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Peroxisomes are ubiquitous organelles
with a notable oxidative metabolism. In
plants, these subcellular compartments
have been shown to be involved in the
metabolism of reactive oxygen and nitro-
gen species (ROS and RNS), whose com-
ponents, hydrogen peroxide and nitric
oxide (NO), are important molecules
involved in signaling processes. The pres-
ence of new elements in plant peroxisomes
such as glutathione reductase (GR), sulfite
oxidase (SO), glutathione (GSH), and S-
nitrosoglutathione (GSNO) indicates the
involvement of these organelles in the sul-
fur metabolism. This could suggest the
participation of a new family of molecules
designated as reactive sulfur species (RSS)
which will possibly provide new functions
for peroxisomes.

CRITICAL VIEW
Peroxisomes are remarkable subcellu-
lar compartments given their simple
morphology (granular/fibrillar matrix
bounded by a single membrane) which
does not reflect the complexity of their
enzymatic composition (Hayashi et al.,
2000; Baker and Graham, 2002; del Río
et al., 2006). In plant cells, peroxisomes
are involved in the photorespiration cycle,
fatty acid β-oxidation, the glyoxylate cycle,
and the metabolism of ureides (Corpas
et al., 1997; Baker and Graham, 2002; del
Río et al., 2006; Hu et al., 2012), thus
indicating that these organelles play a
role in key physiological processes such
as seed germination, plant development,
fruit ripening, and senescence. Plant
peroxisomes have been shown to be a

source of ROS including molecules such
as superoxide radicals (O·−

2 ), hydrogen
peroxide (H2O2), and RNS (del Río et al.,
2006; del Río, 2011; Corpas et al., 2013;
Corpas and Barroso, 2014b). RNS include
NO and related molecules such as per-
oxynitrite (ONOO−) and GSNO which
are characterized by a broad spectrum of
physiological/pathological activities. Both
these molecular families (ROS and RNS)
include radical molecules containing an
unpaired electron as well as non-radical
molecules and can also have dual effects
depending on their cellular concentration.
Thus, H2O2 and NO at low concentrations
can function as signal molecules in the cell
or may cause damage to cell components
when overproduced as a consequence of
adverse conditions (Valderrama et al.,
2007; Chaki et al., 2011; Signorelli et al.,
2013).

Sulfur (S) is an essential mineral for
plant growth and development (Leustek
and Saito, 1999; Rausch and Wachter,
2005; Hawkesford and De Kok, 2006).
It is present in thiamin (B1) and pan-
tothenic acid (B5) vitamins, amino acids
(cysteine and methionine), biotin and
molybdenum cofactors, and prosthetic
groups (Leustek and Saito, 1999) and
also in secondary sulfur compounds
(polysulfides, glucosinolates, and phy-
tochelatins). In addition, other organic
sulfur compounds, such as thiols, GSH,
GSNO, and sulfolipids, play an important
role in physiological processes and plant
stress conditions (Brychkova et al., 2007;
Münchberg et al., 2007). In animal cells,
the gas hydrogen sulfide (H2S) has been

shown to be generated from L-cysteine
by the pyridoxal-5′-phosphate-dependent
enzyme. Thus, endogenous H2S can act as
a neuromodulator in rat brain (Abe and
Kimura, 1996). In higher plants, recent
evidence indicates that H2S is actively
involved in the regulation of ethylene-
induced stomatal closure and also interacts
with H2O2 to regulate the plasma mem-
brane Na+/H+ antiporter system under
salinity stress (Hou et al., 2013; Li et al.,
2014). The term RSS has been proposed in
order to designate a group of sulfur-related
molecules that are formed in vivo under
oxidative stress conditions in animal sys-
tems (Giles et al., 2001, 2002; Jacob et al.,
2004). These molecules include thiyl radi-
cals (RS·), disulfide-S-oxides [RS(O)2SR]
and sulfenic acids (RSOH). Thus, high
cellular GSH concentrations in an oxida-
tive environment and the decomposition
of S-nitrosothiols generate disulfide-S-
oxides (Tao and English, 2004). These
mechanisms can modulate the function of
sulfur proteins throughout the redox sta-
tus of biological thiols (Jacob and Anwar,
2008). Accordingly, disulfide formation
is an important cysteine redox reaction
in many proteins that affects its func-
tion, with thioredoxins and peroxiredoxins
being good examples.

In plant peroxisomes, the presence
of important sulfur compounds such
as GSH (non-enzymatic antioxidants)
(Jiménez et al., 1997; Müller et al., 2004)
and GSNO (transport and storage vehi-
cle for NO) has been demonstrated
(Barroso et al., 2013). Furthermore,
the presence of enzymes such as GR
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FIGURE 1 | Signaling cross-talk between NO, ROS, and RSS. Model of the interaction amongst
the different ROS, RNS, and sulfur metabolism into plant peroxisomes. ASC, ascorbate, reduced
form; DHA, ascorbate, oxidized form (dehydroascorbate); GSH, glutathione, reduced form; GSNOR,
nitrosoglutathione reductase; GSSG, glutathione, oxidized form; NO, nitric oxide; NOS,
L-arginine-dependent nitric oxide synthase; MDAR, monodehydroascorbate reductase; ONOO−,
peroxinitrite; SO, sulfite oxidase; XDH, xanthine dehydrogenase; XOD, xanthine oxidase; RSS,
reactive sulfur species; RSH, thiol; RSSR·−, disulfide radical; RS·, thyl radical; ROSH, sulfenic acid;
SO2−

4 , sulfate.

(Jiménez et al., 1997; Romero-Puertas
et al., 2006), S-nitrosoglutathione reduc-
tase (GSNOR) (Reumann et al., 2007;
Barroso et al., 2013) and SO (Eilers et al.,
2001; Nakamura et al., 2002; Nowak et al.,
2004; Hänsch and Mendel, 2005) involved
in the sulfur metabolism has also been
reported. These new insights lead us to
suggest that peroxisomes may play a role in
the RSS metabolism, as has been demon-
strated for ROS and RNS. Figure 1 shows
the potential interactions among the dif-
ferent ROS, RNS, and sulfur-containing
compounds in peroxisomes. NO is gener-
ated by L-arginine-dependent nitric oxide
synthase (NOS) activity (Corpas and
Barroso, 2014a) which can react with
superoxide radicals generated by xanthine
oxidase to form peroxynitrite (ONOO−).
This RNS is a highly oxidant compound
capable of catalyzing the conversion of
xanthine dehydrogenase to xanthine oxi-
dase (Corpas et al., 2008) or inducing
protein nitration (Radi, 2013). NO can
also react with GSH to form GSNO which

can be decomposed by GSNOR activity
through the generation of GSSG (oxidized
form) and NH3. GSSG is reduced by GR as
a component of the ascorbate-glutathione
cycle. H2O2, which is mainly generated by
flavin-oxidases, is decomposed either by
catalase or ascorbate peroxidase (APX). SO
catalyzes the conversion of sulfite to sulfate
with the concomitant generation of H2O2

(Hänsch et al., 2006). It has been reported
that low concentrations of sulfite inhibit
catalase activity (Veljović-Jovanović et al.,
1998), which could therefore be a means
of regulating both enzymes.

In this context, the interactions of ROS,
RNS and possibly RSS components in
plant peroxisomes open up new chal-
lenges and a new area of research to
determine the biochemical interactions
and potential functions of these reactive
species of oxygen, nitrogen and sulfur
in peroxisomes, some of which play a
very important role as signaling molecules
in physiological and phyto-pathological
processes (Yamasaki, 2005).
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