depicted by the
PCA scatter plot (Figure 2). These results suggest that clustering
was also efficient in separating the oat types for the germplasm
used in this study.

LINKAGE DISEQUILIBRIUM

Identification of disequilibrium between markers is highly use-
ful since it may condition the strength of the association study.
Since physical map distances between markers were not avail-
able, LD was represented by the disequilibrium matrix visualizing
the linear arrangement of LD between polymorphic sites, repre-
sented by 12, and the probability (Flint-Garcia etal., 2003; Gaut
and Long, 2003; Figure 3). A total of 507,042 pairs of markers
showed a significant LD value with an average p = 0.004. From
these, 277,920 pairs of markers showed an r* < 0.1 chosen here
as nominal level, according to the studies performed by Newell
etal. (2011) in oat. LD of each cluster showed similar values with
the exception of cluster 2 that showed a slightly higher LD, prob-
ably reflecting the low number of individuals of this cluster of red
oats.

PHENOTYPIC DATA

Both traits followed a normal distribution with accessions rang-
ing from highly resistant to highly susceptible (Figure 4). Means
of the 177 accessions assigned to the four subpopulations for the
different traits, excluding the admixed accessions were compared
(Table 2). Significant differences between subpopulations were
observed for all traits. Thus, subpopulation 4 had a significantly
lower RIF after rust inoculation than the others (p < 0.005) and
showed a high resistant response. Subpopulation 2 had lower RDS
to powdery mildew than the others (p < 0.001; Table 2). Pow-
dery mildew was the trait most affected by population structure

Table 1 | Population average pair-wise genetic distance according to
Nei’s parameter of pair-wise difference.

c1 C2 C3
C2 150
C3 125 205
C4 75 185 66
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FIGURE 3 | Linkage disequilibrium matrix. Pairwise LD values of
polymorphic sites displaying r? above the diagonal and the corresponding
p-values from rapid 1000 shuffle permutation test below the diagonal. Each

cell represent the comparison of two pairs of marker sites with the color
codes for the presence of significant LD. Colored bar code for the significance
threshold levels in both diagonals is shown.

although the proportion of variance explained by population
structure remained under 4% (Table 3).

ASSOCIATION ANALYSIS

Tables 4 and 5 shows the markers considered to be signifi-
cantly associated with rust or powdery mildew resistance traits
according to the threshold of 0.25 for Q-value in the FDR test

(Newell etal., 2012) in any of the models corrected for population
structure.

As expected, considerably fewer markers showed a signifi-
cant association with rust resistance when applying a correction
accounting for the population structure than when using GLM
alone (for simplicity GLM alone and GLM-Q-PCA are not
presented in the tables). The low ability of the GLM alone to
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FIGURE 4 | Distribution of the infection frequency of the rust and
powdery mildew infection in the oat collection. Infection frequency
recorded as number of pustules per unit area for rust and percentage of
leaf covered by mycelium for powdery mildew were converted into relative
values, expressed as percentage of the reading of the susceptible controls,
respectively.

Table 2 | Mean comparison between subpopulations for the
accessions assigned to a subpopulation (>80% membership in the
subpopulation).

Subpopulation Rust? PMP
1 90.1% 88.6°
2 108.8° 72.9°
3 95,520 90.8°
4 86.0P 86.12

a8 Relative infection frequency (number of pustules cm=2)8 days after rust inocu-
lation; © PM (powdery mildew) resistance expressed as relative disease severity
(percentage of the leaf covered by mycelium) 8 days after powdery mildew
inoculation.

account for false positives was confirmed when the distribution of
observed p-values was plotted in the negative log)o scale (Figure
S2). The distribution of the p-values did not fit with the expected
values represented by the solid line, indicating an over-abundance
of low p-values. However, in the models accounting for struc-
ture the distribution of p-values fitted better with the expectation.
Interestingly, population structure correction by PCA was more
efficient in removing false positives than by STRUCTURE software
for this data set (Figure S2). Five markers significantly associated
with rust resistance were found. Markers oPt-11795 and MAMA5-
163 were the two most significantly associated showing significant
association in all models tested including MLM and explained
20 and 10% respectively of the variation observed for this trait
(Table 4). This last model showed almost a perfect fit between

the observed and expected p-values except for few of the values,
which is the characteristic of a model that sufficiently accounts for
the number of false positives. Three additional markers, AM30-
178, AME176-3, and oPt-15665 were significantly associated in all
GLM models including those accounting for population structure
(GLM-Q, GLM-PCA, and GLM Q+PCA) but not in the MLM
models (Table 4).

A significant reduction of associated markers with powdery
mildew resistance in oat at seedling stage was also observed after
correcting for the population structure than when using GLM
alone. The low efficiency of the GLM alone in this data set was
confirmed by the low fit of the observed and expected distri-
bution of the p-values (Figure S3). Since the significance of the
oPt-14317 marker association with powdery mildew resistance in
seedlings according to GLM-Q model was at the limit of 0.25
(Table 5) and since it was not highlighted by the other models
it was not considered to be strongly associated. Indeed, dis-
tribution of the p-values in the GLM model corrected with Q
indicated also a relative over-abundance of low p-values. Interest-
ingly, the reverse tendency was observed in the MLM with p-values
moving down the expected values, indicating a scarcity of low p-
values and indicating that the GLM+PCA or GLM+Q+PCA were
the best fitted models. This indicated the importance of testing
the models in order to help in the selection of the most robust
markers.

In order to find markers associated with powdery mildew
resistance we took advantage of a previous detailed evaluation
for powdery mildew adult plant resistance performed in a sub-
population of this collection (Sdnchez-Martin etal., 2011). In
this, following a preliminary field assessment, 54 genotypes rep-
resenting the different clusters were evaluated under controlled
conditions for adult plant resistance. This population covered a
continuous range for powdery mildew resistance between 0 and
100%, showed a similar structure to the full oat collection and
showed 414,311 significant marker pairs in linkage disequilibrium
with 70,657 of them showing a 7 < 0.1 (Figures S1A-C). Associa-
tion analysis for adult plant resistance yielded a marker, oPt-5014,
highly significant in all models tested. This marker explained
~30% of the observed variation according to 2. In addition, two
other markers, oPt-3306 and oPt-793335, were strongly associated
in the GLM performed accounting for population structure, both
through Q covariates and PCA. Distribution of the p-values in
these models and particularly in that taking into account both Q
and PCA fitted well with the expectation indicating a good con-
sistency of the markers. Again, with this data set the MLM model

Table 3 | Statistic for stress resistance and percentage of variation of these traits explained by population structure (K = 4) through multiple

linear regression.

Trait Mean Minimum Maximum SD CV (%) Variance (%)
Rust? 89.57 2.05 196.40 28.51 31.83 1.5Ms
PMPb 85.51 0.00 150 2744 32.09 3.7%

aRelative infection frequency (number of pustules cm=2) 8 days after rust inoculation; b P (powdery mildew) resistance expressed as relative disease severity
(percentage of the leaf covered by mycelium) 8 days after powdery mildew inoculation.
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Table 4 | Markers associated with rust resistance according to different models: general lineal model (GLM) corrected for population structure
according to percentage of admixture coefficients (Q), principal component covariates (PCA), and mixed lineal model (MLM), corrected with

kinship and structure matrices.

Marker GLM+Q GLM+PCA MLM
p FDR r2a p FDR r2 p FDR r2
oPt-11795 1.6-10~7 26104 0.18 3.7.1077 6.0-10~4 0.16 1.6-10~7 2.7.10~4 0.22
MAMAB-163 3.2.1074 0.1 0.08 1.9-10~4 0.10 0.08 1.3-1074 0.1 0.10
AM30-178 3.5.10°° 0.02 0.10 9.4.10-5 0.07 0.09 1.0-103 0.49 0.07
AME176-3 4.8.107% 0.1 0.09 8.0-10~4 0.25 0.08 1.2.103 0.49 0.09
oPt-15665 70-103 0.42 0.06 9.8.1074 0.20 0.08 2.9-10-3 0.72 0.08

Markers were considered to be associated with the traits if the markers were significant (FDR < 0.25) in GLMs corrected for population structure or MLM. Data in
bold indicates values statistically significant according to the false discovery rate (FDR) test.
@ Percentage of phenotypic variance (partial 2 x 100%) of the total variation explained by the marker after fitting the other model effects.

Table 5 | Markers associated with powdery mildew resistance according to different models: general lineal model (GLM) corrected for
population structure according to percentage of admixture coefficients (Q), principal component covariates (PCA), and mixed lineal model

(MLM), corrected with kinship and structure matrices.

Marker GLM+Q GLM+PCA MLM
p FDR r2a p FDR r2 p FDR r2

Seedling Stage

oPt-14317 15.-10~4 0.25 0.10 3.8.1074 0.45 0.09 8.0.10~* 0.90 0.09
Adult Plant Stage

oPt-5014 71-10-6 0.01 0.34 6.7.10°6 5.4.10-3 0.36 3.2.1074 0.19 0.35
oPt-3306 5.7.10~% 0.04 0.29 75.10~5 0.04 0.30 77104 0.62 0.30
oPt-793335 3.5.1074 0.01 0.24 5.0-10-6 5.4.10-3 0.36 2.1-10-3 0.99 0.26

Markers were considered to be associated with the traits if the markers were significant (FDR < 0.25) in GLM corrected for population structure or MLM. Data in
bold indicates values statistically significant according to the false discovery rate (FDR) test.
@ Percentage of phenotypic variance (partial 2 x100%) of the total variation explained by the marker after fitting the other model effects.

seemed to be excessively restrictive in respect to the significance of
the markers (Figure S4).

SEQUENCE HOMOLOGY

Although the markers significantly associated with the observed
phenotypes are likely to be non-functional as they have been iden-
tified through LD, sequence information is available for many
of the DArT markers evaluated (Tinker etal., 2009, Table S1)
and analysis with BlastX proved interesting. Table 6 show the
most significant matches found with BLAST searches (BLASTX)
against public databases for associated DArT markers. For most
DArT markers, no significant match to specific genic sequences
was identified with most significant hits corresponding to repet-
itive sequences and retrotransposons (i.e., oPt-5014). However,
moderately significant matches to disease resistance genes, includ-
ing the wheat rust resistance locus Lr21, were seen for a DArT
marker flanking MAMAS, oPt-14345 (FI159838, Tinker etal,
2009). In addition, the marker oPt-11795 showed homology
with an autophagy-related protein 2 from Triticum urartu and
marker oPt-15665 with an anthocyanin 5-aromatic acyltranferase
of Aegilops tauschii.

DISCUSSION

As a first step for the association study, population structure
was inferred since it has great implications on the design and
analysis of GWAS. The different approaches used here indicated
moderate population structure within the germplasm collection
evaluated. Thus, four oat groups could be detected albeit they
presented a certain degree of admixture according to STRUC-
TURE software with up to 30% of accessions having less than
80% membership to a determinate group. This was also observed
following PCA with several accessions covering “gaps” between
clusters. Interestingly the group comprising the commercial vari-
eties showed the highest degree of admixture, most likely due to
a sharing of common ancestors in their genealogy as reported
by Montilla-Bascon etal. (2013). One particular concern to oats
is the existence of potential population structure arising from
the different oat types, winter or spring sown, or interbreeding
species such as the white and red (formerly A. byzantina) oats.
Indeed, in a study by Newell etal. (2012) a small cluster of red
oat differentiated from the rest of the collection. Taking into
account that our collection was consciously formed with diverse
oat types to achieve high genetic diversity, its population structure
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Table 6 | Potential homologous sequences of significant markers using the function BlastX of the BLAST algorithm (Altschul et al., 1990).

Marker Blastx Species E-value Cov(%) Ident(%) Accession number
oPt-11795 Autophagy-related protein 2 Triticum urartu 1E-12 85 38 EMS54055
Hypothetical protein Oriza sativa 2E-12 96 38 EEE52488
oPt-15665 Anthocyanin 5-aromatic acyltransferase Aegilops tauschii 1E-23 54 56 EMT29726
Hypothetical protein Sorghum bicolor 1E-22 65 41 XP_002450696
Hypothetical protein S. bicolor 3E-17 50 45 XP_002445048
oPt-5014 Hypothetical protein S. bicolor 6E-30 94 61 XP_002465514
Hypothetical protein S. bicolor 2E-26 90 56 XP_002450843
Hypothetical protein S. bicolor 5E-26 93 58 XP_002459653
Uncharacterized protein Brachypodium distachyon 2E-25 93 53 XP_010233076
Uncharacterized protein B. distachyon 1E-24 98 47 XP_010239298

Blastx 2.2.30. Data of release January 11, 2015 1:49 A.M.

was considered relatively weak compared with that found in other
cereals such as barley (Hamblin etal., 2010) or wheat (Stich etal.,
2008).

Despite the relative moderate structure of this oat popula-
tion, it contains a reasonably high genetic diversity, showing
~10% of polymorphic markers as in the original oat panel
(Tinker etal., 2009). This is an important feature in order to
find markers significantly associated with a trait (Ingvarsson and
Street, 2011). Estimation of genetic distances between acces-
sions and clusters revealed inter- and intra-group genetic diversity
which is confirmed by phenotypic evaluation for responses to
rust and powdery mildew that showed wide variability in the
degree of resistance which extended to complete susceptibil-
ity. As expected the less divergent groups were the white oat
landraces adapted to high and low altitude followed by com-
mercial cultivars while the most distant group was the red
oats.

The extent of LD in a species influences the strength and res-
olution of GWAS. The study of linkage disequilibrium in the oat
collection showed a very high number of marker pairs in signifi-
cant LD. This indicated high genome coverage with non-associated
markers. In oats it has been proposed that a marker every cM
(2,000 marker in total) would explain, on average 20% of QTL vari-
ance. This is not very different from other self-pollinated cereals
such as barley in which LD decay is expected to occur over rela-
tively long map distances compared with allogamous cereals such
as maize for which reduction of 7 to 0.15 have been reported to
occur within 500 bp (Tenaillon etal., 2001). Our work using 1,712
markers should cover a significant part of the genome although
increasing the number and distribution of markers would increase
the probability of identifying additional markers in high LD with
a QTL.

The molecular marker data set in combination with phenotype
evaluation was used to examine linkage-related marker-trait asso-
ciations. Separating the role of population structure and genetic
linkage as causes for marker-trait association remains the great-
est challenge in association analysis (Achleitner etal., 2008). The
five models used in this study accounted for “Q” (population
structure from subpopulations) and/or “K” (genetic similarity in

the background from shared kinship) which may be important
to identify marker-phenotype associations not related to genetic
linkage between markers and QTL. In addition models contain-
ing PCA covariates, which may account for some proportion
of both “Q” and “K” were also tested. A tentative comparison
between the GLM and the MLM models was performed since
MLM models that accounts for kinship relationships, such as that
described by Yu etal. (2006), might remove more of the struc-
ture effect. This point was demonstrated by Brown etal. (2008)
in sorghum and Cockram etal. (2008) in barley. In our anal-
ysis the MLM was generally excessively restrictive and did not
outperform the GLMs with structure covariates. Overall, for our
data set the GLM+PCA offered the best control of type I errors.
Thus, co-examination of different models and traits can pro-
vide an informative summary of the major trends affecting the
analysis.

Five markers, two of them found highly significant in all models
tested, were associated with rust resistance. No significant similar-
ity was identified by BLASTN or BLASTX against NCBI databases
other than with putative repetitive elements or retrotransposons.
However, two of these DArT sequences showed similarity to an
autophagy-related protein 2 and to an anthocyanin 5-aromatic
acyltransferase that have been related to the plant immune defense
reaction. Thus, recently an autophagy-related protein 2 Arabidop-
sis mutant, atg2-2, has been reported to have enhanced resistance
to powdery mildew (Wangetal.,2011) and expression of an antho-
cyanin 5-aromatic acyltransferase have been found to be altered in
resistant A. thaliana ecotypes infected with cucumber mosaic virus
(Ishihara et al., 2004). However, further work would be needed to
ascertain the relationship between the DArTs markers and these
genes.

Despite the wide distribution of powdery mildew resistance
in our collection, strong association between any markers and
seedling resistance was not detected. It may be possible that the
combination of marker density and the phenotypic variation were
insufficient. Polymorphisms causing variation for this trait may
have been in linkage equilibrium with our markers, and higher
marker densities could have uncovered more QTLs. Alternatively,
ahigh number of rare alleles causing variation in seedling powdery
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mildew resistance in our collection might cause less variation in
the data and therefore be undetected. Indeed, rare alleles are a
leading hypothesis for the “missing heritability observation” in
human association studies (Yang et al., 2010). The low association
for this trait could also be due to the development of markers
from a genetically narrow set of germplasm in relation to the
lines used in this study. However, this is highly unlikely since
DArT markers were developed from a panel of 60 accessions of
global representation. Interestingly one DArT sequence, oPt-5014,
was strongly associated with powdery mildew resistance in adult
plants. The strong association observed taking into account the rel-
ative low number of accessions evaluated for this trait, suggest that
a careful selection of accessions covering a complete range of phe-
notypic and genotypic variation may be adequate in some cases
to find significant associations. Marker oPt-5014 was associated
with hypothetical proteins of sorghum, wheat and rice containing
a Zinc knuckle domain (pfam14392) which has been detected in
several plants transcription factors and might therefore be involved
in the regulation of gene expression.

Recent oat maps sharing common markers allow us to locate
the DArT markers more specifically within the oat genome (Figure
S5). According to Tinker etal. (2009), oPt-11795 marker maps
onto KO32 which is equivalent to chromosome 4C in the first
physically anchored consensus oat map (Oliver etal., 2011) where
there are no previously reported crown rust resistance genes.
Recent studies showed synteny between this chromosome and
Brachypodium distachyon chromosome 4, Oryza sativa chromo-
some 9 and wheat chromosome 5BL where regions controlling
disease resistance have been described; QTLs for resistance to the
rust fungus Puccinia brachypodii have been reported in chromo-
some 4 of B. distachyon (Barbieri etal., 2012), a powdery mildew
resistance gene PmAS846 mapped in wheat chromosome 5BL
(Xue etal., 2012) and a locus associated with broad-spectrum
resistance to rice blast, Pi5(t), mapped onto rice chromosome
9. MAMAS is reported by Wight etal. (2003) to map near
to the marker cdo53 on KO17 equivalent to chromosome 9D
(Oliver etal., 2013). Interestingly, the partial crown rust resis-
tance Pc38 that cluster with Pc62 and Pc63 (Harder etal., 1980)
also maps in this position (Wight etal., 2004) together with the
major QTL for partial rust resistance, Prqlb (Portyanko etal.,
2005). AME176 maps onto chromosome 15A (unpublished Buf-
falo x Tardis results) which shows homology with chromosome
9D where according to Oliver et al. (2013) a number of other resis-
tance genes map. According to Tinker etal. (2009), oPt-14317
maps onto KO22_44_18 within the same framework marker as
AM102 now annotated as chromosome 19A. This is a similar posi-
tion to where the dominant powdery mildew resistance gene Eg5
has been mapped (Yu and Herrmann, 2006). Finally, oPt-5014
has been mapped in a number of populations (e.g., Hizbai etal.,
2012; He etal., 2013) onto chromosome 21D. This chromosome
is also known to contain a number of crown rust resistance genes
such as Pc54, Pc59, and Pc68. However, lack of common mark-
ers makes it difficult to determine how close oPt-5014 is to these
genes.

Overall, the markers showing the strongest association in this
study provide ideal candidates for further studies and future
inclusion in strategies of MAS.
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