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Plant vascular systems are constructed by specific cell wall modifications through which
cells are highly specialized to make conduits for water and nutrients. Xylem vessels
are formed by thickened cell walls that remain after programmed cell death, and serve
as water conduits from the root to the shoot. In contrast, phloem tissues consist of a
complex of living cells, including sieve tube elements and their neighboring companion
cells, and translocate photosynthetic assimilates from mature leaves to developing
young tissues. Intensive studies on the content of vascular flow fluids have unveiled
that plant vascular tissues transport various types of gene product, and the transport of
some provides the molecular basis for the long-distance communications. Analysis of
xylem sap has demonstrated the presence of proteins in the xylem transpiration stream.
Recent studies have revealed that CLE and CEP peptides secreted in the roots are
transported to above ground via the xylem in response to plant–microbe interaction and
soil nitrogen starvation, respectively. Their leucine-rich repeat transmembrane receptors
localized in the shoot phloem are required for relaying the signal from the shoot to the
root. These findings well-fit to the current scenario of root-to-shoot-to-root feedback
signaling, where peptide transport achieves the root-to-shoot signaling, the first half of
the signaling process. Meanwhile, it is now well-evidenced that proteins and a range of
RNAs are transported via the phloem translocation system, and some of those can exert
their physiological functions at their destinations, including roots. Thus, plant vascular
systems may serve not only as conduits for the translocation of essential substances but
also as long-distance communication pathways that allow plants to adapt to changes
in internal and external environments at the whole plant level.

Keywords: long-distance signaling, RNA transport, peptide transport, phloem transport, protein transport,
systemic signaling, xylem transport

Introduction

Plant vascular tissues are formed through highly specialized cell wall modifications to achieve
their roles as conduits of water and nutrients. The processes of cell differentiation in xylem and
phloem tissues have been intensively studied, and many regulatory genes have been identified and
characterized (only relatively new topics are introduced in this review). Through the functions

Abbreviations: CC, companion cell; CEP, C-terminally encoded peptide; CK, cytokinin; CLE, CLV3/ESR-related; CLE-RS2,
CLE-root signal 2; CLV, CLAVATAV; CRA2, compact root architecture 2; FT, FLOWERING LOCUS T; IAA, indole-3-acetic
acid; IPT, isopentenyltransferase; LRR-RK, leucine-rich repeat receptor kinase; PD, plasmodesmata; SE, sieve element; TE,
tracheary element; XIP1, xylem intermixed with phloem1; XSP10, xylem sap protein 10.
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of such genetic components, xylem vessels, and phloem sieve
tubes are formed running through the entire plant body. Such
structures are well-designed to play their roles of conduits for
water and nutrients.

Another facet of plant vascular tissues has been also described,
that is their use as long-distance signaling pathways (Lucas et al.,
2013). For multicellular organisms, communication at the entire
body level is an essential task to coordinate behaviors within
the organism as a singular living being. Whereas animals have
evolved nervous systems to transmit information signal from
one part of body to another, plants do not have a nervous sys-
tem. Plants do use electrical signals to transmit information, for
example, soon after wounding (Mousavi et al., 2013) or after salt
stress treatment (Choi et al., 2014). However, electrical systems
in plants appear not to be sufficient to provide the basis for
expansive systemic responses. Alternatively, plants seem to use
vascular tissues for long-distance communication. This review
summarizes the potential signal agents transported via xylem
and phloem, and especially focuses on gene-encoded macro-
molecules. Together, we discuss on the bi-directional flow of the
information and the circuits used for signaling through these
conduit tissues.

Xylem Signaling

Xylem consists of TEs, parenchyma cells, and fiber cells. These
cells become differentiated from derivatives of the apical meris-
tems (Evert, 2006), and dedicated studies have identified many
factors involved in xylem cell differentiation and patterning
(Schuetz et al., 2013; Kondo et al., 2014). TEs are formed as shells
of cells that possess thickened secondary cell walls and lose their
nuclei and cell contents through programmed cell death (Fukuda,
1996). Multiple TEs compose conduits, and continuous conduits
connect various organs and tissues from the root to the shoot.
Xylem vessels provide physical support for aerial organs and
transport water and essential nutrients from the soil. In addi-
tion, xylem transports various molecules including long-distance
signaling factors that mediate organ-to-organ communication.

Trans-zeatin type CKs have been mainly detected in xylem
sap (Takei et al., 2001). Grafting experiments using a quadruple
mutant of CK synthetic genes, ATP/ADP IPT 1; 3; 5; 7, indicated
that a trans-zeatin type of CKs is transported from the roots to
the shoots and regulate shoot growth (Matsumoto-Kitano et al.,
2008). An ABC transporter, ABCG14, has been suggested to
play a role in loading CKs to xylem (Ko et al., 2014; Zhang et al.,
2014). ABCG14 is primary expressed in root vascular tissues,
and the defect in ABCG14 resulted in an accumulation of
CKs in roots. Strigolactones (SLs) control shoot branching as
well as known as root-secreted signals for interactions with
symbiotic fungi and parasitic weeds (Bouwmeester et al., 2003;
Akiyama et al., 2005; Gomez-Roldan et al., 2008; Umehara et al.,
2008). In inhibition of shoot branching, SLs and their precursor,
carlactone, were proposed to be long-distance signaling fac-
tors. SLs have been detected in xylem sap (Kohlen et al., 2011),
whereas grafting experiments using a series of mutants of SL
synthetic enzymes and biochemical analyses on SL synthetic

pathway suggested that carlactone is a root-to-shoot mobile sig-
nal (Booker et al., 2005; Seto and Yamaguchi, 2014; Seto et al.,
2014). Although the major player in long-distance inhibition of
shoot branching is still unknown, these findings describe that
small phytohormones play essential roles in plant root-to-shoot
coordination.

Xylem Mobile Proteins
In addition to phytohormones, macromolecules, such as pro-
teins, were detected from xylem exudates in Biles and Abeles
(1991) and Satoh et al. (1992). Since that time, many proteins
have been identified in xylem sap of various plant species
including Cucumis sativus, Brassica oleracea, Zea mays, and
Glycine max (Sakuta et al., 1998; Masuda et al., 1999; Rep et al.,
2002; Buhtz et al., 2004; Kehr et al., 2005; Djordjevic et al., 2007;
Aki et al., 2008; Alvarez et al., 2008; Fernandez-Garcia et al.,
2011; Ligat et al., 2011). Xylem sap is easy to collect from those
large-sized plants with root pressure, and many proteins have
been identified in the sap, including structural proteins of cell
walls and defense-related proteins. Molecular genetic approach
has been applied to XSP10 in tomato. XSP10 is a cysteine-
rich 10 kDa secreted protein and displays structural similarity
to lipid transfer protein (Rep et al., 2003). XSP10 is expressed
in roots and lower stems. By using XSP10-silenced tomato,
Krasikov et al. (2011) reported that XSP10 is involved in the sus-
ceptibility of tomato to a fungal vascular pathogen. Although
using molecular genetics approaches on those non-model plants
is not easy, functional analyses of proteins associated with xylem
sap may reveal the roles of xylem in many aspects of plant
life.

Xylem Mobile Small Peptides
As genomic information becomes available, many genes that
encode small-secreted peptide have been found in various plant
species. It is predicted that Arabidopsis genome contains more
than 900 peptide genes (Matsubayashi, 2011). Intensive stud-
ies on some of these peptides and their receptors have revealed
that a number of secreted peptides play an important role in
relatively short-range cell-to-cell communication (Fletcher et al.,
1999; Hirakawa et al., 2008; Ohyama et al., 2009; Lee et al., 2012).
The CLV3/CLV1 ligand/receptor pair is a well-known cell-to-
cell signaling model, where its active form of CLV3 peptide
belonging to the CLE family is perceived by CLV1 LRR-RK
(Ohyama et al., 2009). CLV3 and CLV1 are expressed in adja-
cent cells in the shoot apex and control the activity of the
shoot apical meristem in same genetic pathway (Clark et al., 1995,
1997; Fletcher et al., 1999). On the other hand, in xylem that
is a kind of apoplast, whether small-secreted peptides exist and
mediate organ-to-organ communication remained unknown.
Recently, secreted oligopeptides belonging to the CLE pep-
tide or the CEP family have been shown to be translocated
from the roots to the shoots to act as long-distance signal-
ing factors in systemic suppression of nodule formation or
in nitrogen starvation response of root systems, respectively
(Okamoto et al., 2013; Tabata et al., 2014; Figure 1A). We sum-
marize recent findings related to those two secreted peptides
below.
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Leguminous plants establish a symbiosis with soil bacteria,
called rhizobia, and form nodules on their roots. Because exces-
sive nodule formation is harmful to host plants, the plants
control the number of nodules via a root-to-shoot-to-root long-
distance feedback loop (Caetano-Anolles and Gresshoff, 1991).
This regulatory loop is called autoregulation of nodulation, and
two long-distance signals, namely, “root-derived signal (root-
to-shoot)” and “shoot-derived inhibitor (shoot-to-root)” have
been postulated. However, the entities of those long-distance
signals have been unknown for more than two decades. As a
strong candidate for the root-derived signal, CLE-RS2 oligopep-
tide was identified from a model legume Lotus japonicus. CLE-
RS2 is expressed in roots and is highly up regulated by rhi-
zobial inoculation (Okamoto et al., 2009). The active form of
CLE-RS2 is a glycosylated 13-amino acid oligopeptide, and it
strongly suppressed nodule formation. Importantly, biochem-
ical analyses have revealed that CLE-RS2 glycopeptide was
translocated from the root to the shoot via xylem, and that
it directly bound HAR1 receptor that is a CLV1-homologous
receptor and a shoot factor for the autoregulation of nodula-
tion (Krusell et al., 2002; Nishimura et al., 2002; Okamoto et al.,
2013). Homologs of CLE-RS2 and HAR1were found inMedicago
truncatula and soybean, suggesting that this signalingmechanism
is common in legumes (Nishimura et al., 2002; Searle et al., 2003;
Schnabel et al., 2005; Mortier et al., 2010, 2011; Lim et al., 2011;
Reid et al., 2011).

Systemic signaling of CLE-RS2/HAR1 were implied in the
studies on nitrate inhibition of nodulation, where CLE-RS2 was
also strongly up regulated under high nitrate conditions that
are known to abolish nodulation (Okamoto et al., 2009) and
grafting experiments using a har1 mutant showed that shoot-
expressed HAR1 is critical to nitrate inhibition of nodulation
(Okamoto and Kawaguchi, 2015). Additionally, root overexpres-
sion of two types of CLE-RS2 homologs suppressed nodulation in
systemic or local manner in soybean (Reid et al., 2011). Domain-
swapping experiments between them showed that not only CLE
domain but also the external regions are important for the activity
to suppress nodulation (Reid et al., 2013). This could reflect the
difference of each CLE peptides in their activation or recognition
by their receptors. In Arabidopsis, CLE6 overexpression in roots
affected shoot morphology (Bidadi et al., 2014). Thus, it appears
that CLE peptide-mediated long-distance signaling is not specific
to legumes.

Another family of secreted peptides, CEPs, is involved in root-
to-shoot signaling triggered by nitrogen starvation. CEP peptides
were identified using an in silico approach on the Arabidopsis
genome. Mature CEP1 peptide is a 15 aa oligopeptide that is
derived from a conserved domain of the C-terminal region of pre-
cursor polypeptide (Ohyama et al., 2008). It is reported that some
CEP genes responds to the nitrogen-poor conditions (Delay et al.,
2013; Tabata et al., 2014). Tabata et al. (2014) identified CEP1
receptors in Arabidopsis, XIP1/CEPR1 and CEPR2, and found
that a double mutant of CEPRs exhibited a pleiotropic pheno-
type relative to nitrogen starvation. Application of CEP1 peptides
into roots resulted in up-regulation ofNRT2.1, encoding a nitrate
transporter, in a shoot CEPRs-dependent manner, and some CEP
peptides have been detected in the xylem sap. It is proposed

that plants employ several types of nitrogen-related systemic
root-to-shoot-to-root signaling and coordinate root responses in
heterogeneous nitrogen environments at the whole plant level
(Ruffel et al., 2011). These results strongly suggest that CEP pep-
tide functions as a nitrogen-demand root-to-shoot signal.

CEP genes are widespread among seed plants (Roberts et al.,
2013). In M. truncatula, some CEP genes were also induced by
low nitrogen conditions. Overexpression of MtCEP1 resulted in
the inhibition of lateral root formation and the enhancement
of nodule formation (Imin et al., 2013). Additionally, a homolog
of CEPR1 receptor gene, CRA2, was also characterized in M.
truncatula. The cra2mutants formed an increased number of lat-
eral roots and a decreased number of nodules, the phenotype of
which is opposite toMtCEP1 overexpressing plants. Interestingly,
grafting experiments showed that CRA2 functions using two dif-
ferent pathways. CRA2 inhibits lateral root development in a local
manner, but enhances nodule formation in a systemic manner
from the shoot. These findings raise the possibility that MtCEPs
acts in both systemically and locally via CRA2 (Huault et al.,
2014).

As shown here, the studies in recent years on the secreted
oligopeptides provided new insight into organ-to-organ signaling
mechanism through xylem. Furthermore, a number of undeter-
mined mobile peptides have been identified through the analysis
of xylem sap in soybean (Okamoto et al., unpublished data). In
addition, many receptors have been found from the transcrip-
tomic analyses of phloem tissues (e.g., Deeken et al., 2008). These
imply general importance of secreted peptide transport via xylem
on plant long-distance signaling.

Phloem Signaling

Phloem SE cells form a transport network for long-distance allo-
cation of photosynthates and signaling molecules (Lucas et al.,
2013). Mature SE cells are developed from undifferentiated
future phloem cells, called protophloem SEs, through special-
ized autolysis processes accompanied by enucleation (Esau, 1950;
Furuta et al., 2014). The protophloem cells are sequentially gener-
ated as a line in the meristematic tissues resulting in a network of
phloem cells running through the entire body. Molecular genet-
ics studies in Arabidopsis revealed that ALTERED PHLOEM
DEVELOPMENT, a key transcription factor regulating phloem
development, is expressed in the protophloem cells and pro-
motes phloem development (Bonke et al., 2003). This phloem
differentiation, accompanied by degradation of some organelles
and enucleation, is achieved through the function of NAC45/86
downstream genes, which target a family of genes, NAC45/86
DEPENDENT EXONUCLEASE-DOMAIN PROTEIN 1-4, encod-
ing proteins with nuclease domains, essential for enucleation
(Furuta et al., 2014). Thus, phloem tube systems are sequen-
tially constructed through the processes of genetically con-
trolled cell differentiation from adjacent region to the meris-
tem and connecting to the differentiated leaves, stems, and
roots.

Translocation of molecules into SEs can be achieved by two
pathways; from apoplasmic to intracellular region, or cell-to-cell
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symplasmic transport via the specialized secondary PD inter-
connecting the SEs and neighboring CC (Oparka and Turgeon,
1999). At present, it is generally agreed that phloem flow is driven
by a hydrostatic pressure gradient along the tube according to
Münch’s pressure-flow hypothesis, although this hypothesis has
not yet been supported unequivocally (Knoblauch and Oparka,
2012). Considerable obstacles to the study of phloem cause dif-
ficulties in understanding of dynamics of living phloem tissues.
While xylem sap can be easily collected as root pressure exudates,
phloem sap has been collected from cut insect stylets (with a rate
of several µL/h) or as exudates from incisions into stems, peti-
oles, floral axes, or fruits with the use of chelating agents, e.g.,
EDTA to eliminate sieve tube blockage (Hoad, 1995). Phloem
flow transports small molecules such as photosynthesized sug-
ars, metabolites and phytohormones, as well as macromolecules
such as proteins and a variety of RNA species. As shown below,
a portion of these phloem-mobile molecules serve as informa-
tion signals. Recent reviews describing phloem transport of each
group of molecules are also available elsewhere (Kehr, 2006;
Lough and Lucas, 2006; Kehr and Buhtz, 2008; Lucas et al., 2013).

Phloem Mobile Phytohormones
Analysis of phloem exudates has provided evidence for that
phloem transports several phytohormones, including auxin, CKs,
abscisic acid, and gibberellins (Hoad, 1995). Jasmonic acids,
salicylic acids, and/or their derivatives are also proposed as com-
ponents of the phloem sap in association with defense signaling
(Vlot et al., 2008). IAA and other IAA derivatives have been iden-
tified from phloem sap. AUX1, a putative auxin influx carrier
expressed in higher ordered vascular tissues, as well as the other
members of the AUX1 gene family, facilitate the loading of IAA
into vascular tissues and the transport of IAA from source leaves
to sink tissues such as roots via the phloem (Marchant et al.,
2002). iP-type CKs are main contents of leaf exudates, whereas
tZ-type CKs are the major species in the xylem (Sakakibara,
2006). A biosynthesis gene, AtIPT3, and a purine permease gene,
AtPUP2, are expressed in phloem tissues (Burkle et al., 2003;
Miyawaki et al., 2004; Takei et al., 2004). The latter is involved in
CK nucleobase uptake to retrieve it into the phloem. Thus, the
transportation of auxins and CKs via the phloem appears to be
a controlled process. Additionally, hormone concentrations in
the phloem change in response to the environmental and devel-
opmental conditions (Hoad, 1995). Therefore, mobile hormones
in phloem should have key roles in controlling the physiology
of plants, although the precise nature of most of their roles and
the underling mechanisms remain to be elucidated. Recently CKs
were proposed as a shoot-derived inhibitor in nodulation (see the
later section).

Phloem Mobile Proteins and RNAs
The phloem translocation stream contains hundreds of proteins
and hundreds of transcripts, including mRNA, small RNA, and
long non-coding RNA. In the last decade, their roles in long-
distance signaling have been demonstrated. The importance of
protein transport has been established unequivocally by a case
of FT, a florigen. FT and its homolog proteins expressing in the
leaves promote meristem outgrowth, such as flowering in the

shoot apical meristems (Figure 1A) and the initiation of growth
of dormant buds or secondary shoot primordia (Böhlenius et al.,
2006; Hiraoka et al., 2013; Niwa et al., 2013) as well as the
tuberization in the underground stolons (Navarro et al., 2011).
Meanwhile, several types of RNA species have been thought
as phloem-mobile (Kehr and Buhtz, 2008), and the most agreed
phenomenon involving RNA transport is siRNA triggering sys-
temic silencing which is the basis for systemic acquired resistance
(Bologna and Voinnet, 2014).

The discovery of FT protein transport, first as a florigenic sig-
nal, was led by the studies on photoperiodic flowering initiated
early in the 19th century (Lang, 1965). Physiological experi-
ments have revealed plant “phototropism” (Garner and Allard,
1920) and demonstrated the presence of hormone-like systemic
signals generated in leaves under favorable photoperiodic con-
ditions (Chailakhyan, 1937). Genetic studies on flowering have
successfully identified a number of locus and/or genes related
to flowering especially in pea, rice and Arabidopsis (Rédei, 1975;
Koornneef et al., 1998; Yano et al., 2001; Weller et al., 2009).
Subsequent characterization of these genes has narrowed down
the position of the florigenic signal in the genetic cascades,
between FT and FD genes (Abe et al., 2005; Wigge et al., 2005).
Finally, the current conclusion that long-distance transport of
FT protein, as a florigen, via phloem is the molecular basis
for the promotion of flowering by photoperiodic control was
agreed through the studies conducted by several research groups
(Corbesier et al., 2007; Jaeger and Wigge, 2007; Lin et al., 2007;
Mathieu et al., 2007; Tamaki et al., 2007; Notaguchi et al., 2008).
An important role of FT, or its homologs, as it relates to flow-
ering has been described in many plant species. Additionally,
in chrysanthemum, CsAFT, a PEBP family gene which belongs
to a different group from the FT group, is also generated in
leaves and then moved to the apex to suppress flowering, which
may be an antiflorigen, another proposed systemic signal which
controls flowering (Higuchi et al., 2013). The transport mech-
anisms of FT or its homologs are as yet largely unknown,
except for a clue from an ER membrane localized exporter,
FT-INTERACTING PROTEIN 1, which is involved in protein
loading of FT from the CC into the SE tube system (Liu et al.,
2012). The existence of regulatory systems in long-distance FT
transport has been also implied from the fact that amino acid
substitutions of FT protein caused a defect only in its mobil-
ity, but not in activity that promotes flowering (Yoo et al., 2013).
Near the shoot apical meristems, FT-GFP protein was detected
in the provasculature at the apex and at the base of the shoot
apical meristem, but this pattern was not observed in very
young seedlings (Corbesier et al., 2007). These observations fur-
ther support the presence of regulatory systems for FT protein
movement.

Phloem exudates contain a number of proteins for the protec-
tion of functional phloem tubes. For an example, major structural
phloem proteins encoded by SE occlusion gene family have roles
in wound sealing of SEs to avoid nutrient loss (Ernst et al., 2012;
Jekat et al., 2013). The analyses of phloem exudates also have
identified a large quantity of proteins that are functionally related
to defense response, such as proteinase inhibitors, lectins, and
other proteins induced by wounding or insect feeding. These
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proteins disrupt feeding as well as digestion of phloem contents
and includes some toxic proteins (Kehr, 2006). However, the
functions of many of phloem proteins have yet to be elucidated.
While the presence of a type of passive transport into SEs has
been depicted by diffusion of GFP fused-proteins (Stadler et al.,
2005), active transport may also occur because the phloem pro-
tein population includes proteins larger than 100 kDa which is in
excess of the PD size exclusion limits and such protein fractions
have ability to increase size exclusion limits (Balachandran et al.,
1997). Why plants deliver only a part of their proteins is an
important question to be answered to understand the function
of the phloem translocation stream as well as plant systemic
signaling.

Endogenous cellular RNAs are known to be transported
systemically; small non-coding RNAs, such as siRNA and
miRNA, and mRNAs (Kehr and Buhtz, 2008). Among these,
the function of siRNA has been most well-established. The
mobility of siRNA was clearly explained by grafting exper-
iments with multiple dicer mutants as recipients in which
siRNA production does not occur. siRNA movement trig-
gers post-transcriptional gene silencing and also transcrip-
tional gene silencing, which is crucial for the achievement
of systemic acquired resistance to pathogens and viruses in
plants (Dunoyer et al., 2010; Molnar et al., 2010). miRNA move-
ment via phloem is also supported by several evidences
(Marín-González and Suárez-López, 2012). miR399 has been
proposed as a mobile signal in response to phosphate starved
conditions (Lin et al., 2008; Pant et al., 2008). miR395 has been
identified using miRNA processing mutant hen1-1 under sul-
fate starved conditions (Buhtz et al., 2010). The mobility of the
miR172 and miR156 regulating phase transitions such as flower-
ing and tuberization have also been demonstrated (Martin et al.,
2009; Kasai et al., 2010; Bhogale et al., 2014). Non-coding RNAs
longer than si/miRNAs, ranging from 30 to 90 bases, were
also found from pumpkin phloem exudates and, in the in
vitro tests, they showed activities that inhibit protein transla-
tion (Zhang et al., 2009). Thus, non-coding RNAs regulate their
target expression levels in their target tissues in their own
manners.

mRNA transport has been also well-evidenced by graft-
ing experiments (Notaguchi, 2015). Although the functions
of mRNAs have been not clarified yet, their effect of several
mRNA species on development has been observed; a dom-
inant form of a KNOX mRNA, named Me, can result in
altered leaf morphology (Kim et al., 2001), a dominant form
of GAI mRNA resulted in modified leaf and fruit shapes
(Haywood et al., 2005), a BEL1-like mRNA affected the tuberiza-
tion (Banerjee et al., 2006), and dominant forms of two Aux/IAA
mRNAs affected the lateral root formation (Notaguchi et al.,
2012). In addition, many of phloem mobile mRNAs were
identified in Nicotiana benthamiana/Arabidopsis hetero-grafting
experiments, in which the derivatives of the Arabidopsis donor
mRNAs were undoubtedly identified from recipient N. ben-
thamiana scions by differences of their genome sequence infor-
mation (Notaguchi et al., 2015). Although the transport mech-
anisms are still largely unknown, a few studies have provided
information on RNA-binding proteins for each of small RNA

and mRNA (Xoconostle-Cázares et al., 1999; Yoo et al., 2004;
Ham et al., 2009) as well as the importance of 3D RNA structure
in viral RNA movement (Takeda et al., 2011). Additionally, no
detectable RNase activity has been observed in the phloem imply-
ing that RNA transport has important roles in plant physiology
(Sasaki et al., 1998; Doering-Saad et al., 2002). However, direct
evidence for the biological relevance of long-distance transport
of mRNA is still missing.

These findings collectively suggested that the phloem translo-
cation system is highly specialized for systemic signaling where
a range of molecules are delivered as signal agents. Currently,
physiological and developmental roles of only a few molecules
have been characterized or identified. Future challenges are
to investigate their roles of remains and to reveal their
aspects of how each molecular species is used for systemic
signaling.

A Link of Xylem and Phloem Pathways

The necessity of long-distance signaling between separated
organs, such as root-to-shoot, shoot-to-root, shoot-to-shoot and
root-to-root, has been proposed through the observations of
systemic responses to surrounding environmental conditions.
For instance, plants respond to heterogeneous soil conditions of
the availability of mineral macro- and micronutrients or local
biotic stress such as insect attack, in which vascular tissues have
been thought to be a pathway for the underlying long-distance
signaling (Giehl et al., 2009; Liu et al., 2009; Soler et al., 2013).
Xylem sap flow is directed from the roots to the shoot driven
by water loss during transpiration and photosynthesis. In con-
trast, phloem sap flow is directed from the source mature leaves,
where photosynthesis reaction is actively preceded with their
large surfaces, to sink organs such as young developing meris-
tems in the shoots and the roots. Therefore, translocations such
as “root-to-shoot” and “shoot-to-root and shoot-to-shoot” can
be simply achieved by the xylem and the phloem pathways,
respectively.

On the other hand, “root-to-root” signaling, where signals
are emitted from a part of roots and transmitted to another
part of roots, could be partially explained by Ca2+ wave rang-
ing in a part of roots (Choi et al., 2014); however, more gen-
erally, it appears to be achieved through the both xylem and
phloem pathways, which has a “root-to-shoot-to-root” loop.
This signaling circuit was more clearly established by recent
discoveries of xylem mobile peptide signals as described in
a previous section. The fact that receptors of xylem-mobile
peptides are expressed in the phloem highlights a functional
link between xylem and phloem signaling pathways. Analyses
of GUS reporter lines for the receptors indicated that HAR1,
a CLE-RS receptor, is preferentially expressed in the phloem
(Nontachaiyapoom et al., 2007) and XIP1/CEPR1, a CEP1 recep-
tor, is specifically expressed in the phloem (Bryan et al., 2012).
These findings suggest that the phloem is the site where the
root-derived peptides are converted to another secondary sig-
nal, and that such secondary messengers can be transported
on the phloem sap flow toward “shoot-to-root.” In fact, in the
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FIGURE 1 | A model of long-distance signaling via plant vascular
tissues. (A) Potential signal molecules of the xylem (blue) and the
phloem (red) translocation pathways. Insets show xylem loading and
phloem unloading of signal molecules in the sink tissues. (B) Signal

relay from the xylem to the phloem in the leaf vein. (C) Signal
convergence by running through a stem region in each of xylem and
phloem pathways. Xy, xylem; Ph, phloem; CC, companion cell; SE,
sieve element; PD, plasmodesmata.

CLE-RS/HAR1 cascade, CKs has been proposed as the shoot-
to-root signals generated in the phloem to control nodulation.
In the presence of CLE-RS peptides, HAR1 receptor promotes
the production of shoot CKs through the up-regulation of a
CK synthase, LjIPT3, in the phloem tissues; thus, the gen-
erated CKs could exert their activities to inhibit nodulation
(Sasaki et al., 2014). In addition to nodulation control, the shoot-
derived CKs could trigger the other physiological changes in
the roots. Alternatively, other unrevealed secondary signal, if
present, may explain this signaling specificity. Another impor-
tant future question is the temporal aspects of shoot-derived CKs
signaling to understand the mechanism to control the balanced
symbiosis. Nodulation is a specialized phenomenon evolved
in legumes that allows nitrogen fixation through a symbiosis
with rhizobia, but the CKs biosynthesis is also strongly affected
by nitrogen sources in plants other than legumes (Sakakibara,
2006). Hence, the CEP peptide pathway triggered by nitrogen
starvation could also link with CKs cascade in downstream
signaling.

These recent findings shed light on an advanced concept that
the xylem and the phloem pathways develop a long-distance
root-to-shoot and then shoot-to-root signaling feedback circuit
in plants. In this scenario, signal molecules are transmitted across
long-distances to response the soil environments via the vas-
cular tissues with the following sequential processes. First, the
information signaling molecules, generated in somewhere or in
all parts of the branched root system, move shoot-ward via the

xylem. Second, the signals run through a stem region between
branched root and branched shoot and disperse to each of the
mature leaves, possibly to the minor veins (Figure 1A). Third,
the signal molecules are translocated from the xylem to the
phloem and perceived by the receptors located on the phloem
cells. In this process, the information is converted to the sec-
ondary signal inside of the phloem cells (Figure 1B). Fourth,
the intracellular signal molecules travel on the phloem sap flow,
including shoot-to-root translocation. Thus, finally the infor-
mation signals generated in a part of root system can transmit
to another part of the root. In each of these shoot- and root-
ward translocation flows, all signaling molecules generated in
branches of organs in response to heterologous environmen-
tal factors should be physically converged by running through
a stem region (the bases of shoot and root), which ought to
be the sole pathway (Figure 1C). This convergence might be
the way to measure the entire signal level by averaging of the
intensities of the signals generated in local and to make deci-
sions how to respond or how much plants respond. Dosage
control is a possible and quite likely mechanism that can be
used to measure the level of signals. These points need to be
addressed in the future studies. As described here, although
plants do not have a circulatory system connecting the entire
body as observed in animals, bi-directional signaling can be
achieved by linking the xylem and phloem translocation path-
ways, and this may represent an elaborate signaling mechanism
in plants.
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Concluding Remarks

In our current view, numerous mobile molecules that include
secreted peptides in the xylem and proteins and RNA species in
the phloem could have roles as specific information signals. In
contrast to animal systems, where nervous systems and vascu-
lar tissues contribute to signaling and nutrient delivery (a sort
of signaling as well), respectively, plant vascular systems serve
as conduits for water and nutrients as well as long-distance sig-
naling pathways which includes root-to-shoot signaling via the
xylem, shoot-to-sink (such as the roots and young growing tissues
in the shoots) signaling via the phloem, and a root-to-shoot-to-
root circuit via the xylem as the first half and the phloem as
the second half. Importantly, to reach their final destinations in
each long-distance translocation pathway, short-distance trans-
port after unloading usually at the terminus of vascular tissues
is also necessary. The roles of most xylem peptides and phloem
proteins and RNAs in plant development and physiology are
still largely unknown. Additionally, long-distance transport has

been suggested for the other molecules such as a lipid, glycerol-3-
phosphate, that is used for systemic immunity (Chun et al., 2002;
Chanda et al., 2011); however, their delivered pathway has yet to
be elucidated. Reactive oxygen species may also serve as potential
systemic signals (e.g., Miller et al., 2009). Thus, further studies are
required to elucidate the functions and nature of vascular mobile
molecules, together with the transport mechanisms involved in
their movement.
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