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Chromatin regulation is essential to regulate genes and genome activities. In plants, the
alteration of histone modification and DNA methylation are coordinated with changes in
the expression of stress-responsive genes to adapt to environmental changes. Several
chromatin regulators have been shown to be involved in the regulation of stress-responsive
gene networks under abiotic stress conditions. Specific histone modification sites and
the histone modifiers that regulate key stress-responsive genes have been identified by
genetic and biochemical approaches, revealing the importance of chromatin regulation in
plant stress responses. Recent studies have also suggested that histone modification
plays an important role in plant stress memory. In this review, we summarize recent
progress on the regulation and alteration of histone modification (acetylation, methylation,
phosphorylation, and SUMOylation) in response to the abiotic stresses, drought, high-
salinity, heat, and cold in plants.
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INTRODUCTION
Past decades, innovation of DNA sequencing technology has
brought an evolution of genome biology. Genome projects of
many organisms have revealed complexity of genome struc-
ture. However, DNA sequence information is not enough to
understand the mysterious life phenomenon and how genome
is organized. For this, other factors, e.g., chromatin regulation
mediated by histone modification and DNA methylation, and
RNA-mediated regulation are also involved. Study on such reg-
ulation other than genetic information is called as “epigenetics.”

Epigenetic regulation is an important mechanism that is
involved in a wide range of biological phenomena, such as
genome stability, developmental programming, gene expression,
and diseases like cancer through chromatin regulation, small
RNA-mediated regulation, and so on (Grewal and Jia, 2007;
Feng et al., 2010; Kanherkar et al., 2014). Chromatin regulation
mediated by histone modifications and DNA methylation, can be
dynamically and statically changed to maintain gene and genome
activities (Wolffe, 1998; Zhang and Reinberg, 2001; Kurdistani
et al., 2004; Pokholok et al., 2005). Plants perceive stimuli from
the surrounding environment and possess sophisticated regu-
latory networks of genes that can control the accumulation of
metabolites, which allows the plants to survive and adapt to envi-
ronmental changes (Shinozaki and Yamaguchi-Shinozaki, 2007;
Urano et al., 2010). Recent studies have reported that histone
modifications, such as H3K4me3, H3K9ac, H3K9me2, H3K23ac,
H3K27ac, H3K27me3, and H4ac, along with DNA methylation
can be correlated with gene expression in response to abiotic
stresses, such as water deficit, high-salinity, and temperature shifts

(Kim et al., 2008; Luo et al., 2012a). Some histone modifica-
tions change rapidly in response to environmental changes, while
others change gradually along with changes in gene expression
to control physiological homeostasis and development under
environmental stresses (Kim et al., 2008, 2012). It still remains
unclear which comes first transcriptional changes or chromatin
changes, and how they are linked. In this paper, we review recent
studies of chromatin regulation in plants, focusing mainly on
histone modification and DNA methylation in response to abiotic
stresses.

HISTONE PROTEINS AND MODIFIERS IN PLANTS
A basic core histone octamer for nucleosomes is composed of
histones H2A, H2B, H3, and H4 (Arya and Schlick, 2009; Zhou
et al., 2013). Histone variants, such as H2A.Z and CENH3,
function in precise and specific regulation of gene activity and
genome structure (Deal et al., 2007; Zhang et al., 2008; Yan et al.,
2010; Coleman-Derr and Zilberman, 2012).

The N-terminal region of histones is called the histone tail.
Histones are enriched with basic amino acid residues such as
lysine and arginine. The basic residues in histone tails are cova-
lently modified by methylation, acetylation, phosphorylation, and
ubiquitination, and these modifications alter the activity of the
genes that are wrapped around the core histones. Histone mod-
ification can have different effects depending on which residue
is modified and the type of modification. The current under-
standing of the effect of histone modifications is based mainly on
research in yeast. In yeast, mutants in which the modified residue
in the histone tail is replaced by a different residue have been used
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to determine the effects of histone modification (Rundlett et al.,
1998; Suka et al., 2001).

In Arabidopsis, histone modification sites were identified by
mass-spectrometry and biochemical assays (Earley et al., 2007;
Zhang et al., 2007). The results of these studies suggested that
post-translational modification sites of histones in Arabidopsis
were highly conserved with other eukaryotes. Generally, the acety-
lation of lysine residues in H3 and H4 N-tails neutralizes the
positive charge of the histone tails, which decreases their affinity
for DNA and alters the accessibility of transcription factors to
the template DNA strand. As a result, histone acetylation tends
to induce gene activation (Kuo et al., 1996; Zhang et al., 1998;
Shahbazian and Grunstein, 2007). Conversely, the removal of
histone acetylation can lead to gene repression and silencing
(Kadosh and Struhl, 1998; Rundlett et al., 1998; Chen et al.,
2010b; To et al., 2011a). The effects of histone methylation
events vary depending on the site of the modification. Although
changes in histone modifications can be correlated with gene
activity, the molecular mechanisms through which the chemical
modifications influence chromosomal structure and the accessi-
bility of transcription factors are still not fully understood. For
example, tri-methylation of the fourth lysine of H3 (H3K4me3)
is an active mark for gene expression, and tri-methylation in
the twenty-seventh lysine of H3 (H3K27me3) is a repressive
mark of facultative heterochromatin (Cao et al., 2002; Finnegan
and Dennis, 2007; Doyle and Amasino, 2009). These relation-
ships between the alteration of histone modifications and gene
activity are highly conserved from yeast to human, and also in
plants.

Histone modifiers are also well conserved in angiosperms.
For example, the major histone modifiers histone acetyltrans-
ferases (HATs), histone deacetylases (HDACs), histone methyl-
transferases (HMTs), and histone demethylases (HDMs) have
been isolated or identified in several plants, including Arabidop-
sis, tomato, rice, barley, grapevine, Brassica, and Brachypodium.
These histone modifiers have been phylogenetically analyzed and
classified (Pandey et al., 2002; Chen et al., 2010b; Papaefthimiou
et al., 2010; Pontvianne et al., 2010; Aquea et al., 2011; Huang

et al., 2011; Aiese-Cigliano et al., 2013), revealing that histone
modifiers, such as the HATs, are conserved in plants (Aiese-
Cigliano et al., 2013). However, the molecular functions of many
of these modifiers have not yet been well characterized.

HISTONE MODIFICATION IN DROUGHT STRESS RESPONSE
Drought stress affects plant growth and survival. Gene regulatory
networks associated with the drought stress response in plants
have been studied by analyzing drought stress-responsive genes
that encode functional and regulatory proteins, such as transcrip-
tion factors (Shinozaki and Yamaguchi-Shinozaki, 2007; Fujita
et al., 2011; Osakabe et al., 2014). The expression of drought
stress-responsive genes is positively correlated with the intensity
of drought stress (Matsui et al., 2008). The transcriptional respon-
siveness of drought stress-upregulated genes was found to be
correlated with changes in histone modification and nucleosome
density (Kim et al., 2008, 2012; To and Kim, 2014). Under strong
drought conditions, the histone modifications H3K4me3 and
H3K9ac on drought stress-upregulated genes, such as RD20 and
RD29A, were more highly enriched than under moderate drought
conditions (Kim et al., 2008, 2012; Figure 1). Furthermore, under
moderate drought conditions, there was little nucleosome loss
from the RD29A region (Kim et al., 2008), while under strong
drought conditions, notable nucleosome loss occurred in the
same gene region (Kim et al., 2012). These results indicated
that epigenetic responsiveness depended on the intensity of the
drought stress.

To regulate gene activity, an epigenetic mode shift is required
for precise transcriptional regulation. To fully repress the expres-
sion of stress-upregulated genes and to reset chromatin sta-
tus under non-drought conditions, aggressive histone deacety-
lation and nucleosome replacement are required (Kim et al.,
2012). During recovery from drought stress, H3K9ac rapidly
decreased on the drought stress-upregulated genes, RD29A,
RD20, and AtGOLS2 (Figure 1). Simultaneously, RNA poly-
merase II was shown to be rapidly removed from those
gene regions. These results suggested that histone deacetyla-
tion was promoted to remove the H3K9ac in conjunction with

FIGURE 1 | Epigenetic regulation in the drought stress response.
Under drought stress, NCED3, a key gene in the abscisic acid (ABA)
biosynthesis pathway, is activated with an increase in H3K4me3 marked
by the histone methyltransferase ATX1. Active histone marks, such as

H3K4me3 and H3K9ac were enriched on many drought-responsive genes.
During recovery from drought stress, H3K9ac is rapidly removed, while
H3K4me3 is removed more slowly, indicating that H3K4me3 may be
involved in epigenetic memory.
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transcriptional repression (Figure 1). H3K4me3 was removed
more slowly than H3K9ac; its enrichment decreased gradually
with rehydration treatment (Figure 1). Surprisingly, the results of
our previous study suggested that nucleosome density on drought
stress-inducible genes behaved in an oscillation-like manner dur-
ing recovery from dehydration (Kim et al., 2012), suggesting that
nucleosome replacement is required to remove H3K4me3 and to
reset the chromatin status.

It has been reported that drought stress response is memorized
via histone modification on several drought stress-upregulated
genes (Ding et al., 2012). H3K4me3 is a good marker of gene
activation and stress memory (Oh et al., 2008; Zhang et al., 2009;
Ding et al., 2011, 2012; Kim et al., 2012; Figure 1). H3K4me3
enrichment was found to be correlated with transcriptionally
active gene regions based on a genome-wide analysis using ChIP-
seq (van Dijk et al., 2010). Interestingly, in Arabidopsis, genome-
wide H3K4me3 enrichment peaked 300 bp downstream from the
transcriptional start site, similar to the H3K4me3 distribution
pattern found in human cells (Barski et al., 2007). In contrast,
H3K4me3 was distributed broadly on many dehydration/ABA
(abscisic acid) inducible genes (van Dijk et al., 2010).

H3K4me3 modification by the HMT Arabidopsis trithorax-like
1 (ATX1) is involved in the activation of NCED3, which encodes
a key enzyme in the ABA biosynthesis pathway, under drought
stress conditions (Ding et al., 2011; Figure 1). ATX1 binding
to the NCED3 region increased under drought treatment. The
atx1 mutant plant had remarkably lower enrichments of RNA
pol II and H3K4me3 under drought stress conditions compared
with the wild type. Transcript levels of several drought stress
and ABA-upregulated genes, such as RD29A and RD29B, were
reduced during drought treatment in the atx1 mutant. By training
with multiple drought treatments, the enriched H3K4me3 levels
in the RD29B and RAB18 gene regions were maintained after
rehydration, and Ser5P RNA pol II, the activated form of RNA
pol II, was found to be stalled on these trained gene regions
(Ding et al., 2012). The H3K4me3 level on RD29B was lower
in the atx1 mutant than in the wild-type plant after drought
stress (Ding et al., 2012). Thus, ATX1-modified H3K4me3 may be
considered to have an important role in regulation of the drought-
responsive gene network via NCED3; however, ATX1 does not
seem to have a critical impact on drought stress-memory in
Arabidopsis.

Histone acetylation status has also been correlated with
drought stress and ABA responses in plants. For example, in
response to drought stress, the histone acetylation level increased
on the drought-responsive genes, such as RD20, RD29A, and
RD29B (Kim et al., 2008) and H3K9ac was enriched rapidly in
these gene regions. Interestingly, specific patterns of histone acety-
lation were found on each drought-responsive gene, suggesting
that differences in histone modification may contribute to the
responsiveness of these genes.

In rice, drought stress significantly induced four HAT genes
(OsHAC703, OsHAG703, OsHAF701, and OsHAM701; Fang et al.,
2014) and enhanced acetylation of H3K9, H3K18, H3K27, and
H4K5 under drought stress conditions was found by western
blotting analysis. In barley (Hordeum vulgare L.), the expression of
all three GNAT-MYST family HAT genes (HvMYST, HvELP3, and

HvGCN5) was induced by ABA treatment (Papaefthimiou et al.,
2010). Phylogenetically, OsHAM701 and OsHAG703 belong to the
HvMYST and HvELP3 clades, respectively. Thus, the epigenetic
response to drought stress may be partially conserved between rice
and barley.

The HD2-type HDACs, HD2A (HDT1), HD2B (HDT2),
HD2C (HDT3), and HD2D (HDT4) belong to a plant-specific
HDAC family in Arabidopsis, rice, barley, and tomato (Dangl
et al., 2001; Pandey et al., 2002; Wu et al., 2003; Demetriou
et al., 2009). AtHD2C-overexpressing Arabidopsis plants showed
ABA insensitivity, reduced transpiration, and enhanced tolerance
to drought and salt stresses (Sridha and Wu, 2006). In barley,
the expression of HD2 genes responded to stress-related plant
hormones such as ABA, jasmonic acid (JA), and salicylic acid (SA;
Demetriou et al., 2009). These results suggested that HD2 genes
play roles in resistance to abiotic and biotic stresses in monocot
and dicot plants.

HISTONE MODIFICATION IN SALT STRESS RESPONSE
Understanding the involvement of histone modifications in salt
stress responses has gradually progressed and three histone mod-
ifications, acetylation, methylation, and phosphorylation, have
been shown to influence the salinity stress response in plants.

Histone acetylation is generally correlated with gene activa-
tion, and is controlled by antagonistic actions between the HAT
and HDAC proteins. In maize roots, the upregulation of cell
wall-related genes, such as ZmEXPB2 and ZmXET1, has been
associated with increased H3K9 acetylation in the promoter
and coding regions, which is thought to be necessary for high
salinity response. It has been speculated that the upregulation
of these genes might be mediated by two HAT genes (ZmHATB
and ZmGCN5), because their mRNA expression was found to
increase under salt stress conditions (Li et al., 2014). In Ara-
bidopsis, a mutant for the transcriptional adaptor ADA2b, which
modulates HAT activity, showed hypersensitivity to salt (Kaldis
et al., 2011), suggesting that HATs play a pivotal role in salinity
tolerance. However, Arabidopsis mutants for HDAC proteins such
as HD2C, histone deacetylase 6 (HDA6), and histone deacetylase
19 (HDA19), which should increase histone acetylation, showed
hypersensitivity to salt (Chen and Wu, 2010; Chen et al., 2010a;
Luo et al., 2012b).

In Arabidopsis, a HDAC complex, which included histone
deacetylase complex1 (HDC1), HDA6, HDA19, and Arabidopsis
Swi-Indipendent3 (AtSin3) was reported (Perrella et al., 2013).
HDACs often form functional complexes of multiple proteins
to regulate gene activity in eukaryotes (Carrozza et al., 2005a,b;
Roguev and Krogan, 2007; Yang and Seto, 2008; Chen et al., 2012).
HDA6, HDA19, and AtSin3 are considered as homologs of yeast
(Saccharomyces cerevisiae) ScRPD3 deacetylase and ScSin3 pro-
teins. Likewise, HDC1 was found to be an Arabidopsis homolog
of ScRXT3. Interestingly, it was reported that the yeast RPD3L
complex, comprising ScRPD3, ScSin3, and ScRXT3, responded to
heat stress in yeast (Ruiz-Roig et al., 2010). Moreover, the yeast
RPD3µ complex that consists of ScRPD3, ScSNT2, and ScECM5
may mediate an oxidative stress response in yeast (McDaniel and
Strahl, 2013). These reports of yeast RPD3 complexes indicate
that the Arabidopsis HDAC complex involving HDC1, HDA6,
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FIGURE 2 | Epigenetic regulation in the high-salinity stress response. Salt
stress induces the activation of high-salinity stress-responsive genes with
changes in several histone modification marks. Treatment with low
concentrations of salt prior to a second stress (priming) induces reduction of
H3K27me3 in HKT, which controls Na+ partitioning. Priming-induced low

H3K27me3 levels in HKT established long-term memory for rapid response
to a second stress (top). Under salt stress, the expression of genes such as
ABI1 and ABI2, which are associated with the abscisic acid (ABA) signaling
pathway, is fine-tuned by epigenetic regulation mechanisms involving histone
acetylation (bottom).

and HDA19 may function in the plant’s abiotic stress responses.
Indeed, an hdc1 mutant of Arabidopsis induced the expression
of ABA1, ABA3, and RAB18, while overexpression of HDC1
led to repressed expression of ABA1, RAB18, and RD29A under
high-salinity conditions (Perrella et al., 2013). These results
indicated that histone modifier complexes involving HATs and
HDACs might be required to fine-tune the histone acetylation
status for plant adaptation in response to high-salinity stress
(Figure 2, top).

Most reports into the salt stress response in plants have
addressed how changes in histone acetylation states are connected
to changes in gene expression. Indeed, it has often been the case
that histone methylation was surveyed to confirm the interaction
with acetylation in the stress response. However, an interesting
study by Sani et al. (2013) aimed to decipher the epigenetic action
of long-term somatic memory for salinity response. They showed
that Na+-pretreated plants showed more drought tolerance than
non-treated control plants after a Na+ stress-free period. A change
in the H3K27me3 level around the HKT1 gene, which encodes
a high-affinity K(+) transporter, induced by mild salt stress was
found to be a candidate for explaining the physiological effects
caused by the priming treatment (Sani et al., 2013). Many studies
have contributed to the current understanding of the core salt-
tolerance mechanisms in plants (Deinlein et al., 2014 and refer-
ences therein). In plant salinity tolerance, maintaining low Na+

levels is important to mitigate ionic Na+ stress. The sodium trans-
porter HKT1 controls root–shoot Na+ partitioning and plays a
major role in salt tolerance (Apse et al., 1999; Horie et al., 2009).
Sani et al. (2013) identified the shortening and fractionation of
H3K27me3 islands after priming treatment by whole-genome
ChIP-seq, but found that H3K4me2, H3K4me3, and H3K9me2
islands rarely changed. In the chromatin transition, a long-lasting
loss of H3K27me3 was found to occur, implying a release from
gene repression in the island and resulting in a rapid and transient

increase in the HKT1 mRNA level (Figure 2, bottom; Sani et al.,
2013). It is still unclear which genes contribute to enhanced
drought stress tolerance in response to mild salt stress priming;
however, Sani et al. (2013) have reported that the shortening and
fractionation of H3K27me3 in a large number of genes including
HKT1 play an important role in somatic memory caused by salt
response.

In tobacco BY-2 and Arabidopsis T87 culture cells, rapid tran-
sient upregulation of histone H3 Ser-10 phosphorylation occurs,
and H3 phosphoacetylation and histone H4 acetylation follow
immediately. Interestingly, the onset and persistence of these H3
histone modifications differed between cold and high salinity
stress responses (Sokol et al., 2007), suggesting that histone
phosphorylation along with other histone modification might
be controlled selectively by each stress type, although H3 Ser-
10 phosphorylation by itself occurred on a massive scale during
active cell division (Paulson and Taylor, 1982).

HISTONE MODIFICATION IN HEAT STRESS RESPONSE
Histone variant deposition and histone modifications through
acetylation and/or SUMOylation are considered to be involved in
the thermal stress response. SUMO (small ubiquitin-related mod-
ifier) was identified as a reversible post-translational modifier that
plays an important role in the regulation of protein interactions
in eukaryotes. Recent studies have revealed that the occupancy
of each histone variant of a core histone, in particular H2A and
H3, plays important roles in not only gene expression, but also
in the repair of DNA breaks and the assembly of chromosome
centromeres in eukaryotes (Mizuguchi et al., 2004; Lu et al.,
2009; Choi et al., 2013). In Arabidopsis, it has been suggested
that H2A.Z deposition in gene bodies promotes variability in the
levels and patterns of gene expression (Zilberman et al., 2008; Lu
et al., 2009; Coleman-Derr and Zilberman, 2012). In addition
to the regulation of gene expression, a genetic screen revealed
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FIGURE 3 | Epigenetic regulation in the heat stress response.
(A) At high temperatures, H2A.Z is dissociated by the SWI/SNF
chromatin remodeling complex which contains ARP6. This dissociation
causes transcriptional changes in downstream genes. (B) After heat
stress treatment, the expression of the microRNA miR156, which
targets SPL genes, is increased. ago1 mutants of Arabidopsis show
defects in heat acclimation, implying involvement of miR156-mediated

post-transcriptional regulation of SPL genes in heat stress memory.
(C) Heat stress induced activation of the ONSEN retrotransposon.
RdDM suppresses transcriptional and transpositional activation of
ONSEN (top). Heat stress-induced DNA methylation causes aberrant
transcription of genes that are located proximate to RdDM targets
(bottom). Induction of DNA methylation restores normal transcription
(bottom).

that H2A.Z contributed to the thermosensory response via its
nucleosome occupancy. A screen of Arabidopsis mutants deficient
in temperature sensing under ambient temperatures (12–27°C)
identified ARP6 (actin-related protein 6) as a regulator of the
coordinated changes in gene expression in response to ambient
temperature changes (Kumar and Wigge, 2010). ARP6 encodes a
subunit of the SWR1 complex (March-Díaz and Reyes, 2009) that
is necessary for inserting the alternative histone H2A.Z into nucle-
osomes replacing the core histone H2A, and could be involved in
temperature sensing (Deal and Henikoff, 2010; Kumar and Wigge,
2010). In Brachypodium, the impairment of H2A.Z deposition
reduced grain yield under heat stress conditions (Boden et al.,
2013). Together, these studies suggest that H2A.Z deposition plays
an important role in thermal stress responses. However, other
modification such as H3K56 acetylation facilitated by histone
chaperon AtASF1A/B is associated with nucleosome loss and
causes the accumulation of RNA polymerase II (Weng et al.,
2014), and the activation of transcription factors (Sidaway-Lee
et al., 2014) also operate in response to heat stress. Because

histone acetylation was shown to be necessary for H2A.Z depo-
sition in yeast (Watanabe et al., 2013), histone modification
may control the deposition of H2A.Z and possibly other histone
variants in the heat stress response in plants. Further analyses
are needed to uncover what kinds of histone modification and
histone deposition contribute to the heat stress response in plants
(Figure 3A).

In animals, SUMOylation is an important regulatory mech-
anism for the control of transcriptional repression mediated by
histone modifiers such as HDACs (Kirsh et al., 2002; Geiss-
Friedlander and Melchior, 2007). In Arabidopsis, the understand-
ing of SUMOylation under heat stress conditions has progressed
and a variety of chromatin modifier and components such as
H2B, GCN5, HDA19, and the deubiquitinating enzyme UBP26,
which removes ubiquinone bound to H2B, have been found to be
SUMOylated (Miller et al., 2010). Interestingly, heat stress treat-
ment (37°C for 30 min) was reported to decrease the SUMOy-
lation status of H2B and increase the status of the GCN5 HAT
(Miller et al., 2010, 2013).
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There is growing evidence that epigenetic mechanisms con-
tribute to stress memory in plants. Epigenetic memory for stress
responses has been summarized in excellent reviews (Chinnusamy
and Zhu, 2009; Mirouze and Paszkowski, 2011). A recent study
indicated that the microRNA miR156 is involved in memory
of heat stress (Stief et al., 2014). Arabidopsis plants that are
pre-treated with moderate heat stress (priming) were found to
acquire thermotolerance (heat stress memory) to severe heat
stress. Hypomorphic mutants of AGO1, a component required
for microRNA-mediated post-transcriptional gene silencing, were
defective in maintaining the acquired thermotolerance. During
priming heat stress, the amount of miR156 increased, while
the SPL (squamosal-promoter binding-like) transcription factor
genes, which are master regulators of developmental transitions
and targeted by miR156, were downregulated. An acquired adap-
tation to recurring heat stress was reported to be achieved by
miR156-mediated post-transcriptional regulation of SPL genes
(Stief et al., 2014; Figure 3B).

HISTONE MODIFICATION IN COLD STRESS RESPONSE
In Arabidopsis, vernalization, which is the best characterized
pathway involved in epigenetic regulation induced by environ-
mental stresses, can be achieved by long-term exposure to cold
temperatures (Song et al., 2012a). Short term exposure to non-
freezing low temperatures enhances freezing tolerance, and this
process is known as cold acclimation. Both of these processes
are low temperature responses; however, they are mediated by
independent pathways (Bond et al., 2011).

Low temperature treatment induces genome-wide transcrip-
tional changes. In Arabidopsis, it has been estimated that the
transcription of 3 to 20% of the genes change in response to
cold stress (Chinnusamy et al., 2007; Matsui et al., 2008). Some
epigenetic regulators are transcriptionally upregulated under cold
stress conditions, suggesting that their upregulation may cause
epigenetic and transcriptional changes of the target genes. In
Arabidopsis, the expression of HDA6 was induced by long-term
low temperature treatments (Figure 4), and a mutation in this
gene resulted in sensitivity to freezing stress (To et al., 2011b).
In maize, the expression of HDACs was upregulated during cold
acclimation, and global deacetylation at H3 and H4 was observed
(Hu et al., 2011). Moreover, during cold stress treatment, het-
erochromatic tandem repeats were selectively unsilenced, then
H3K9ac was accumulated and DNA methylation and H3K9me2
were reduced in the unsilenced regions (Hu et al., 2012; Figure 4).

Local epigenetic changes in cold-responsive genes were also
induced. In Arabidopsis, H3K27me3 on the cold-responsive genes,
COR15A, and AtGolS3, decreased gradually in both a histone
occupancy-dependent and -independent manner during cold
stress treatment (Kwon et al., 2009). In maize, histone acetylation
in cold-responsive genes such as ZmDREB1 and ZmCOR413
increased (Hu et al., 2011). Histone acetylation of OsDREB1b was
induced by cold stress in rice (Roy et al., 2014). Thus, epigenetic
changes induced by cold stress are likely to contribute to the
acquirement of stress tolerance through changes in the expression
of cold-responsive genes (Figure 4).

Several epigenetic regulators that are involved in the cold
stress response were characterized by forward and reverse genetic

FIGURE 4 | Epigenetic regulation in the cold stress response.
Expression of the HDA6 gene is induced by long-term cold treatment.
Under cold stress, the histone acetylation level in cold-responsive genes
(e.g., COR15A and AtGolS3) is increased by Ada2b and GCN5. In
heterochromatic regions, H3K9me2 is removed and converted to
acetylation mark. DNA methylation also decreased.

studies. ADA2b, a transcriptional activator of HATs (Stockinger
et al., 2001), was reported to interact with GCN5, an Arabidop-
sis HAT, and enhance the HAT activity of GCN5. In ada2b
and gcn5 mutants of Arabidopsis, the induction of COR (cold-
regulated) transcripts by low temperature was delayed, and the
final mRNA expression levels were reduced. The ada2b mutants
showed increased freezing tolerance, indicating that ADA2b may
function in the repression of freezing tolerance through histone
acetylation (Vlachonasios et al., 2003).

Under cold stress, HOS1 (high expression of osmotically
responsive gene 1), a RING finger E3 ligase, is a negative regulator
of cold-responsive genes such as CBFs/DREB1s and COR/RD/
KIN, and the ICE1 transcription factor (Dong et al., 2006).
A recent study showed that HOS1 regulated chromatin status in
the FLC locus by dissociating HDA6 from FLC chromatin (Jung
et al., 2013).

The expression of HOS15, a WD40-repeat protein, was found
to be induced by abiotic stresses including cold stress (Zhu et al.,
2008). In a hos15 mutant of Arabidopsis, transcripts of stress-
regulated genes, such as RD29A, were reported to accumulate.
Moreover, hos15 mutants showed hypersensitivity to freezing
stress. HOS15 shares sequence similarity with human TBL1
(transducin-beta like protein 1), which is a component of the
SMRT/N-CoR repressor complex that associates with HDACs.
It has been reported that HOS15 is involved in cold tolerance
through the regulation of deacetylation at histone H4 (Zhu et al.,
2008).

Compared with vernalization, the understanding of epigenetic
regulation underlying the cold acclimation mechanism is limited.
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Further research is needed to increase the knowledge about this
process.

REGULATION MECHANISM OF DNA METHYLATION
IN PLANTS
DNA methylation is another conserved epigenetic modification
in eukaryotic organisms. Although the cytosines in CG sites are
methylated in differentiated mammalian cells, cytosines in all
contexts (CG, CHG, and CHH, where H indicates A, T, or C) can
be methylated in plants. While DNA methylation is considered
to be a recessive mark, recent studies have revealed that CG
methylation can occur within the coding regions of transcribed
genes (gene body methylation). Non-CG methylation is found
exclusively in heterochromatin. DNA methylation status is reg-
ulated by de novo methylation, maintenance methylation, and
active demethylation.

In plants, de novo DNA methylation was shown to be induced
by a 24-nt short interfering (si) RNA-mediated pathway called
RNA-directed DNA methylation (RdDM; Matzke and Mosher,
2014). In RdDM, the plant-specific RNA polymerases Pol IV and
Pol V have important functions. These polymerases are evolution-
arily related to Pol II but have different roles in RdDM, namely
siRNA biogenesis (Pol IV) and recruitment of the silencing com-
plex (Pol V). In brief, 24-nt siRNA is generated from Pol IV tran-
scripts through processes mediated by RNA interference (RNAi)
machineries such as RDR2 (RNA-dependent RNA polymerase 2)
and DCL3 (Dicer-like 3), Then, the siRNA is incorporated into
AGO4 (Argonaute 4). Chromatin association of Pol IV partially
depends on SHH1 (sawadee homeodomain homolog 1), which
can recognize unmethylated K4 and methylated K9 of histone H3
(Law et al., 2013), while Pol V transcribe genes from target loci
and the siRNA-AGO4 complex is recruited to the transcript in a
sequence-dependent manner. For transcription by Pol V, the so-
called DDR complex, which is composed of DRD1 (defective in
RNA-directed DNA methylation), DMS3 (defective in meristem
silencing 3), and RDM1 (RNA-directed DNA methylation 1), is
required (Kanno et al., 2004, 2008; Gao et al., 2010; Law et al.,
2010). Finally, Dnmt3 class de novo methylase DRM2 (domains
rearranged methylase 2) is recruited to target loci where it adds a
methyl group to cytosines (Cao and Jacobsen, 2002). Several other
effectors required for RdDM are discussed in a recent review by
Matzke and Mosher (2014).

Induced DNA methylation is retained by maintenance methy-
lases. CG methylation is maintained by conserved Dnmt1
class methylase MET1 (methyltransferase 1), while the plant-
specific methylase CMT3 (chromomethylase 3) is required for
maintenance of non-CG methylation, especially CHG methy-
lation. Essential to this process is histone H3K9 dimethylation
(H3K9me2), which is mediated by KYP/SUVH4, and CMT3 and
KYP form self-reinforcement mechanism between DNA methy-
lation and histone methylation (Jackson et al., 2002; Johnson
et al., 2007). Maintenance of CHH methylation is regulated by
both RdDM and the recently characterized CMT2. In addition
to these DNA methyltransferases, chromatin remodeling factor
DDM1 (decrease in DNA methylation 1) is also required (Vongs
et al., 1993; Jeddeloh et al., 1999; Zemach et al., 2013). DDM1
is necessary to recruit maintenance methylases, such as CMT2,

CMT3, and MET1 to linker histone H1 binding regions (Zemach
et al., 2013).

DNA methylation is reversible. Active DNA demethylation
was found to be achieved through a base excision–repair path-
way (Zhu, 2009). The Arabidopsis genome encodes four DNA
demethylase genes. DME (demeter) was shown to be preferen-
tially expressed in central cells of female gametophytes, where it
induces maternal allele-specific DNA demethylation of imprinted
genes such as MEA (medea) and FWA (flowering Wageningen;
Choi et al., 2002; Kinoshita et al., 2004). Recent studies revealed
that DME was also expressed in the vegetative cells of pollen, but
not in sperm cells, and that it played important roles in the estab-
lishment of epigenetic status in gametophytes (Schoft et al., 2011;
Ibarra et al., 2012). Other DNA demethylases, ROS1 (repressor
of silencing 1), DML2 (demeter-like 2), and DML3, are expressed
in a wide range of organs (Penterman et al., 2007). Forward and
reverse genetic screening revealed other factors that were required
for active demethylation; for example, ROS3, an RNA binding
protein, ZDP (zinc finger DNA 3′ phosphoesterase), a DNA 3′

phosphatase, and a HAT IDM1 (increase in DNA methylation 1)
that can bind with methylated DNA and unmethylated histone
H3K4 (Zheng et al., 2009; Martínez-Macías et al., 2012; Qian
et al., 2012).

Although interaction between DNA methylation and his-
tone modification, especially between non-CG methylation and
H3K9me2, has been implicated, the current understanding of
DNA methylation regulation in response to stress is limited
compared to the better understanding of histone regulation.
Further research will help clarify the underlying mechanisms
that connect histone modification, DNA methylation, and stress
responses.

DNA METHYLATION IN ABIOTIC STRESS RESPONSE
The involvement of DNA methylation in the stress response is
still poorly understood; however, recent studies have implicated
the involvement of this epigenetic modification in the stress
response. Global changes in DNA methylation, including hyper-
and hypo-methylation, in response to abiotic stress have been
reported in several plant species (Boyko et al., 2010; Bilichak
et al., 2012; Karan et al., 2012; Wang et al., 2014) and alter-
ations of DNA methylation in some stress-responsive genes have
also been reported. Oxidative stress induced demethylation and
transcriptional activation of NtGPDL (glycerophosphodiesterase-
like protein) in Nicotiana tabacum (Choi and Sano, 2007). In
soybean, salinity stress treatment induced the reduction of DNA
methylation and transcriptional activation in genes that encoded
salt stress-responsive transcription factors (Song et al., 2012b).
Induction of DNA methylation by abiotic stress treatments has
also been reported. In a low relative humidity stress condition,
the numbers of stomata on the leaf epidermis were found to
decrease in Arabidopsis. DNA methylation and transcriptional
suppression in two positive regulator genes for stomatal devel-
opment, SPCH (speechless) and FAMA, were reported to be
induced by low relative humidity stress in Arabidopsis (Tricker
et al., 2012). Thus, DNA methylation may play an impor-
tant role in the transcriptional regulation of stress-responsive
genes.
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The system that regulates DNA methylation also functions
as a genomic defense mechanism against abiotic stresses. The
siRNA-mediated RdDM pathway restricts transcriptional activity
and retrotransposition of the copia-type retrotransposon ONSEN
triggered by heat stress (Ito et al., 2011; Figure 3C, top). ONSEN
is transcriptionally reactivated by heat treatment, and during the
recovery period after heat treatment the number of transcripts
was found to diminish gradually. Although ONSEN is reactivated
by heat stress, transposition has not been observed in wild-type
plants. Interestingly, transcriptional reactivation was enhanced
and transposition occurred in Arabidopsis mutants of RdDM
components such as nrpd1 (largest subunit of Pol IV), nrpd2
(common second largest subunit of Pol IV and Pol V), and rdr2
(Ito et al., 2011), indicating that the RdDM pathway restricts
transcriptional reactivation and retrotransposition of ONSEN
induced by heat treatment (Figure 3C, top).

RNA-directed DNA methylation is required for basal tolerance
against heat stress (Popova et al., 2013). The nrpd2 mutants
showed hypersensitivity against heat stress and aberrant read-
through transcription induced by heat treatment was diminished
during the recovery process after heat stress in wild-type plants,
but not in nrpd2 mutants (Popova et al., 2013). Such misregu-
lated genes harbor RdDM target sequences, such as transposon
remnants, in proximal regions. Heat treatment was found to
remove CHH methylation at the transposon remnants in wild-
type plants and to induce aberrant transcription of RdDM tar-
gets and their nearby genes (Popova et al., 2013). Induction of
CHH demethylation on RdDM targets during the recovery period
diminished such aberrant transcription in wild-type plants; how-
ever, a hypomethylated status continued and misregulation of
gene expression was not restored in nrpd2 mutants. These results
indicated that the altered heat responsiveness in nrpd2 mutants
may be caused by defective epigenetic regulation of nearby RdDM
targets (Popova et al., 2013; Figure 3C,bottom).

CONCLUSIONS AND PERSPECTIVES
It is currently understood that the regulation of abiotic stress-
responsive genes is related to chromatin alterations. This new
understanding has introduced new research aspects to the study
of plant abiotic stress responses. It has been shown that dynamic
epigenetic changes occur in response to abiotic stresses, and the
epigenetic response and memory of gene activation in response to
abiotic stresses have become major topics of interest. However, the
entire correlation network between abiotic stress responses and
epigenetic information, such as the stress-responsive epigenetic
modifiers, the targeted stress-responsive genes, and the specific
histone modification sites, remain unclear. Investigating the direct
effects of histone modification in plants is difficult, because plant
genomes harbor multiple copies of histone genes. ChIP assays
have proven valuable in helping to identify the histone modifi-
cations responsible for epigenetic regulation; however, the results
obtained by these assays provide only direct/indirect candidate
residues that may be targets for modification. Identifying the
functions of histone modification in plant epigenetic studies
directly is still a challenge. Generation of mutants of the histone
modifiers and of mutated amino acid residues in the histone
N-tail by CRISPR/Cas system (Cong et al., 2013) will be an

important contribution to these studies, because they will help
to determine the superiority between transcriptional changes
and epigenetic alterations. Moreover, there is a possibility that
tissue-specific alterations are necessary for plants to acquire stress
tolerance (Baxter et al., 2010); therefore, because it is difficult
to detect tissue-specific alterations of histone modifications by
ChIP experiments with the current resolution, the results of
ChIP experiments should be evaluated cautiously. Reliable and
higher resolution chromatin studies are undoubtedly required
to reveal key epigenetic information involved in abiotic stress
responses. In this review, we have shown that it is essential to
establish experimental materials and efficient technologies for
future intensive and acute analyses in plant epigenetics. When the
master regulators of epigenetic regulation and novel epigenetic
regulation mechanisms in the stress response are discovered,
in-depth studies on plant abiotic stress responses will progress
rapidly.
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