
ORIGINAL RESEARCH
published: 10 March 2015

doi: 10.3389/fpls.2015.00143

Frontiers in Plant Science | www.frontiersin.org 1 March 2015 | Volume 6 | Article 143

Edited by:

Shawn Kaeppler,

University of Wisconsin-Madison, USA

Reviewed by:

Christiane Gebhardt,

Max Planck Institute for Plant

Breeding Research, Germany

Paul Carl Bethke,

United States Department of

Agriculture and University of

Wisconsin, USA

*Correspondence:

Margaret A. Carpenter,

The New Zealand Institute for Plant

and Food Research Ltd.,

Private Bag 4704, Christchurch 8140,

New Zealand

margaret.carpenter@

plantandfood.co.nz

Specialty section:

This article was submitted to Plant

Genetics and Genomics, a section of

the journal Frontiers in Plant Science

Received: 12 January 2015

Accepted: 23 February 2015

Published: 10 March 2015

Citation:

Carpenter MA, Joyce NI, Genet RA,

Cooper RD, Murray SR, Noble AD,

Butler RC and Timmerman-Vaughan

GM (2015) Starch phosphorylation in

potato tubers is influenced by allelic

variation in the genes encoding glucan

water dikinase, starch branching

enzymes I and II, and starch synthase

III. Front. Plant Sci. 6:143.

doi: 10.3389/fpls.2015.00143

Starch phosphorylation in potato
tubers is influenced by allelic
variation in the genes encoding
glucan water dikinase, starch
branching enzymes I and II, and
starch synthase III
Margaret A. Carpenter 1*, Nigel I. Joyce 1, Russell A. Genet 1, Rebecca D. Cooper 2,

Sarah R. Murray 1, Alasdair D. Noble 3, Ruth C. Butler 1 and Gail M. Timmerman-Vaughan 1

1 The New Zealand Institute for Plant and Food Research Ltd., Lincoln, New Zealand, 2 The New Zealand Institute for Plant

and Food Research Ltd., Auckland, New Zealand, 3 AgResearch, Lincoln, New Zealand

Starch phosphorylation is an important aspect of plant metabolism due to its

role in starch degradation. Moreover, the degree of phosphorylation of starch

determines its physicochemical properties and is therefore relevant for industrial uses

of starch. Currently, starch is chemically phosphorylated to increase viscosity and

paste stability. Potato cultivars with elevated starch phosphorylation would make this

process unnecessary, thereby bestowing economic and environmental benefits. Starch

phosphorylation is a complex trait which has been previously shown by antisense

gene repression to be influenced by a number of genes including those involved in

starch synthesis and degradation. We have used an association mapping approach

to discover genetic markers associated with the degree of starch phosphorylation.

A diverse collection of 193 potato lines was grown in replicated field trials, and the

levels of starch phosphorylation at the C6 and C3 positions of the glucosyl residues

were determined by mass spectrometry of hydrolyzed starch from tubers. In addition,

the potato lines were genotyped by amplicon sequencing and microsatellite analysis,

focusing on candidate genes known to be involved in starch synthesis. As potato

is an autotetraploid, genotyping included determination of allele dosage. Significant

associations (p < 0.001) were found with SNPs in the glucan water dikinase (GWD),

starch branching enzyme I (SBEI) and the starch synthase III (SSIII) genes, and with

a SSR allele in the SBEII gene. SNPs in the GWD gene were associated with C6

phosphorylation, whereas polymorphisms in the SBEI and SBEII genes were associated

with both C6 and C3 phosphorylation and the SNP in the SSIII gene was associated with

C3 phosphorylation. These allelic variants have potential as genetic markers for starch

phosphorylation in potato.
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Introduction

Starch is the major storage carbohydrate in plants and comprises
most of the dry matter in potato tubers. Starch represents the
largest source of carbohydrates in human food and has a range
of industrial uses. Starch is made up of chains of α-D-glucose
units which can be unbranched (amylose) or branched (amy-
lopectin). The native starches of almost all plants are phospho-
rylated, the extent of which varies between plant species, and is
greater in potato starch than in cereal starches. The degree of
phosphorylation of starch determines its physicochemical prop-
erties and is therefore relevant for industrial uses of starch, which
include the manufacturing of paper, adhesives, textiles, and foods
(Kraak, 1992). Phosphorylation increases the hydration capacity
of starch pastes, thereby influencing peak viscosity, gel-forming
capacity, swelling power and paste stability (Vikso-Nielsen et al.,
2001; Jobling, 2004). Starch phosphorylation is also an important
aspect of plant metabolism due to its role in starch degrada-
tion (Lorberth et al., 1998). Phosphorylation occurs only in the
amylopectin fraction of starch. The glucosyl residues that com-
prise amylopectin can be phosphorylated at either the C6 or C3
position (Tabata and Hizukuri, 1971). In potato tuber starch, C6
phosphorylation predominates, making up 70–80% of the phos-
phorylation, while C3 makes up 20–30% (Bay-Smidt et al., 1994;
Haebel et al., 2008; Carpenter et al., 2012).

A number of genes have been shown by genetic modification
experiments to have a role in starch phosphorylation in potato.
The GWD (or R1) gene encodes the protein glucan/water diki-
nase (GWD) which catalyzes the addition of phosphate groups
to the C6 position of the glycosyl residues (Vikso-Nielsen et al.,
2001). Down-regulation of the GWD gene resulted in decreased
C6 phosphorylation of potato starch (Lorberth et al., 1998;
Vikso-Nielsen et al., 2001; Wickramasinghe et al., 2009). Potato
also has a PWD gene which encodes phosphoglucan/water dik-
inase (PWD) (Orzechowski et al., 2012). Down-regulation of
PWD reduced C3 phosphorylation in Arabidopsis (Ritte et al.,
2006) showing that PWD adds phosphate at the C3 position.
C3 phosphorylation is dependent on prior C6 phosphorylation
by GWD (Baunsgaard et al., 2005). Starch phosphorylation is
also influenced by the activity of the genes encoding starch
branching enzymes. Antisense inhibition of the genes encoding
the starch branching enzymes SBEI and SBEII, either singly or
together, resulted in an increase in the phosphorus content of
the starch (Safford et al., 1998; Schwall et al., 2000) and simi-
larly an increase in the C6 phosphorylation (Wischmann et al.,
2005; Wickramasinghe et al., 2009). This was accompanied by
a decrease in the amylopectin content and an increase in the
length of amylopectin branches (Schwall et al., 2000; Wischmann
et al., 2005; Wickramasinghe et al., 2009). There is also evidence
that the starch synthase genes may influence starch phosphoryla-
tion in potato. Suppression of the granule-bound starch synthase
gene (GBSS) caused a small increase in C6 phosphorylation and
an increase in amylopectin content (Kozlov et al., 2007), while
reduction in the activity of starch synthase II (SSII) caused a
40% reduction in C6 phosphorylation (Kossmann et al., 1999).
Antisense suppression of the starch synthase I gene (SSI) had
no significant effect on starch phosphorylation (Kossmann et al.,

1999). Additionally, reduction in the activity of starch synthases
II and/or III (SSII, SSIII) resulted in changes to gelatinization
behavior and amylopectin structure of the starch, characteristics
which are associated with starch phosphorylation (Edwards et al.,
1999). In this case the phosphorylation was not determined. Sev-
eral of these genes have also been associated with the degree of
starch phosphorylation in potato through candidate gene map-
ping approaches, specifically the GWD, SSII, and SSIII genes
(Uitdewilligen, 2012; Werij et al., 2012).

Association mapping is an increasingly popular approach for
identifying loci linked to traits of commercial interest in plants
(D’hoop et al., 2008). This approach has been used in potatoes
for a variety of traits such as cold-induced sweetening (Baldwin
et al., 2011), disease resistance (Simko et al., 2004; Pajerowska-
Mukhtar et al., 2009), tuber bruising and enzymatic discoloration
(Urbany et al., 2011) and other tuber characteristics (D’hoop et al.,
2008; Li et al., 2008; Schreiber et al., 2014). Association mapping
employs collections of existing germplasm, thus avoiding the need
to select and cross parents, and propagate the offspring. If a suit-
ably diverse collection is used, the gene-trait associations which
are identified will be applicable over a broad range of cultivars,
and may identify desirable alleles which are not present in cur-
rent breeding programs. Association mapping can also confer a
higher resolution than QTLmapping, depending on the extent of
linkage disequilibrium, (Flint-Garcia et al., 2003; Gaut and Long,
2003) such that it works well with a candidate gene approach,
where genotyping focuses on genes that are known or suspected
to be associated with the trait of interest. Association mapping
can be confounded by population structure or kinship within
the collection, generating false positive results (Flint-Garcia et al.,
2003). Therefore, the relatedness of individuals within the col-
lection needs to be determined and the population structure and
kinship taken into account (Yu et al., 2006; Stich andMelchinger,
2009), both of which add complexity to the analysis.

The potato (Solanum tuberosum) is a highly heterozygous,
autotetraploid, outcrossing species which is propagated clonally.
The breeding history of the cultivated potato has created a sit-
uation in which many current cultivars from around the world
are related by a complex network of relationships. Genes from
wild species (S. vernei, S. demissum) have been introduced during
the introgression of disease resistance genes to try to overcome
disease problems in commercial cultivars (Pajerowska-Mukhtar
et al., 2009). Traditional lines of uncertain origin also exist.
Autotetraploidy adds complexity to genetic analysis as many
more combinations of alleles are possible than in a diploid. For
example, a biallelic locus can have up to five different geno-
types, two homozygous and three heterozygous, depending on
the number of copies of each allele. The number of copies of each
allele can affect the phenotype in an additive or dominant fash-
ion, or somewhere between (Gallais, 2003). Therefore, the allele
dosage is an important aspect of the data and should, if possible,
be included.

Here, we report an association mapping analysis of starch
phosphorylation in potato in which mass spectrometry was used
to determine the C6 and C3 phosphorylation of tuber starch from
two field trials, and genotyping was focused on eight candidate
genes. The association analysis was performed using a mixed
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model which included population structure and kinship esti-
mates derived from molecular markers. This study differs from
previous reports which identified genetic markers associated with
potato starch phosphorylation (Uitdewilligen, 2012; Werij et al.,
2012) in that we have measured both C3 and C6 phosphoryla-
tion separately and have chosen a different selection of candidate
genes. Our results validate some of the previous reports and also
provide new insights.

Materials and Methods

Plant Material
A diverse collection of 193 tetraploid potato lines (mainly
Solanum tuberosum but including lines with introgression from
other species) was grown in field trials at Lincoln, Canterbury,
New Zealand, during two consecutive seasons (2011 and 2012).
Tubers were planted in October and harvested in March, and the
plants were irrigated as required. Climate data for the growing
seasons were obtained from theNational Climate Databasemain-
tened by NIWA (National Institute of Water and Atmospheric
Research), New Zealand. The lines and their origins are listed in
Supplementary Data 1.

Two replicate plots of each of 192 test lines were planted as
well as 48 plots of a control line (“Red Rascal”). Each plot con-
sisted of six plants, planted in two adjacent rows. The 432 plots
were planted in a 72×6 plot array, with a full replicate (including
24 controls) in each of two adjacent blocks. The position of test
lines within the layout was derived from a resolvable block design
with blocks of eight, created with CycDesign (Cycsoftware, 2009).
Control plots were added to this base design, such that each col-
umn of plots (six columns) contained eight control plots, and
each set of 9rows of plots (eight sets; 72 rows in all) contained
six controls, with a maximum of one control per row.

At maturity, a sample of six typical tubers from the two plants
in the middle of the plot was harvested for phenotyping. Cylin-
drical samples were taken through the middle of each tuber
using an 11mm cork borer. The six cores from each plot were
pooled and freeze dried. Samples were processed in plot order,
in batches of 36 for starch extraction and 72 for phosphorylation
measurement.

Starch Phosphorylation Assays
Starch was extracted from freeze-dried tuber core samples. Starch
samples (1 mg) were hydrolyzed with trifluoroacetic acid and
prepared as described previously (Carpenter et al., 2012). The
glucose, glucose 6-phosphate and glucose 3-phosphate content
of the hydrolysates were determined by mass spectrometry using
external standards for quantitation (Carpenter et al., 2012). The
glucose content gave an accurate estimation of the amount of
starch hydrolyzed, and was therefore used to convert the glucose
6-phosphate and glucose 3-phosphate measurements to C6 and
C3 phosphorylation in nmol/mg starch.

Genotyping
Genomic DNA was isolated from young leaf tissue using a cetyl
trimethylammonium bromide (CTAB) method (Timmerman
et al., 1993). The potato lines were genotyped using 21 SSR

markers for determination of population structure. Markers were
developed for the eight candidate genes using a range of methods
including amplicon sequencing, SSR analysis, and by amplifica-
tion of a region containing an insertion/deletion polymorphism.

SSR markers for population structure were amplified by PCR
using previously published primers (Milbourne et al., 1998; Fein-
gold et al., 2005) as shown in Supplementary Data 2. These
were selected so that there was at least one SSR marker per
chromosome, and in most cases two per chromosome. The
forward primer of each pair was modified by the addition
of a 20 bp tail with the sequence gacgttgtaaaacgacggcc at the
5′ end, enabling the addition during PCR of a fluorescently
labeled “tail primer” (gacgttgtaaaacgacg) (Schuelke, 2000) labeled
with FAM (6-carboxy-fluorescine), HEX (hexachloro-6-carboxy-
fluorescine) or NED (Applied Biosystems, Carlsbad, California,
USA). A short 4 bp “pigtail” gttt was added to the 5′ end of the
reverse primer to reduce the appearance of stutter bands (Brown-
stein et al., 1996). Optimal annealing temperatures and MgCl2
concentrations for the PCR reactions were determined empiri-
cally as the reported conditions did not always produce satisfac-
tory results. The 15µl PCRs contained 75mM TrisHCl pH8.8,
20mM (NH4)2SO4, 0.01%Tween R© 20, 0.2mM each dNTP, 1µM
each primer, 0.02µM tail primer, 0.75U Taq (Thermo Fisher
Scientific, Waltham, MA, USA), approximately 10 ng genomic
DNA and 2.5–4.0mM MgCl2 as shown in Supplementary Data
2. The PCR conditions were one cycle of 95◦C for 1min, 40
cycles of 95◦C for 30 s, annealing at the temperature shown in
Supplementary Data 2 for 30s, 72◦C for 1min, then one cycle
of 72◦C for 7min. PCR products from two to three SSRs were
combined in groups such that both amplicon sizes and fluores-
cent labels differed within the group, and separated by capilliary
electrophoresis using an ABI PRISM 3130xl Genetic Analyzer
(Applied Biosystems, Carlsbad, California, USA) with the GeneS-
can 400HD ROX size standard (Applied Biosystems, Carlsbad,
California, USA).

Four SSR markers in the candidate genes were also character-
ized: the STGBSS and STWAX-2 primers (Ghislain et al., 2004)
are described in Supplementary Data 2 and the novel SBEII and
GWD SSR primers are shown in Supplementary Data 3. PCR
of the candidate gene SSRs was performed as described above,
except that the PCR for the GWD and SBEII SSRs used 2.5mM
MgCl2 and annealing at 58◦C.

The SSR data for candidate genes and for population structure
were analyzed using GeneMarker v1.85 (SoftGenetics, State Col-
lege Pennsylvania, USA) to identify alleles by product size, while
allele copy number was estimated by peak area. When four alleles
were present, these were scored as a single copy of each. When
a single allele was present, this was scored as four copies of that
allele. When two alleles were present, this was scored as 2:2, 3:1
or 2:1 depending on the relative peak areas (a ratio of 2:1 inferred
that one allele was null). Where three alleles were present, the
largest peak was scored as two copies and the other two as a sin-
gle copy, except where the three peaks were all of a similar area
in which case a null allele was assumed and the three alleles were
scored as one copy each.

The eight candidate genes were resequenced to provide
sequence data for optimal design of primers to be used for
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genotyping. The candidate genes were amplified as fragments
of 4–15 kb from genomic DNA from four potato lines (4164A3,
“Brodick,” V201, Vtn62-33-3). The PCR was performed using
the Expand long template PCR system (Roche, Basel, Switzer-
land) according to the manufacturers’ instructions, and using
the primers shown in Supplementary Data 3. One of the genes,
SBEII, was amplified in two pieces as it was not possible to
amplify the complete 20 kb gene. The products were normal-
ized to ensure equal representation of all genes, then frag-
mented and used to construct four bar-coded libraries which
were sequenced on a Genome Sequencer FLX instrument (Roche,
Basel, Switzerland). The resulting sequence reads were aligned
to reference sequences using gsMapper software (Roche, Basel,
Switzerland), which identified a list of SNPs (Supplementary
Data 4). The SNP positions were converted to a GFF file which
was imported into Geneious Pro v5.3.6 (Biomatters, Auckland,
New Zealand) where primers for amplicon sequencing were
designed so as to avoid having SNPs in the primer binding
site.

Primers (shown in Supplementary Data 3) were designed
to amplify regions of 300–700 bp from the candidate genes for
sequencing. The primers were designed using Primer 3 (Kores-
saar and Remm, 2007) with an optimal annealing temperature
of 60◦C and using the default parameters. The 15µl PCRs con-
tained 75mM TrisHCl pH8.8, 20mM (NH4)2SO4, 0.01% Tween
20, 2.5mMMgCl2, 0.2mM each dNTP, 1µM each primer, 0.75U
Taq (Thermo Fisher Scientific,Waltham,MA, USA), and approx-
imately 10 ng genomic DNA. The PCR conditions were one
cycle of 95◦C for 2min, 40 cycles of 95◦C for 30 s, 58◦C for
30s, 72◦C for 1min, then one cycle of 72◦C for 7min. Unin-
corporated primers were removed from the PCR products using
exonuclease I and shrimp alkaline phosphatase (Ibrahim et al.,
2001). The PCR products were sequenced in both directions
using the amplification primers, except in the case of SBEII
where a different forward primer (Supplementary Data 3) was
used for sequencing in order to avoid an insertion/deletion
polymorphism. Sanger sequencing was performed using an ABI
BigDye terminator cycle sequencing kit and an ABI PRISM
3130xl Genetic Analyzer (Applied Biosystems, Carlsbad, Cali-
fornia, USA). SNPs were detected by aligning sequences using
Geneious Pro v5.3.6 (Biomatters, Auckland, New Zealand). The
SNP allele dosage was estimated using the DAx data analysis and
acquisition software (Van Mierlo Software Consultancy, Eind-
hoven, The Netherlands). Allele dosages were determined sepa-
rately for both forward and reverse sequences and then the two
results were compared. When discrepancies occurred, the result
with the higher sequence quality was used.

A region containing an insertion/deletion polymorphism
(InDel) located 0.5 kb upstream of the ATG start codon of the
GBSS gene was amplified using cdf1 and cdf2 primers (van de
Wal et al., 2001). PCR conditions were as for amplicon sequenc-
ing except that the annealing temperature was 55◦C. PCR prod-
ucts were separated by electrophoresis on a 2% agarose gel and
visualized by ethidium bromide staining. Relative band intensity
of heterozygotes was determined using GelQuantNET software
(http://biochemlabsolutions.com/GelQuantNET.html) and used
to group the heterozygotes into three genotypes.

Statistical Analysis of Phenotypic Data
The C6 and C3 phosphorylation (nmol/mg) for each of the two
field trials were analyzed separately. For each type of phosphory-
lation, mean values were calculated which were adjusted to com-
pensate for spatial variation in the field trial and any local trends
in processing (such as a tendency to systematically increase or
decrease within a run of the mass spectrometer), using the “Red
Rascal” control data. The data were analyzed using a mixed
model approach, with the model fitted with restricted maximum
likelihood (REML, Payne et al., 2011) as implemented in Gen-
stat (Genstat Committee, 2013). The potato line was included
as a fixed effect whereas other potentially important effects were
included as random effects. For both C6 and C3 phosphorylation,
an AR(1) × AR(1) (Verbyla et al., 1999) correlation model was
fitted to account for local trends in the data. In addition, random
effects were required for the sets of 72 plots (corresponding to the
six columns of plots as in the field layout) and also for the batches
of 36 plots used for starch extraction. Overall differences between
lines were assessed with an F-test, using the Kenward-Roger esti-
mation for the denominator degrees of freedom (Kenward and
Roger, 1997).

Analysis of Population Structure and Kinship
Population structure of the collection of 192 potato lines was
explored by analyzing 21 SSR markers using the program
STRUCTURE v2.3 (Pritchard et al., 2000). An admixture model
was used, with the number of subpopulations, K, set from 1 to 20
for each of three repetitions. For each run, both the burn-in and
the iteration number were set to 100,000. The mean and stan-
dard deviation of Ln P(D) were calculated and the best estimate
of K was determined by the method of Evanno et al. (2005). A
Q matrix was generated for the best estimate of K and used in
the association analysis. The Q matrix contained, for each potato
line, its estimated membership of each subpopulation. A kinship
matrix (K) was calculated from the SSR data according to Loiselle
et al. (1995) using the software package SPAGeDI v1.3 (Hardy
and Vekemans, 2002), with negative kinship values set to zero.

Association Analysis
A mixed model analysis was used to test for association between
phosphorylation phenotypes and SNP/SSR/InDel genotypes fol-
lowing the approach of Pajerowska-Mukhtar et al. (2009) Popu-
lation structure (Q) and kinship (K) are included in the model
to decrease the rate of discovery of false positives (Yu et al.,
2006).The genotype and subpopulation membership (Q) were
incorporated in the model as fixed effects, with genotype as a fac-
tor (number of copies of each allele) and subpopulation member-
ship as a variate. Kinship and residual were included as random
effects. The C6 and C3 phosphorylation for each of the two field
trials were analyzed separately. The analysis was performed using
ASReml-R (Butler et al., 2009).

To address the problem of false discovery when multiple tests
are performed simultaneously, q-values were calculated using the
QVALUE package implemented in R with the default range of
lambda values and the bootstrap method (Storey and Tibshirani,
2003). The p-values from the four trait data sets (C6 and C3, both
years) were combined for the q-value calculation.
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Amino acid substitutions resulting from the DNA polymor-
phisms that were found to be significantly associated with starch
phosphorylation were analyzed using PROVEAN software (Choi
et al., 2012). This predicted whether an amino acid substitution
would affect the biological function of a protein, by referring to
the variation observed in homologous sequences.

Results

Starch Phosphorylation
The adjusted means for C6 phosphorylation varied from 7.9 to
23.6 nmol/mg in samples from the 2011 field trial, and 12.2 to
33.8 nmol/mg in 2012. C3 phosphorylation means were in the
range 2.3–7.2 nmol/mg in 2011 and 2.2–7.5 nmol/mg in 2012. For
each field trial, the C6 and C3 phosphorylation of the 193 lines
approximated a normal distribution. C6 and C3 phosphorylation
were highly correlated in both years, with correlation coefficients
r = 0.81 for 2011 and r = 0.86 for 2012. C6 and C3 phospho-
rylation results from the 2012 field trial are shown in Figure 1.
The adjusted means produced by the first and second field trials
were moderately correlated with r = 0.72 for C6 and r = 0.62 for
C3, as shown in Figure 2. The proportion of the phosphorylation
occurring at the C6 position was 69–82% in 2011 and 80–87% in
2012.

Climate data for Lincoln for the period 1 November to 30
March revealed a mean temperature of 16◦C for the 2011 grow-
ing season and 14.5◦C for 2012. The mean temperature for
each month of the 2011 growing season was higher than the
corresponding month of the 2012 season.

Population Structure
SSR allele size and dosage were scored for 21 loci which spanned
all 12 potato chromosomes. There were between three and 17

FIGURE 1 | Comparison between the adjusted means of C3 and C6

phosphorylation from the 2011 and 2012 field trials. The correlation

coefficients r were 0.81 and 0.86 respectively.

alleles per locus giving a total of 173 alleles. Analysis of the SSR
genotype data using STRUCTURE software revealed a complex
population structure. There was no clearly defined number of
sub-populations, as indicated by the continual increase in log
likelihood Ln P(D) (Figure 3A). However the slope of the graph
decreases markedly after K = 4, indicating that four subpopula-
tionsmay be themost useful estimate to use. TheDelta Kmethod,
which targets a change in slope combined with low variance
(Evanno et al., 2005), also indicated four subpopulations to be
the best representation of the population structure (Figure 3B).

The four subpopulations indicated by STRUCTURE reflect
the geographical origins of the samples (Supplementary Data 1)
to some extent. For example, group 1 includes many old lines of
unknown pedigree, including some which are thought to have
been among the first potatoes brought to and grown in New
Zealand. Most of the lines from North and South America fell
into the largest group, group 2. Many of the lines from the
UK were in group 3, whereas those from The Netherlands and
Germany tended to be in group 4.

A relationship was evident between subpopulation member-
ship and level of phosphorylation as shown for 2011 C6 phospho-
rylation in Figure 4. Most of the potato lines that had a high level
of starch phosphorylation were in group 2. In addition, group 2
had the highest mean C6 phosphorylation. The same relation-
ship was evident for C6 phosphorylation in 2012 and for C3
phosphorylation in both years.

Genotyping Candidate Genes
Short amplicons (300–700 bp) fromwithin the candidate genes of
192 potato lines were sequenced in both directions. This included
two amplicons for SSII, none from GBSS, and one for each of the
other six candidate genes. Analysis of the regions of the sequences
which could be reliably determined in both the forward and

FIGURE 2 | Comparison between the two field trials: adjusted means

of C6 and C3 phosphorylation of starch (nmol/mg) from potato tubers.

The correlation coefficients r were 0.72 for C6 and 0.62 for C3.
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FIGURE 3 | Determination of population structure. (A) The mean log

likelihood of K (postulated number of subpopulations) for K = 1 to 20, with

bars representing ± standard deviation. (B) Delta K for 1 to 20 subpopulations

as calculated by Evanno et al. (2005).

reverse directions yielded 104 SNPs. The amplicon sizes and
number of SNPs per amplicon are shown in Table 1. Four SSR
markers were used for candidate gene genotyping, two from the
GBSS gene which each had 11 alleles, one from SBEII with 12
alleles and one from GWD with five alleles. An insertion/deletion
in the GBSS gene was amplified producing products of 60 and
200 bp, which were easily distinguished on an agarose gel. Image
analysis software was effective for determining allele dosage in
the heterozygotes. A list of the DNA polymorphisms and their
positions on reference genes is given in Supplementary Data 4.

Association Analysis
DNA polymorphisms were tested individually for association
with the C6 and C3 phosphorylation adjusted means for each of
the two field trials, the results of which are shown in Figure 5.
SNPs in three genes gave association at p < 0.001 as shown in
Table 2. Five of these SNPs were in theGWD gene and were asso-
ciated with C6 phosphorylation (p < 0.001) for the 2012 samples,
and of these, three also gave association at p < 0.01 for the 2011
samples. Two SNPs in the SBEI gene were associated with both
C6 and C3 phosphorylation. Sbei2ag was associated (p < 0.001)
with C6 for both years and C3 2011. Sbei5tc was associated with
C3 2011 at p < 0.001 and also with C3 2012 and C6 for both
years at p < 0.01. Two SNPs in the SSIII gene were associated
with C3 phosphorylation at p < 0.001. Both ssiii7tc and ssiii11gc

FIGURE 4 | Beanplot showing the degree of C6 phosphorylation in

samples from the 2011 field trial, divided into the four subpopulations

determined from SSR data using STRUCTURE. The dotted line represents

the overall mean; the long lines across each bean are mean values for that

subpopulation, whereas the short lines represent individual potato lines. Similar

results were obtained for the C6 2012, C3 2011, and C3 2012 datasets.

TABLE 1 | Summary of genotyping methods used for each candidate gene.

Candidate gene Size of Number Other

(GenBank amplicon(s) of markers

accession No.) sequenced (bp) SNPs

SSI (Y10416) 315 5

SSII (X87988) 327, 302 11, 6

SSIII (X94400) 587 14

SBEI (X69805) 600 8

SBEII (AJ000004) 442 12 SSR 12 alleles

GWD (Y09533) 690 32 SSR 5 alleles

PWD (GU045560) 523 16

GBSS (X58453) SSR (STGBSS) 11 alleles

SSR (STWAX-2) 11

alleles

InDel 140 bp

were associated with C3 phosphorylation in 2012 (p < 0.001)
while ssiii11gc was also associated with C3 2011 at a lower level
of significance (p < 0.01). Only one of the SSR alleles (sbeii180)
gave association results significant at p < 0.001. It was associ-
ated with both C6 and C3 phosphorylation in 2011(p < 0.001)
and also with C3 in 2012 (p < 0.01). In total, 9 SNPs and
one SSR allele gave association results significant at p < 0.001
(Table 2), and another 20 SNPs/SSRs at 0.001< p < 0.01 (Sup-
plementary Data 5). TheGBSS insertion/deletion marker was not
significantly associated with either phosphorylation trait.

Testing 144 genetic markers against four traits involves 576
tests so a level of significance of p < 0.01 is likely to produce
several false positives. Therefore, the use of 0.001 as a level of
significance is more appropriate but may be too stringent and
exclude some important positive results. To explore this issue
further, q-values for the association tests were calculated, where q
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FIGURE 5 | Trellis plot of the negative log of p-value for each combination of genetic marker and trait-year. The GBSS InDel is represented by a triangle,

SNPs are represented by circles and SSR alleles by squares. A negative log value of 3 corresponds to p = 0.001, and a negative log of 2 corresponds to p = 0.01.

represents the proportion of the significant tests which are likely
to be false positives (Storey and Tibshirani, 2003). A significance
threshold of p < 0.01, which generated 48 associations, was
equivalent to a q-value of 0.05 such that two to three of the 48
would be false positives. However, at p < 0.001, which gave 13
significant results, the q- value was 0.02 such that less than one
result (0.26) is likely to be a false positive. Therefore, p < 0.001
makes a sensible threshold to use for confidence that the genetic
markers discovered are truly associated with the phenotype, and
that we have got the most important markers. Although this is
likely to exclude some true positives, some of those excluded will
involve SNPs that have been found to be associated at p < 0.001
with the alternative form of phosphorylation or for the alternative
year, e.g., SNP gwd2gt was significant at p < 0.001 for C6 2012
and 0.001< p < 0.01 with C6 2011 (Supplementary Data 5).

Of the 9 SNPs significantly associated with phosphorylation
at p < 0.001, three (gwd1ct, gwd27cg, sbei2ag) had two alleles
with fairly even frequency (Table 2), such that all five possible
genotypes were observed. The minor allele frequencies of the
other six SNPs were lower (0.038–0.273) such that only three
or four of the five possible genotypes were observed. The SSR
allele sbeii180 had a very low frequency (0.004), and only two
genotypes were observed, with just three samples carrying the
allele. The relationship between allele copy number and degree

of phosphorylation for representative examples of the significant
SNPs are shown in Figure 6. Where the graphs for two or more
of the significant genetic marker-trait combinations were very
similar, the example with the lowest p-value is shown.

The SNPs gwd2gt, gwd14ga, and gwd26ag gave very similar
results, with identical allele dosage for all but three lines, and
therefore appear to represent two haplotypes. They had similar
allele frequencies and gave similar p-values. The very few differ-
ences between them may be due to errors in determining the
genotypes or new rare mutations within the haplotypes. Simi-
larly, SNPs ssiii7tc and ssiii11gc gave identical results in all but
four lines, and may likewise represent two haplotypes.

Of the 9 SNPs which were significant at p < 0.001, one
(ssiii7tc) was located within an intron, while two (gwd1ct,
gwd26ag) were within synonymous codons, and would there-
fore be unlikely to affect protein function. The other six SNPs
would result in amino acid substitutions in the protein encoded.
These substitutions were analyzed using PROVEAN software
(Choi et al., 2012) to predict whether an amino acid substi-
tution would affect the biological function of a protein, by
referring to the variation observed in homologous sequences.
Using the default threshold of−2.5, the amino acid substitutions
derived from the SNPs gwd2gt, gwd14ga, gwd27cg, sbei5tc, and
ssiii11gc were considered to be neutral changes. However, the
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TABLE 2 | SNP/SSR and trait combinations associated at p < 0.001.

SNP/SSR Trait/year p-value q-value Other trait/year combinations Minor allele Allele substitution Allele associated with

significant at p < 0.01 frequency effect (nmol/mg) high phosphorylation

gwd1ct C6 2012 0.00008 0.0057 0.422 1.42 T

gwd2gt C6 2012 0.00010 0.0057 C6 2011 0.038 3.68 T

gwd14ga C6 2012 0.00027 0.0102 C6 2011 0.040 3.21 A

gwd26ag C6 2012 0.00020 0.0057 C6 2011 0.040 3.09 G

gwd27cg C6 2012 0.00037 0.0105 0.456 1.28 C

sbei 2ag C3 2011 0.00010 0.0057 0.475 0.21 A

sbei 2ag C6 2011 0.00039 0.0105 0.475 0.85 A

sbei 2ag C6 2012 0.00033 0.0105 0.475 1.24 A

sbei5tc C3 2011 0.00098 0.0202 C3 2012, C6 2011, C6 2012 0.111 0.35 T

ssiii7tc C3 2012 0.00010 0.0057 0.268 0.32 T

ssiii11gc C3 2012 0.00011 0.0057 C3 2011 0.273 0.31 G

sbeii180 C3 2011 0.00098 0.0202 C3 2012 0.004 1.45 180

sbeii180 C6 2011 0.00074 0.0180 0.004 3.89 180

FIGURE 6 | Beanplots showing the relationship between allele copy

number and degree of phosphorylation for representative examples

of the most significant SNP/SSRs. The overall mean is shown as a dotted

line; the mean value for each allele copy number is shown as a line across

the middle of each bean, and results for individual potato lines are shown by

the short lines within the beans.

serine/asparagine substitution encoded by sbei2ag gave a “delete-
rious” result (−2.95), indicating that the change is likely to affect
protein function.

The SBEII SSR has repeats of the codon GAA, which gener-
ates variation in the number of glutamic acid residues near the
C-terminus of the protein. One of the 12 alleles observed using
the SBEII SSR marker, sbeii180, was significant at p < 0.001
even though the allele only occurred in three potato lines. The
SBEII SSR alleles ranged in size from 165 to 201 bp, indicating

that considerable variation is tolerated in this region of the pro-
tein, such that the sbeii180 allele is unlikely to affect biological
function.

Discussion

Phenotyping
The range of C6 phosphorylation of potato starch reported
here (8–34 nmol/mg) is consistent with published results, such

Frontiers in Plant Science | www.frontiersin.org 8 March 2015 | Volume 6 | Article 143

http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org
http://www.frontiersin.org/Plant_Science/archive


Carpenter et al. Genetics of potato starch phosphorylation

as 8–25 nmol/mg (Bay-Smidt et al., 1994) and 14–33 nmol/mg
(Blennow et al., 1998). The larger range of values found here is
likely due to the larger number of potato lines included. The C6
phosphorylation was higher in the 2012 field trial than in 2011,
possibly due to different climatic conditions. The mean temper-
ature during growth of the 2011 field trial was 1.5◦C higher than
in 2012. Growth temperature has been shown to affect the degree
of phosphorylation in potato starch, with a high growth temper-
ature resulting in decreased starch phosphorylation (Tester et al.,
1999). The proportion of the starch phosphorylation occurring
at the C6 position was found here to have a range of 69–87%,
while published values range from 60–80% (Bay-Smidt et al.,
1994; Haebel et al., 2008; Carpenter et al., 2012). C3 phospho-
rylation of large numbers of potato samples has not previously
been reported because themeasurement of C3 phosphorylation is
more difficult and time consuming than for C6 phosphorylation,
and the majority of the phosphorylation is at the C6 position.

Genotyping
Three different genotyping methods were used, using both pre-
viously published markers and markers developed in this study.
Amplicon sequencing proved to be the most efficient method
for genotyping as it yielded many SNPs per amplicon, providing
more information relative to the time and cost required com-
pared to SSRs and the InDel. Amplicon sequencing could be
performed much more effectively now that methods have been
developed using next generation sequencing with barcodes to
label the samples. SSRs were used for the population structure
work as there were plenty of published SSRs to choose from. The
use of image analysis software proved to be effective for determin-
ing allele dosage for an InDel run in an agarose gel. However, this
method would be practical only for InDels that can be resolved
by agarose gel electrophoresis.

Estimating the allele dosage is not always done in genotyp-
ing of tetraploids (Baldwin et al., 2011; Urbany et al., 2011) but
is required to provide full genotypic information (Pajerowska-
Mukhtar et al., 2009). Homozygotes were generally easy to score
for all the genotyping methods used, but heterozygotes were
sometimes difficult. In most cases the DAx software (Van Mierlo
Software Consultancy, Eindhoven, The Netherlands) gave the
same results for the forward and reverse amplicon sequences,
which inspired confidence in the SNP allele dosage scored. How-
ever, occasionally the two sequences differed, in which case a
decision was made based on sequence quality. Similarly, in some
cases scoring the allele dosage of SSRs based on peak area was
straightforward whereas other SSRs proved to be more difficult,
possibly due to null alleles. The approach used for scoring the
SSR alleles undoubtedly fails to recognize some null alleles but we
considered it to be better than simply scoring presence/absence of
alleles, as when dosage is not recorded much information is lost.
The value of incorporating allele dosage in the association model
is illustrated by the relationship between allele dosage and degree
of phosphorylation as shown in Figure 6.

Population Structure
The collection of potato lines used here had a detectable, but
not unequivocal, population structure, as might be expected for

a diverse collection of lines which included modern breeding
lines and heritage cultivars. This population structure would be
likely to have confounded the association analysis, had it not been
addressed in the model which was fitted. The subpopulation des-
ignated group 2 tended to have higher C6 phosphorylation than
the other groups, therefore alleles common in group 2 might
have been erroneously associated with starch phosphorylation.
Previous studies have found population structure in collections
of potato lines: a worldwide collection of 221 commercial lines
including ancient lines plus those bred for processing, starch and
fresh use, comprised six subpopulations (D’hoop et al., 2010),
whereas a collection of 184 breeding lines was made up of 15 sub-
populations (Pajerowska-Mukhtar et al., 2009). More recently, a
collection of 250 lines, mostly North American breeding lines
but including some genetic stocks and wild species, consisted
of four subpopulations, with “minimal substructure” within cul-
tivated potato (Hirsch et al., 2013). However, other studies of
collections of breeding lines revealed an absence of population
structure (Li et al., 2008; Urbany et al., 2011). In cases where
population structure was detected, the structure was described as
“complex” (Pajerowska-Mukhtar et al., 2009) or “weak” (D’hoop
et al., 2010) and subpopulations were not clearly defined, with
considerable overlap occurring between the inferred subpopula-
tions, consistent with the results reported here. This is likely due
to the long and complex history of interbreeding which has been
used to produce the world’s commercial potato cultivars.

Association Analysis
The use of q-values confirmed that a significance threshold of
p < 0.001 was appropriate to give confidence that the genetic
markers deemed to be significantly associated with phosphoryla-
tion levels were correctly assigned and could therefore be effec-
tive as genetic markers for marker assisted selection, and also
that the most important markers have been included as positive
results. Using a candidate gene approach meant that we could
expect many of the markers to be significantly associated, but as
many genes may be involved in determining starch phosphory-
lation levels, most exerting only small effects, only the strongest
effects would be detected. Phenotype data were collected from
two field trials run in consecutive years, and analyzed separately,
as a means of determining how reproducible the results were.
Although only one SNP (sbei2ag with C6 phosphorylation) gave
results that were significant at p < 0.001 for both field trials,
several of the other results that were significant at p < 0.001
were backed up by results from the alternative year that were
significant at p < 0.01 (Table 2).

Of the 10 most significant SNP/SSR markers identified here,
only one, SNP sbei2ag, appears likely to affect the starch phos-
phorylation phenotype directly by altering protein function. The
other significant polymorphisms are therefore presumed to be
in linkage disequilibrium with functional mutations, rather than
affecting gene function directly, and may therefore be useful as
genetic markers.

The GWD gene emerged as the most important gene associ-
ated with starch C6 phosphorylation, with five SNPs associated
at p < 0.001 with C6 2012, three of which were also associ-
ated at p < 0.01 for C6 2011. This is consistent with the fact
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that GWD encodes the enzyme which catalyzes the C6 phos-
phorylation reaction. The SNPs gwd1ct and gwd2gt correspond
to the A and H haplotypes previously reported to be associ-
ated with the degree of starch phosphorylation (Uitdewilligen,
2012). The combined results of two independent studies provide
very strong evidence for this association. In addition, the GWD
amplicon sequenced here overlaps a SCAR marker in the GWD
gene, which has been shown to co-localize with a QTL for starch
phosphorylation (Werij et al., 2012).

It is perhaps surprising that only a single, relatively weak
(p = 0.005) association was found between PWD SNPs and
C3 phosphorylation, given the PWD encodes the enzyme which
phosphorylates starch at the C3 position. However, this may sim-
ply reflect that we were looking at SNPs from a single fragment
of 532 bp and these SNPs were not in LD with polymorphisms
that may affect C3 phosphorylation. Although we have not char-
acterized the extent of LD in this association panel, other studies
have indicated that LD decays rapidly over relatively short dis-
tances in tetraploid potato (Simko et al., 2006). Alternatively,
naturally occurring allelic variation in the PWD gene affecting
C3 phosphorylation may not occur in our collection of potato
lines.

Polymorphisms in the genes encoding the starch branching
enzymes SBEI and SBEII were significantly associated (p <

0.001) with the degree of both C6 and C3 phosphorylation.
This is consistent with findings from antisense experiments that
showed a decrease in expression of SBEI (Safford et al., 1998)
or SBEII (Jobling et al., 1999) resulted in increased phosphorus
content of potato starch. The sbei2ag SNP, which had a highly
significant association with both C6 and C3 starch phosphoryla-
tion (C6 phosphorylation for both years, and C3 phosphorylation
for 2011, at p < 0.001), encoded a serine/asparagine substitu-
tion at a position in the protein which tends to be conserved
among homologous sequences, which have serine at this posi-
tion. In potato the alleles encoding serine and asparagine are
approximately equally common, and it is the asparagine variant
which is associated with higher phosphorylation. It is possible
that this SNP is a functionalmutationwhich influences the degree
of starch phosphorylation. Comparison with the crystal structure
of the homologous protein in rice revealed that the equivalent
serine residue is in the central catalytic α-amylase domain of the
protein, but is not one of the seven residues known to be involved
in enzymatic activity (Noguchi et al., 2011). However, there are
other ways in which this substitution could affect starch phos-
phorylation, such as by altering protein/protein interactions. The
SBEII SSR reported in this study produces variation in the num-
ber of glutamic acid residues near the C-terminal end of SBEII, an
observation which has been reported previously (Jobling et al.,
1999) but which has not been linked to functional variation in
the protein. The sbeii180 allele which was associated with both
C6 and C3 phosphorylation at p < 0.001 had a very low minor
allele frequency of 0.004 and only occurred in three potato lines.
It has been suggested that associations based on rare alleles may
have an elevated false discovery rate compared to common alle-
les (Lam et al., 2007; Tabangin et al., 2009) but that it is preferable
to treat such associations with caution rather than discard them
(Moskvina et al., 2006; Tabangin et al., 2009) as rare alleles can

be of interest. Therefore, the association of the sbeii180 allele
with starch phosphorylation may require further validation. Inci-
dentally, the three lines carrying the sbeii180 allele (Granola,
V153 and V493) are not closely related, a fact which supports the
validity of the association.

Among the four starch synthase genes that we examined, only
SSIII had SNPs which were associated with starch phosphoryla-
tion at p < 0.001. Two SNPs in the SSIII gene were associated
with C3 phosphorylation at p < 0.001, but none with C6 phos-
phorylation (p > 0.01). This is a novel observation as other stud-
ies have not measured C3 phosphorylation in a large number of
samples. However, in a QTL analysis, a CAPSmarker in SSIII was
found to be associated with total starch phosphorylation (Werij
et al., 2012). When C6 and C3 were combined to give total phos-
phorylation in this study, the association of the two SSIII SNPs
was less significant, p = 0.004, than for C3 on its own (data not
shown). The QTL analysis (Werij et al., 2012) also observed co-
localization of SSII with a starch phosphorylation QTL, whereas
our results yielded a relatively weak association with SSII SNPs
(minimum p = 0.003). The 140 bp InDel in the GBSS gene has
been shown to have a major effect on GBSS activity and amy-
lose content (van de Wal et al., 2001) but in our study it did not
significantly affect starch phosphorylation.

The markers that were associated with the greatest influence
on C6 phosphorylation, and therefore on total phosphorylation,
were in theGWD, SBEI, and SBEII genes. As some of these mark-
ers appear to be closely linked, only a subset would be required
for use as genetic markers. The gwd1ct, gwd2gt, sbei2ag SNPs
and the sbeii180 SSR allele, either individually or in combina-
tion, would make useful markers for potato starch phosphoryla-
tion and its accompanying physicochemical characteristics. The
ssiii7tc or ssiii11gc SNPs may also be useful if C3 phosphoryla-
tion is of interest. While the C6 and C3 phosphorylation of starch
have different roles in starch structure and catabolism (Hansen
et al., 2009), it is not known if they differ in relation to their effects
on the behavior of starch for industrial uses.
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