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Climate change will increase autumn air temperature, while photoperiod decrease will

remain unaffected. We assessed the effect of increased autumn air temperature on timing

and development of cold acclimation and freezing resistance in Eastern white pine (EWP,

Pinus strobus) under field conditions. For this purpose we simulated projected warmer

temperatures for southern Ontario in a Temperature Free-Air-Controlled Enhancement

(T-FACE) experiment and exposed EWP seedlings to ambient (Control) or elevated

temperature (ET, 1.5◦ ◦+ C/+3 C during day/night). Photosynthetic gas exchange,

chlorophyll fluorescence, photoprotective pigments, leaf non-structural carbohydrates

(NSC), and cold hardiness were assessed over two consecutive autumns. Nighttime

temperature below 10◦C and photoperiod below 12 h initiated downregulation of

assimilation in both treatments. When temperature further decreased to 0◦C and

photoperiod became shorter than 10 h, downregulation of the light reactions and

upregulation of photoprotective mechanisms occurred in both treatments. While ET

seedlings did not delay the timing of the downregulation of assimilation, stomatal

conductance in ET seedlings was decreased by 20–30% between August and early

October. In both treatments leaf NSC composition changed considerably during autumn

but differences between Control and ET seedlings were not significant. Similarly,

development of freezing resistance was induced by exposure to low temperature

during autumn, but the timing was not delayed in ET seedlings compared to Control

seedlings. Our results indicate that EWP is most sensitive to temperature changes

during October and November when downregulation of photosynthesis, enhancement

of photoprotection, synthesis of cold-associated NSCs and development of freezing

resistance occur. However, we also conclude that the timing of the development of

freezing resistance in EWP seedlings is not affected by moderate temperature increases

used in our field experiments.

Keywords: Pinus strobus, elevated temperature, freezing tolerance, photosynthesis, photoprotection,

carbohydrates, autumn cold acclimation, T-FACE
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Introduction

Global land-surface temperatures are increasing, particularly in
northern latitudes and during winter months (Intergovernmen-
tal Panel on Climate Change, 2007). Records collected since
the mid-twentieth century describe a delay in the onset of dor-
mancy and an increase in growing season length in temperate
and boreal forest regions across the northern hemisphere, par-
ticularly in North America (Boisvenue and Running, 2006; Piao
et al., 2007; McMahon et al., 2010). The environmental signals
used by trees to sense seasonality and trigger dormancy and
development of cold acclimation are the decrease in tempera-
ture and the length of photoperiod during the autumn (Welling
et al., 2004). Increasing temperatures, as projected by climate
change models, will delay the low temperature signal while pho-
toperiod will remain unaffected. Asynchronous phasing of tem-
perature and photoperiod is expected to impact the onset and
development of cold acclimation during autumn. In evergreen
conifers from high latitudes, cold acclimation includes the cessa-
tion of growth (Rossi et al., 2008), development of bud dormancy
(Cooke et al., 2012), changes in chloroplast function and mem-
brane composition (Öquist and Huner, 2003; Ensminger et al.,
2006; Crosatti et al., 2012), a transition from dynamic to sus-
tained energy quenching (Demmig-Adams and Adams, 2006),
changes in gene expression (Ruelland et al., 2009), accumulation
of intracellular metabolite pools (Stitt and Hurry, 2002), and cold
hardening (Guy, 1990). A critical factor affecting the impact of
future elevated autumn temperature is the importance of pho-
toperiod vs. temperature for the induction of phenological events.
Early conifer studies suggested seasonal variations in photon flux
density (Troeng and Linder, 1982) and the onset of autumn frosts
(Bergh et al., 1998) as regulators of autumn phenology. More
recent studies identified differences in the sensitivity of various
evergreen conifer species to photoperiod and temperature during
autumn bud dormancy (Olsen, 2010; Cooke et al., 2012).

Photoperiod induces physiological changes in plants during
late summer and early autumn. Decreasing photoperiod results
in the depletion of sugars, particularly sucrose, toward the end
of the night, as was shown in Arabidopsis (Gibon et al., 2009)
and Populus (Hoffman et al., 2010). The nighttime depletion of
sugars acts as ametabolic signal during the following day, inhibit-
ing growth and reducing the rate of starch turnover (Gibon
et al., 2009). As temperatures begin to decrease during autumn,
low temperature exposure induces the cessation of growth in
evergreen conifers by limiting photosynthetic productivity and
decreasing the rate of cell differentiation (Rossi et al., 2008). The
resulting decrease in carbon sink size affects rates of cellular
respiration and induces negative feedback regulation of photo-
synthetic carbon assimilation (Busch et al., 2007; Bauerle et al.,
2012).

Enzymatic reactions of the Calvin-Benson cycle are slowed
down under low temperature conditions (Bernacchi et al., 2002).
To compensate for the reduced energy sink, evergreen conifers
reduce their capacity for harvesting sunlight by adjusting pho-
tosynthetic pigment pools, and downregulate the capacity of
the light reactions in order to maintain photostasis (Huner
et al., 1998; Ensminger et al., 2006; Kurepin et al., 2013). Low

temperature also inhibits turnover rates for the reaction cen-
ter core protein D1 (Schnettger et al., 1994; Öquist et al., 1995;
Zarter et al., 2006), thus decreasing the number of functional
PSII reaction centers and limiting photochemical energy conver-
sion (Sveshnikov et al., 2006; Zarter et al., 2006). As a result, the
plant’s capacity to quench absorbed light energy via photochem-
ical energy conversion is greatly diminished (Sveshnikov et al.,
2006; Zarter et al., 2006; Busch et al., 2007).

As photochemical efficiency decreases under low temperature
conditions, light energy absorbed in excess energy can induce
the light harvesting complexes (LHCs) to dissociate from pho-
tosynthetic reaction centers (Iwai et al., 2010; Johnson et al.,
2011), and trigger the formation of thylakoid protein aggregates
(Ottander et al., 1995). Excess light energy can also generate
highly reactive chlorophyll and oxygen radicals (Ensminger et al.,
2006). Plants increase the production of radical scavengers, such
as α-tocopherol, β-carotene, neoxanthin and lutein (Havaux and
Kloppstech, 2001; Busch et al., 2007). Xanthophyll pigments also
serve a year-round photoprotective function. High light expo-
sure causes the de-epoxidation of violaxanthin, via antherax-
anthin, into zeaxanthin. During the warm seasons, this occurs
in a dynamic and reversible process known as the xanthophyll
cycle, which is involved in energy-dependent nonphotochemical
quenching in response to a trans-thylakoid pH gradient created
by photosynthetic electron transport (Öquist and Huner, 2003;
Ensminger et al., 2006; Sveshnikov et al., 2006; Zarter et al., 2006;
Busch et al., 2007). The interaction of zeaxanthin with LHCII,
mediated by the PsbS protein (Niyogi et al., 2004), allows excess
light energy to be dissipated as heat (Zarter et al., 2006); zeax-
anthin also acts as an antioxidant to protect membrane-bound
lipids (Johnson et al., 2007). In evergreen conifers, prolonged
exposure to cold-induced high light stress arrests the xantho-
phyll cycle in the zeaxanthin form and induces PsbS accumu-
lation at the LHCII aggregates, allowing absorbed energy to be
constantly dissipated in a process known as sustained nonphoto-
chemical quenching (Öquist and Huner, 2003; Demmig-Adams
and Adams, 2006; Zarter et al., 2006).

As photosynthesis and growth cease, leaf carbon partition-
ing is shifted from starch to soluble sugar metabolism, enabling
mobilization of carbohydrates from leaves to sink tissues (Guy
et al., 1992; Strand et al., 1999; Stitt and Hurry, 2002; Dauwe
et al., 2012). In addition to regulating plant metabolism, decreas-
ing photoperiod causes phytochromes to activate a cold response
pathway mediated by the CBF transcription factors (Maibam
et al., 2013), resulting in enhanced freezing tolerance (Welling
et al., 2002, 2004; Li et al., 2003; Lee and Thomashow, 2012).
Low temperature induces a stronger cold response via CBF (Cook
et al., 2004) and ABA-mediated (Cuevas et al., 2008) pathways,
resulting in strengthened cytoskeleton and cell walls, increased
membrane lipid fluidity and synthesis of cryo- and osmoprotec-
tants (reviewed in Crosatti et al., 2012), as well as accumulation
of soluble sugars including raffinose and sucrose in leaf tissues
(Dauwe et al., 2012). High levels of sucrose (Tabaei-Aghdaei et al.,
2003) and raffinose (Pennycooke et al., 2003) are correlated with
increased freezing tolerance.

Several studies have investigated the effect of elevated temper-
ature on plants and growing season length. Most studies have
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focused on the effects of spring warming (Hänninen and Tanino,
2011). Studies assessing the response of evergreen conifers to ele-
vated autumn temperature have largely been conducted using
climate chambers (e.g., Busch et al., 2007), mesocosms (e.g.,
Tingey et al., 2007) or open-top chambers (e.g., Murray et al.,
1994; Wang et al., 1995; Repo et al., 1996; Guak et al., 1998).
However, results obtained from chamber experiments often can-
not be directly extrapolated to the field (Aronson and McNulty,
2009). Temperature free-air-controlled enhancement (T-FACE)
experiments provide an attractive alternative to chamber systems
because they do not affect solar radiation, precipitation, soil or
wind (Kimball et al., 2008; Aronson and McNulty, 2009). Pre-
vious T-FACE experiments have focused on herbaceous species,
such as wheat (de Boeck et al., 2012), alfalfa (Kimball et al., 2008),
rice (Mohammed and Tarpley, 2009), and prairie grasses (Luo
et al., 2001; Kimball et al., 2008). Studies using T-FACE experi-
ments involving evergreen conifer seedlings have been rare and
focused on the effect of elevated temperature on productivity
during the growing season (e.g., Zhao and Liu, 2009).

The aim of this study was to characterize autumn cold
acclimation in the evergreen conifer Pinus strobus under field
conditions and to assess the effect of elevated autumn tem-
perature at the beginning of the cold hardening process and
the subsequent development of cold hardiness. We hypothe-
sized that elevated temperature (i) delays the downregulation of
photosynthesis, (ii) delays the transition from dynamic to win-
ter sustained non-photochemical quenching, (iii) delays changes
in non-structural leaf carbohydrates including starch and low
temperature-associated soluble sugars, and (iv) impairs the devel-
opment of freezing tolerance. A T-FACE system was used to
increase temperature by 1.5◦C during the day and 3◦C during the
night, in accordance with 35-year temperature projections for the
Canadian provinces of Ontario and Québec (Price et al., 2011).

Materials and Methods

Study Site and Plant Material
The experiment was conducted at the Koffler Scientific Reserve
of the University of Toronto located near King City, Ontario
(44◦050′N, 79◦483′W). A Temperature Free-Air-Controlled
Enhancement (T-FACE) system was set up according to Kim-
ball et al. (2008), consisting of 10 experimental plots, each
with a diameter of 3m. Ambient canopy temperature (AT) was
recorded using infrared sensors (Model IRT-P5, Apogee Instru-
ments, Logan, UT, USA) in five unheated control plots. For the
elevated temperature (ET) treatment, five plots were arranged
with six 1000 W infrared heaters (Mor Electric Heating Associ-
ation, Comstock Park, MI, USA) per plot in a hexagonal array,
where leaf temperature was raised by+1.5◦C during the day and
+3◦C during the night, according to Kimball et al. (2008). Ambi-
ent air and canopy temperatures were recorded using a CR1000
datalogger (Campbell Scientific Inc., Edmonton, AB, Canada).
Precipitation data were obtained from the Buttonville Airport
weather station inNewmarket, ON (Environment Canada, 2014),
located 25 km from the field site.

Plots were excavated 30 cm deep, filled with a mixture com-
posed of one-third peat, one-third sand and one-third local soil,

and tilled prior to planting. Three-year-old (3 + 0) bare-rooted
Pinus strobus seedlings were obtained from a local seed orchard
(seed zone 37, Somerville Nurseries, Everett, ON, Canada). In
early May 2012, 90 seedlings were planted per plot. Gas exchange
and fluorescencemeasurements commenced inmid-August 2012
after seedlings had established, and continued until December
2012. During 2013, measurements were expanded to assess water
potential, soil moisture, and freezing tolerance. Measurements
in 2013 were taken monthly from August 2013 until Novem-
ber, with final measurements taken in January 2014 (Figure 1).
At each time point, three seedlings were randomly selected for
measurement from each of five replicate plots per treatment. Soil
moisture was measured using a HydroSense ™ soil water con-
tent sensor (Campbell Scientific Inc., Edmonton, AB, Canada).
Soil moisture, measured as percent volumetric water content, was
assessed at a depth of 15, 10 cm from the base of each measured
seedling, three times per seedling. Deep frozen soil and ice packs
prevented measurements of soil moisture in January 2014. Air
humidity and temperature sensors (Hoskin Scientific Limited,
Burlington, ON, Canada) were installed in May 2014, in order to
assess differences in vapor pressure deficit (VPD), or the differ-
ence between actual and saturated air moisture, between heated
and unheated plots during July 2014.

Mature current-year needles were collected from measured
trees immediately following measurements, flash-frozen in liquid
nitrogen, and stored at−80◦C until analysis.

Photosynthetic Gas Exchange and Chlorophyll
Fluorescence
Gas exchange and chlorophyll fluorescence measurements were
performed simultaneously using a portable photosynthesis sys-
tem (LI-6400 XT; Li-Cor Biosciences, Lincoln, NE, USA) with
attached leaf chamber fluorometer (6400-40). Topmost, south-
facing needles of the primary shoot were arranged in a flat single-
needle layer and placed into the cuvette. The cuvette was set
to maintain a level of 400 ppm CO2 and ambient temperature,
which was selected based on the predicted daily average (Table 1).

Dark-adapted minimum PSII fluorescence (Fo), and dark-
adapted maximum PSII fluorescence (Fm) were determined after
40min of dark adaptation. Subsequently, plants were exposed to
1200µmol quantam−2 s−1 for 7–12min to obtainmeasurements
of steady-state photosynthesis; this light intensity represents one
that is typically observed in boreal environments on clear and
sunny days, even during early winter or early spring (Ensminger
et al., 2004). Measured parameters included photosynthetic CO2

assimilation (A), stomatal conductance (gs), evapotranspiration
(E), light-adaptedminimumPSII fluorescence (F′o), light-adapted
maximum fluorescence (F′m), and transient fluorescence (Ft),
which were used to calculate gas exchange and fluorescence
parameters (Table 2).

The seasonal depression of Fm due to low temperature does
not allow for recovery of the maximum fluorescence signal in the
dark, and thus limits its use for the calculation of the fluorescence
parameter NPQ (Demmig-Adams and Adams, 2006). A good
estimation of NPQ requires a dark-adapted control value of Fm
that is measured when the photosynthetic apparatus is in a fully
relaxed state. During winter, when Fm is depressed and does not
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FIGURE 1 | Seasonal variations in precipitation, daylength and

temperature from August 1, 2012 to January 31, 2014 at

Koffler Scientific Reserve in Ontario, Canada. (A) Daily

precipitation and (B) 5-day running averages of max (upper dark

gray line), mean (light gray line), and minimum ambient air

temperature (lower dark gray line), as well as photoperiod (dotted

black line). Arrows indicate measuring dates. Black bar above

temperature data indicates periods where heaters were operating;

gray bar indicates period where heating was on, but data was lost

due to a logger malfunction.

TABLE 1 | Cuvette air temperature measured during each measurement

campaign, using the LI- 6400 XT gas exchange system.

Cuvette air temperature (◦C)

Month 2012 2013

August 25.4±0.1 26.2±0.3

September 22.3±0.4 24.7±0.2

October 17.2±0.1 6.3±0.4

November 7.2±0.1 6.5±0.7

December 0.9±0.1 n/a

January n/a −0.1±0.1

Values represent the average of 30 measurements (15 from ambient plots, 15 from

elevated temperature plots) ± S.E.

relax rapidly in the dark, NPQ will be underestimated (Demmig-
Adams et al., 2012). The non-photochemical quenching param-
eter, NPQ, was therefore calculated as shown in Table 2. The
fully recovered maximum fluorescence (Fmrec) was estimated

as Fo ∗ 5, according to Schreiber et al. (1995) and Ensminger
et al. (2004). This estimation is based on two assumptions: firstly,
the ratio of fully recovered Fm/Fo is equal to 5, which has been
demonstrated in multiple plant species (Björkman and Dem-
mig, 1987), including conifers (Adams and Demmig-Adams,
1994); and secondly, unlike Fm, Fo shows little seasonal vari-
ation (Ottander et al., 1995). However, this approach might
occasionally underestimate NPQ when Fo is strongly decreased.

Eachmeasurement took approximately 15min andwere taken
from 2 h after dawn until 2 h prior to sunset. Measurement cam-
paigns occurred over 2–3 consecutive days. Measurement order
was randomized at individual, plot and treatment levels during
each campaign in order tominimize confounding diurnal or daily
effects.

All measurements were performed on attached needles. Fol-
lowing measurement, needles in the cuvette were harvested to
estimate the light-exposed needle surface area using a scanner
and the WinSeedle software package (Regent Instruments Inc.,
Québec, QC, Canada).
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TABLE 2 | Equations for gas exchange and fluorescence parameters.

Parameter Equation References

IWUE Intrinsic water use efficiency
A

gs
Silva and Horwath, 2013

Fv/Fm Maximum quantum efficiency of PSII
Fm − Fo

Fm
Genty et al., 1989

1-qP Excitation pressure at PSII 1−
F ′m − Ft
F ′m − F ′o

Maxwell and Johnson, 2000

8PSII Effective quantum yield of PSII 1−
Ft
F ′m

Genty et al., 1989

NPQ Total nonphotochemical quenching
Fmrec

Fm
′

− 1 Bilger and Björkman, 1990; Ensminger et al., 2004; Porcar-Castell, 2011

NPQS Sustained nonphotochemical quenching
Fmrec

Fm
− 1 Maxwell and Johnson, 2000; Ensminger et al., 2004; Porcar-Castell, 2011

Water Potential
Water potential measurements were performed from August to
November, 2013. Pre-dawn and midday (noon) water potential
(9w) were assessed on individual current-year needles using a
Model 1505D Pressure Chamber Instrument (PMS Instrument
Company, Albany, OR, USA). During each campaign, measure-
ments were taken from three needles per seedling on three
seedlings per plot, five plots per treatment. DuringNovember and
January water potential was not assessed because the system did
not operate at sub-freezing temperatures.

Analysis of Photosynthetic Pigments
50–60mg homogenized frozen needle tissue was extracted in
2mL methanol buffered with 2% 0.5M ammonium acetate
according to Junker et al. unpublished. Samples were filtered
using a 0.45µmnylon filter prior to HPLC analysis. Chlorophylls
and carotenoids were separated on a reverse-phase C30 column
(YMC Carotenoid; Chromatographic Specialties Inc., Brockville,
ON, Canada). Pigment extracts were analyzed with an Infinity
1200 series high performance liquid chromatography (HPLC)
system equipped with a UV-diode array detector (Agilent Tech-
nologies, Santa Clara, CA, USA). De-epoxidation state (DEPS)
was calculated as (0.5A+Z)/(V+A+Z) where V is violaxanthin,
A is antheraxanthin, and Z is zeaxanthin. Total chlorophylls and
α-tocopherol were expressed on a per freshweight basis, as the
water content of white pine needles fluctuates less than 10%
year-round (Verhoeven et al., 2009).

Analysis of Non-Structural Carbohydrates
30-40mg homogenized and lyophilized needle tissue from sam-
ples collected in August, October and December of 2012 were
extracted in methanol:chloroform:water (12:5:3) according to
Park et al. (2009), with the addition of 250µg galactitol as an
internal standard. 2mL of the soluble sugar extract was vac-
uum centrifuged and resuspended in 1mL of nanopure water.
The resuspended extract was filtered using a 0.45µm nylon fil-
ter and analyzed using a DX-600 anion-exchange HPLC (Dionex,
Sunnyvale, CA, USA) equipped with a Hi-Plex Ca column (Agi-
lent Technologies, Santa Clara, CA, USA) and electrochemi-
cal pulse amperometric detector (EC-PAD). Sucrose, fructose,
glucose and pinitol were eluted with water at a flow rate of

0.170mL/min with a column temperature of 70◦C. Post-column
detection was performed using NaOH at a rate of 100mM/min.
Raffinose was eluted using a Carbo-Pac PA1 column (Dionex,
Sunnyvale, CA, USA) with 150mM NaOH (isocratic) at a flow
rate of 1mL/min with post-column detection using NaOH at a
rate of 100mM/min.

Starch was determined from the residual tissue pellet from
the soluble sugar extraction. The pellet was dried overnight at
55◦C. 25–50mg of the dried pellet were resuspended in 5mL
of 4% H2SO4, vortexed and autoclaved for 3.5min. After cool-
ing to room temperature, the extract was spun at 500 rpm for
5min and the supernatant collected. The supernatant was filtered
using a 0.45µm nylon filter and analyzed using a DX-600 anion-
exchange HPLC (Dionex, Sunnyvale, CA, USA) equipped with a
Carbo-Pac PA1 column (Dionex, Sunnyvale, CA, USA) and EC-
PAD. Glucose was eluted with water at a flow rate of 1mL/min
with a column temperature of 30◦C. Post-column detection was
performed using NaOH at a rate of 100mM/min.

Freezing Tests
Chlorophyll fluorescence was used to assess freezing tolerance
in August, September, October, November of 2013 and January
2014, using a modified protocol based on Sutinen et al. (1992).
Current-year shoots were dark-adapted for 40min. Each shoot
was excised and Fv/Fm was measured. The shoots were then
individually wrapped in moist paper towel and aluminum foil
and sealed in a plastic bag prior to transport on ice back to the
laboratory.

Shoots were exposed to freezing temperatures using a Ther-
motron SM-16-8200 environmental test chamber (Thermotron
Industries, Holland, MI, USA). The maximum cooling rate was
2.5◦Ch−1, with the 0 to −1◦C interval achieved over 1 h. Since
freezing resistance varies over the course of the year, preliminary
freezing tests were performed throughout the year to identify
a range of freezing temperatures suitable to induce freezing
damage in white pine seedlings. Target freezing temperatures
were then adjusted during each month of the experiment in
order to account for the expected change in freezing tolerance,
with the aim of selecting a range of freezing temperatures that
bracketed the temperature at which 50% of the seedlings were
damaged by freezing (LT50). One shoot per tree per freezing
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temperature was held at the desired temperature for 6–8 h and
subsequently thawed in a stepwise manner to room temperature:
shoots exposed to ≤ −30◦C were kept at −20◦C for 24 h, trans-
ferred to 4◦C for 24 h, and then transferred to room temperature
for 24 h recovery. Shoots exposed to ≥ −20◦C were transferred
directly to 4◦C for 24 h and then to room temperature for recov-
ery (Sutinen et al., 1992). Following the 24 h recovery period,
shoots were unwrapped and exposed to 1 h light exposure at
800µmol quanta m−2 s−1 in order to stimulate PSII, then dark-
adapted for 40min (Burr et al., 2001). Fv/Fm was then assessed.
Since we used chlorophyll fluorescence to evaluate freezing injury
at PSII, we defined LT50 as the temperature required to reduce
maximum Fv/Fm by 50%. Maximum Fv/Fm was assessed by sub-
jecting non-frozen shoots to the same protocol of 24 h recov-
ery period, 1 h of light exposure, 40min of dark adaptation and
measurement. LT50 values were calculated by fitting Fv/Fm val-
ues measured from freezing-recovered shoots using a modified
Richards curve model (Fircks and Verwijst, 1993):

f(x) =
K

1+ e−B(x−M)

where K represents the upper asymptote, or pre-freezing Fv/Fm;
B represents the maximum slope at LT50 andM represents LT50.
Data was tested for normality using the D’Agostino-Pearson
omnibus normality test. The curve for each treatment (ele-
vated vs. ambient temperature) was fitted using the least squares
method. LT50 values were compared between treatments using an
extra sum-of-squares F test with a P-value cutoff of 0.05. Analysis
was performed using Graphpad Prism v6.04 (Graphpad Software,
Inc., La Jolla, CA, USA).

Statistical Analyses
Two-Way ANCOVA was used to assess the effect of the elevated
temperature treatment and time on gas exchange, fluorescence
and photosynthetic pigments, while accounting for the effect of
seasonal variation introduced by photoperiod and daily temper-
ature. The ANCOVA model used treatment and day of year as
categorical fixed factors, photoperiod and minimum daily tem-
perature as continuous numeric covariates, and plot and year
as random factors, using the lme4 package in R v3.1.1 (http://
www.r-project.org/). Multiple comparisons were used to contrast
treatment within each time point, and were performed using the
multcomp package in R v3.1.1. P-values for multiple comparisons
were adjusted using Bonferroni correction.

Starch and soluble sugars were analyzed using Two-Way
ANOVA to identify treatment, time and interaction effects.
Tukey’s HSD post-hoc test was used to identify significantly dif-
ferent groups. The statistical analyses for sugars were performed
using Graphpad Prism v6.04.1.

Treatment responses of A, Fv/Fm, and NPQS from both years
were pooled, independently plotted against minimum daily tem-
perature and photoperiod, and fitted using the least squares
method with a 4-parametric sigmoidal curve function:

f(x) = A+
K − A

1+ e−B(x−M)

where K represents the maximal parameter value; A represents
the minimal parameter value; B represents the maximum slope
andM represents the midpoint of the curve at which estimated
values represent 50% of the maximum value of the parameter. R2

and 95% confidence intervals were calculated. Midpoints were
compared between treatments using a sum-of-squares F test.
Modeling and analyses of the sigmoid curves were performed
using Graphpad Prism v6.04.1.

Results

Seasonal Weather Patterns
The field site experienced higher amounts of precipitation dur-
ing the growing season and lower amounts during winter
(Figure 1A). 2012 was characterized by a warm early autumn,
with daily maximum temperatures remaining above 20◦C until
the first week of October (Figure 1B). In contrast, during 2013,
daily maximum temperatures began to decline below 20◦C by
the first week of September. Daily mean temperatures remained
above 0◦C until November in both years. The first night frost
was recorded on October 8 in 2012 and on October 27 in
2013. During October 2012, the temperature dropped rapidly
until mid-November and remained between a daily minimum
of −5◦C and a daily maximum of 10◦C until mid-December.
In contrast, nighttime temperatures during October and early
November 2013 were mild, with minimum temperatures only
reaching −2◦C and daily maximums above 10◦C. Minimum
temperatures did not reach −20◦C during the winter of 2012
until January 1, while minimum temperature reached −20◦C on
December 12 in 2013 (Figure 1B).

The variation in weather conditions affected temperature and
precipitation during measurement campaigns. Measurements
taken during August 2012 occurred after several rainy days,
whereas measurements taken in August 2013 were taken after
10 days without rainfall (Figure 1A), resulting in decreased soil
water content (Figure 4A). In 2012, we recorded a daily mean
temperatures of 22◦C during our measurements in August, 15◦C
in September and 15◦C in October. In contrast, during 2013
we recorded daily mean temperatures of 20◦C during our mea-
surements in August, 7◦C in September and 4◦C in October
(Figure 1B).

Photosynthetic Gas Exchange
Photosynthetic carbon assimilation (A) remained unchanged
from August to the beginning of October, was downregu-
lated during October and November, and eventually ceased
in December and January (Figure 2A). This trend was also
observed for stomatal conductance (gs), intrinsic water use
efficiency (IWUE) and evapotranspiration (E) (Figures 2B–D).
However, we also observed differences between years, e.g. dur-
ing August and September 2013, when we measured lower
rates of A, gs, and IWUE (Figures 2A–C) compared to 2012.
In 2012, photosynthetic gas exchange was fully downregu-
lated by mid-November, while photosynthetic activity was still
detectable in November 2013 (Figures 2A–C). Treatment had
a significant effect on gs, IWUE, and E; the interaction of
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FIGURE 2 | Effect of elevated temperature on photosynthetic gas

exchange in field-grown white pine seedlings during autumn. (A)

Photosynthetic carbon assimilation (A); (B) stomatal conductance (gs); (C)

intrinsic water use efficiency (IWUE); (D) evapotranspiration (E). AT and ET,

seedlings grown at ambient and elevated temperature, respectively. Each

data point represents the average of 5 plots, ± S.E. Asterisks represent

significant treatment effect at a single measuring date (∗∗P < 0.01,
∗P < 0.05).

TABLE 3 | Summary of Two-Way ANCOVA analysis showing the effects of treatment and time (day of year) on gas exchange, chlorophyll fluorescence,

and photosynthetic pigments.

Treatment Time Treatment × Time

Variable F P F P F P

Gas exchange A 2.420 0.121 0.765 0.385 0.809 0.369

gs 7.361 0.007 0.292 0.589 4.911 0.028

IWUE 4.687 0.032 0.010 0.919 4.684 0.032

E 12.254 0.001 0.048 0.827 8.302 0.004

Chlorophyll fluorescence Fv/Fm 1.709 0.192 201.118 <0.001 1.368 0.243

1-qP 0.403 0.526 9.681 0.002 1.357 0.245

8PSII 3.572 0.060 1.669 0.198 1.802 0.181

NPQ 5.617 0.019 1.343 0.248 2.637 0.106

NPQS 1.476 0.225 200.188 <0.001 1.073 0.301

Photosynthetic pigments Total Chl 0.094 0.759 0.532 0.466 0.0516 0.8205

Chl a/b 4.012 0.046 10.905 0.001 3.1231 0.0783

Car/Chl 0.060 0.808 0.795 0.374 0.4183 0.5183

α-Car/Chl 1.593 0.208 3.954 0.048 3.0065 0.0841

β-Car/Chl 1.137 0.287 28.745 <0.001 1.8663 0.1730

V+A+Z/Chl 0.006 0.938 1.233 0.269 0.1311 0.7176

DEPS 1.298 0.256 106.087 <0.001 1.2300 0.2683

Lut/Chl 0.135 0.714 0.031 0.862 0.7057 0.4016

Neo/Chl 0.013 0.910 11.269 0.001 0.0251 0.8742

α-Toc 0.059 0.809 0.908 0.341 0.1099 0.7405

Variables were estimated as Variable ∼ Treatment * Time + Photoperiod + Temperature + (1|Plot) + (1|Year). Treatment and time were included as categorical fixed factors. Photoperiod

and daily temperature were included as continuous numeric covariates. Plot and year were included as random factors. P-values in bold indicate statistical significance (α = 0.05).
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FIGURE 3 | Effect of elevated temperature on chlorophyll

fluorescence in field-grown white pine seedlings during autumn.

(A) Maximum quantum yield of PSII (Fv/Fm); (B) effective quantum

yield of PSII (8PSII ); (C) rate constant of total nonphotochemical

quenching (NPQ) and sustained nonphotochemical quenching (NPQS);

(D) excitation pressure at PSII (1-qP). AT and ET, seedlings grown at

ambient and elevated temperature, respectively. Each data point

represents the average of 5 plots, ± S.E. Asterisks represent

significant treatment effect at a single measuring date (***P < 0.001,
*P < 0.05).

treatment and time significantly affected gs, IWUE and E
(Table 3).

From August to early October, seedlings in heated plots that
experienced elevated temperature (ET) exhibited lowerA in com-
parison to seedlings in unheated control treatment (Control)
that were exposed to ambient temperature (Figure 2A). How-
ever, the timing of the autumn downregulation of photosynthe-
sis was not affected by the elevated temperature treatment, as
A began to decrease by the end of October during both years,
irrespective of treatment (Figure 2A). Between August andOcto-
ber of both years, gs was decreased by 20–30% in ET seedlings
compared to Control seedlings. Control seedlings maintained gs
between 0.10 and 0.15mol H2Om−2 s−1, while the elevated tem-
perature treatment exhibited values between 0.06 and 0.12mol
H2O m−2 s−1 (Figure 2B). gs was significantly reduced in ET
seedlings in heated plots in October 2012 (P= 0.041, Figure 2B).
In 2012, IWUEwas increased by about 15–20% in seedlings in the
heated plots compared to Control seedlings, and was significantly
enhanced in October (P = 0.036, Figure 2C). However, in 2013,
IWUE was not significantly affected in seedlings in the heated
plots (Figure 2C). E was reduced by 20–30% in ET seedlings in
heated plots compared to Control seedlings during both years
(Figure 2D), particularly during September 2012 (P = 0.009),
October 2012 (P = 0.048), and September 2013 (P = 0.003).

Chlorophyll Fluorescence
The maximum quantum efficiency of PSII (Fv/Fm) was approxi-
mately 0.75–0.80 fromAugust to early October, and continuously
decreased from late October through January (Figure 3A). The

effective quantum yield of PSII (8PSII) was downregulated during
the autumn transition and reached minimum values toward
the end of November (Figure 3B). Non-photochemical quench-
ing (NPQ) was high during both years; sustained NPQ (NPQS)
began to develop during late October and comprised nearly 100%
of nonphotochemical processes by January (Figure 3C). Exci-
tation pressure (1-qP) increased during October and reached
maximum levels in November before relaxing again in Decem-
ber (Figure 3D). In contrast to the substantial interannual vari-
ation observed in photosynthetic gas exchange, we did not
observe interannual variations in most fluorescence parameters
(Figure 3).

8PSII was significantly lower in August 2013 in the elevated
temperature treatment (P = 0.015, Figure 3B). NPQ was sig-
nificantly higher in August (P = 0.014) and September 2013
(P < 0.001) in the elevated temperature treatment, but was not
significantly different during 2012; NPQS was not significantly
different between treatments during either year, although ET
seedlings in the heated plots exhibited decreased NPQS during
November andDecember (Figure 3C). 1-qP relaxed considerably
from November to January under ambient temperature condi-
tions, but did not when exposed to elevated temperature (P =

0.002, Figure 3D). Treatment had a significant effect on NPQ,
whereas time had a significant effect on NPQS, Fv/Fm, and 1-qP
(Table 3).

Water Potential and Vapor Pressure Deficit
In 2013, soil moisture was lowest during August (Figure 4A).
There was a consistent but non-significant reduction in soil
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moisture in the heated plots during the growing season
(Figure 4A). Leaf water potential (9w) was generally high, with
values consistently higher than −0.2MPa (Figures 4B,C). There
was no significant difference in 9w during pre-dawn or midday
(Figures 4B,C).

The extent of vapor pressure deficit (VPD) imposed by our
heating treatment was assessed from July 18 to August 12, 2014
(Figure S1). The difference in VPD between heated and control
plots varied depending on air temperature (Figures S1A,B). Dur-
ing the night, an increment of +3◦C induced a 20% increase in
VPD (0.351± 0.089 kPa) in the heated plots, while during the day
an increment of +1.5◦C induced a 6% increase in VPD (0.179 ±
0.089 kPa) in the heated plots (Figure S1).

FIGURE 4 | Effect of elevated temperature on soil water availability and

osmotic stress in field-grown white pine seedlings during autumn. (A)

Soil moisture content, expressed in percent volumetric water content (% VWC);

(B) pre-dawn water potential (9w); and (C) midday 9w measured during

2013. AT and ET, seedlings grown at ambient and elevated temperature,

respectively. n/a indicates points where water potential was not assessed

because the equipment did not operate at sub-freezing temperatures in the

field. Each data point represents the average of 5 plots, ± S.E.

Photosynthetic Pigments
Total chlorophylls, measured on a fresh-weight basis, increased
from August to September, decreased from October to Novem-
ber, and remained stable in December and January (Figure 5A).
Chlorophyll a/b decreased, albeit not significantly, from August
to December (Figure 5B), whereas total carotenoids increased
from October to November and stabilized in December
(Figure 5C). β-carotene showed large variations during the
autumn and between the treatments (Figure 5D). β-carotene
levels increased over October and November, while α-carotene
decreased over the same period (Figure 5D). Inter-annual vari-
ations were observed in chlorophyll and carotenoid pools,
with chlorophyll a/b decreasing earlier in 2013 than in 2012
(Figure 5B), and slightly higher carotenoid levels during August
2013 compared to August 2012 (Figure 5C), though these differ-
ences were not significant.

Photoprotective pigments and metabolites also showed dis-
tinct changes during the autumn. Lutein (Figure 6A), neoxan-
thin (Figure 6B), and xanthophyll cycle pigments (Figure 6C)
accumulated through October and November to maximal lev-
els in December. The de-epoxidation status of the xanthophyll-
cycle pigments (DEPS) (Figure 6D) transiently increased from
October through January. α-tocopherol increased from August
to November, followed by stabilization in December (Figure 6E).

Accumulation of lutein (Figure 6A), neoxanthin (Figure 6B),
total xanthophylls (Figure 6C) and DEPS (Figure 6D) varied
between years. In August 2012, seedlings exhibited low levels of
lutein (Figure 6A) and total xanthophylls (Figure 6C) compared
to August 2013. DEPS was increased in August 2012 compared to
August 2013 (Figure 6D). Increases in lutein (Figure 6A), neox-
anthin (Figure 6B), and xanthophylls (Figure 6C) occurred dur-
ing August and September 2013whichwere not observed in 2012.
Treatment did not have a significant effect on any of the pho-
tosynthetic pigments, whereas time had a significant effect on
chlorophyll a/b, α-carotene, β-carotene, DEPS, and neoxanthin
(Table 3).

Control of Low Temperature and Photoperiod on
the Downregulation of Photosynthesis and
Development of Sustained NPQ
In response to the decrease in daily minimum temperature from
10 to −2◦C during autumn and winter, we observed a tran-
sient decrease in A, Fv/Fm and NPQS (Figures 7A,C,E, Table 4).
A also showed a response to decreasing photoperiod over a
range of 11–9 h (Figure 7B, Table 4). In contrast, rapid down-
regulation of Fv/Fm and rapid induction of sustained NPQ were
observed when photoperiod reached a threshold value of approx-
imately 9.6 h (Figures 7D,F, Table 4). Elevated temperature did
not significantly affect the response of assimilation to minimum
temperature, but did shift the response of Fv/Fm and NPQS

(Table 4).

Nonstructural Carbohydrates
In both treatments, leaf starch levels remained unchanged from
August through December (Figure 8A), while the amount of
total soluble sugars decreased slightly from August to October
and doubled in December (Figure 8B). Raffinose was absent in
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FIGURE 5 | Effect of elevated temperature on photosynthetic

pigments in needles of field-grown white pine seedlings

during autumn. (A) Chlorophyll a + b per fresh weight; (B)

ratio of chlorophyll a to chlorophyll b; (C) total carotenoids per

total chlorophyll; (D) α- and β-carotene per total chlorophyll. AT

and ET, seedlings grown at ambient and elevated temperature,

respectively. Each data point represents the average of 5 plots,

± S.E.

August, present in minute quantities in October, and present in
large quantities in December (Figure 8C). Sucrose levels were
constant during August and October but increased in Decem-
ber (Figure 8D). Fructose levels remained constant from August
through December (Figure 8E), while glucose levels decreased by
more than 50% from August to October, but tripled from Octo-
ber to December (Figure 8F). Pinitol mirrored the glucose levels,
and was reduced by 50% from August to October, but doubled
in December (Figure 8G). Seedlings in the heated plots exhib-
ited significantly higher amounts of leaf starch (P = 0.026, Table
S1); however, this did not significantly affect the accumulation of
soluble sugars (Table S1).

Freezing Tolerance
In 2013, seedlings exhibited tolerance to freezing exposure
of −10◦C during August (Figure 9A), −16◦C during Septem-
ber (Figure 9B), −30◦C in October (Figure 9C) and were fully
cold hardy below −60◦C by November (Figure 9D). The cold
hardiness of ET seedlings from heated plots did not differ from
that of Control seedlings from unheated plots during August
(Figure 9A) or September (Figure 9B). In October, seedlings
from heated plots exhibited significantly greater freezing toler-
ance in comparison with freezing tolerance of seedlings from
unheated plots (P = 0.027, Figure 9C).

Discussion

We explored the effect of a moderate increase of air tempera-
ture by +1.5◦C during the day and +3◦C during the night on

the development of cold acclimation by assessing photosynthesis,
photoprotective NPQ and pigments, carbohydrate metabolism
and freezing tolerance in Eastern white pine in a field experi-
ment. We observed that physiological responses of ET seedlings
exposed from heated plots mainly differed from unheated Con-
trol seedlings during August, September and early October. We
also observed that most physiological changes in photosynthesis
(Figures 2, 3) and cold hardiness (Figure 9) occurred during late
September and early October, while photoprotective modifica-
tions of energy quenching characteristics and pigment composi-
tion (Figures 3, 6) occurred later, during November and Decem-
ber. Our data clearly suggests that under field conditions, an
increase in temperature by 1.5◦C during the day and 3◦C dur-
ing the night does not extend the length of the growing sea-
son and does not delay the downregulation of photosynthesis,
the increase in photoprotective capacity, accumulation of non-
structural carbohydrates, or development of freezing tolerance in
Pinus strobus seedlings.

Photosynthesis
Elevated Temperature Affects Photosynthetic Gas

Exchange During the Growing Season
During August and September of both years, photosynthetic gas
exchange in ET seedlings was significantly different compared
to Control seedlings (Table 3). Throughout our measurements,
stomatal conductance was below 0.15mol H2O m−2 s−1, the
threshold at which stomatal conductance begins to limit Rubisco
activity (Flexas et al., 2004). In seedlings growing under elevated
temperature conditions, stomatal conductance was decreased
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FIGURE 6 | Effect of elevated temperature on photoprotective

metabolites in needles of field-grown white pine seedlings during

autumn. (A) Lutein per total chlorophyll; (B) neoxanthin per total chlorophyll;

(C) xanthophyll pool size per total chlorophyll; (D) de-epoxidation state

(DEPS); (E) α-tocopherol per fresh weight. AT and ET, seedlings grown at

ambient and elevated temperature, respectively. Each data point represents

the average of 5 plots, ± S.E. Asterisks represent significant treatment effect

at a single measuring date (∗P < 0.05).

(Figure 2B) and contributed to reduced assimilation (Figure 2A)
and evapotranspiration (Figure 2D). ET seedlings from the
heated plots exhibited improved water use efficiency fromAugust
through October in 2012, but this effect was not observed
in 2013 (Figure 2C). During August, stomatal conductance of
both treatments was higher in 2013 than in 2012 (Figure 2B),
though assimilation for both treatments was greatly reduced
in 2013 (Figure 2A), suggesting that stomatal conductance did
not limit assimilation in August 2013. As neither PSII activity
(Figure 3B) nor excitation pressure (Figure 3D) differed between
August 2012 and 2013, the limiting factor of assimilation was
likely a decreased sink capacity of the seedlings. Measurements
in September 2013 were taken after nighttime temperature fell
below 5◦C, and resulted in decreased stomatal conductance
although assimilation remained high; again, neither PSII activity
nor excitation pressure were affected.

Elevated Temperature Decreases Stomatal

Conductance and Evapotranspiration Even in the

Absence of Water Stress
Seedlings exposed to elevated temperature consistently exhib-
ited lower stomatal conductance (Figure 2B) and evapotran-
spiration (Figure 2D) during the growing season. In 2013, we
assessed soil moisture and water potential in order to determine
whether gas exchange during the growing season was respond-
ing to water stress imposed by the infrared heating method.
We did not observe a significant decrease in soil moisture in
elevated temperature plots (Figure 4A). Furthermore, pre-dawn
and midday water potential measurements from both Control
and ET seedlings were greater than −0.2MPa (Figures 4B,C).
Since osmotic stress is typically incurred when water potential
falls below −1.0MPa (Flexas et al., 2004; Verslues et al., 2006),
we concluded that the decrease in gas exchange observed in
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FIGURE 7 | Relationship of photosynthesis and sustained

nonphotochemical quenching with minimum daily temperature and

photoperiod. (A,B) Photosynthetic carbon assimilation (A); (C,D)

maximum quantum yield of PSII (Fv/Fm); (E,F) Sustained

nonphotochemical quenching (NPQS). Each point indicates a single

measurement. Lines represent 4-parametric sigmoidal curves fit to the

data using the least-squares method. Open circles and dashed lines,

elevated temperature (ET); closed circles and solid lines, ambient

temperature (AT). Grey lines indicate midpoint of curve at which

estimated values represent 50% of the maximum parameter value.

the elevated temperature treatment was not a result of osmotic
stress.

We also assessed air temperature and humidity during July-
August of 2014 and recorded a 6% increase in daytime VPD
in heated plots (Figure S1). A recent study which modeled
water loss in response to infrared heating predicted a 12–15%
increase in transpiration, but noted that certain species such
as Populus tremuloides would exhibit reduced transpiration as
a result of reduced stomatal conductance (de Boeck et al.,
2012). Therefore, enhanced VPD may have contributed to the
decrease in stomatal conductance observed in our elevated tem-
perature treatment during the growing season. We conclude
that when subjected to elevated temperature, P. strobus pre-
emptively reduces stomatal conductance in an attempt to prevent
excessive water loss via evapotranspiration at the cost of reduced
photosynthesis.

Downregulation of Photosynthetic Gas Exchange is

Driven by Both Temperature and Photoperiod, and is

Not Delayed in Seedlings from Heated Plots
Downregulation of photosynthetic gas exchange between Octo-
ber and November was strongly correlated with air temper-
ature (Table 4) and commenced once nighttime temperatures
decreased below 10◦C, irrespective of treatment (Figures 2A,
7A). The transient downregulation of photosynthesis occurred
with the decrease in temperature at a rate of 0.25µmol CO2

m−2 s−1/◦C in Control seedlings, and at a rate of 0.11µmol
CO2 m−2 s−1/◦C in ET seedlings (Table 4). However, the rea-
son for the lower rate of the downregulation of photosynthesis
in ET seedlings largely reflects the fact that photosynthesis in
seedlings from the heated plots was already decreased during the
growing season compared to seedlings from unheated plots. No
photosynthetic gas exchange was observed when temperatures

Frontiers in Plant Science | www.frontiersin.org 12 March 2015 | Volume 6 | Article 165

http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org
http://www.frontiersin.org/Plant_Science/archive


Chang et al. Elevated temperature affects cold acclimation

TABLE 4 | Curve parameters of 4-parametric sigmoid models presented in Figure 7.

Parameter Factor Treat 95% CI R2 Mid (◦C) Mid (h) PMid Slope Pslope

Assimilation Temperature AT 1.07 0.63 0.5 0.394 0.25 0.206

ET 3.24 0.47 2.2 0.11

Photoperiod AT 0.33 0.62 10.3 0.559 1.44 0.820

ET 0.34 0.46 10.2 1.26

Fv/Fm Temperature AT 0.63 0.82 −3.2 0.002 0.23 0.151

ET −0.47 0.79 −1.6 0.34

Photoperiod AT 0.05 0.81 9.6 0.418 4.09 0.381

ET 0.05 0.77 9.6 4.95

NPQs Temperature AT −0.58 0.82 −3.2 0.002 −0.23 0.276

ET −0.47 0.79 −1.6 −0.34

Photoperiod AT 0.05 0.83 9.6 0.502 −3.99 0.310

ET 0.05 0.77 9.6 −4.95

Mid indicates the midpoint of the curve at which estimated values represented 50% of the maximum value. For each model curve, mid and slope values were compared between

treatments using an extra sum-of-squares F test; bolded values (P < 0.05) indicate statistical significance.

decreased below −2◦C, irrespective of treatment (Figure 7A),
but this complete downregulation occurred earlier in 2012 than
in 2013 (Figure 2), following the earlier occurrence of night frosts
in 2012 (Figure 1B). The effect of air temperature on seasonal
variations in photosynthesis was previously modeled by Bergh
et al. (1998) for Picea abies and Mäkelä et al. (2004) for Pinus
sylvestris. Downregulation of photosynthesis following a decrease
in air temperature below 0◦C was also observed in P. sylvestris
stands in northern Sweden (Strand et al., 2002) and Siberia, Rus-
sia (Lloyd et al., 2002). In addition to air temperature, our data
also reveal that photosynthetic gas exchange decreased by 50% as
photoperiod decreased to 10 h, irrespective of treatment, and was
completely absent at a 9 h photoperiod (Figure 7B). The tran-
sient response of carbon assimilation to both temperature and
photoperiod signals indicates that gas exchange is modulated in
concert with decreased metabolic activity (Rossi et al., 2008) and
leaf carbon export (Hoch et al., 2003). We conclude that both
low temperature and photoperiod exerted a strong control on the
downregulation of photosynthetic gas exchange.

Downregulation of Light Reactions is Preceded by

Downregulation of Gas Exchange and is Not Affected

by Elevated Temperature
Fv/Fm began to decrease after photoperiod had decreased below
10 h and after the occurrence of nighttime frosts (Figure 1B).
Despite the significant effect of the elevated temperature treat-
ment on gas exchange in ET seedlings during the downregulation
of photosynthetic CO2 uptake between October and November,
Fv/Fm and 8PSII in seedlings from the heated plots were simi-
lar to values observed in seedlings from unheated control plots
(Table 3). Further downregulation of Fv/Fm occurred through-
out December and January, while photosynthetic gas exchange
had already ceased by December (Figures 2A, 3B). The transient
seasonal changes observed for Fv/Fm and 8PSII result from the
reorganization of thylakoid membrane-bound photosynthetic
proteins. This has been demonstrated e.g. for D1 and LHCII pro-
tein content in needles of P. strobus (Verhoeven et al., 2009)

and P. sylvestris (Ottander et al., 1995; Ensminger et al., 2004).
These adjustments occur even when temperatures are consis-
tently below 0◦C. Given the sequence of the observed events, it
therefore appears that the downregulation of photosynthetic gas
exchange and hence Calvin cycle activity precedes reorganiza-
tion of the photosynthetic apparatus in the thylakoid membrane
during autumn.

Least squares curve fitting (Table 4) revealed that variation
in Fv/Fm was strongly correlated with both photoperiod and
temperature. However, while decreases in temperature during
autumn resulted in a transient decrease of Fv/Fm (Figure 7C),
we observed an instant response of Fv/Fm to photoperiod when
daylength decreased to 9.6 h (Figure 7D). These observations
indicate that the reorganization of the photosynthetic apparatus
and the downregulation of the light reactions are more sensi-
tive to photoperiod than temperature, but also that photoperiodic
regulation of the light reactions operates on a threshold rather
than a gradient basis.

Photoprotective Nonphotochemical Quenching
and Pigment Dynamics
Sustained Nonphotochemical Quenching Develops

After the Downregulation of Photosynthetic Gas

Exchange and is Not Delayed by Elevated

Temperature
From August to November, excess light energy was efficiently
quenched by dynamic xanthophyll cycle-mediated NPQ
(Figure 3C). The transition from dynamic NPQ to winter sus-
tained NPQ occurred synchronously with the downregulation
of Fv/Fm from November through January (Figure 3C), as
photoperiod decreased below 10 h and nighttime temperatures
decreased below 0◦C (Figures 1B, 7). The development of
sustained NPQ in response to low temperature (Figure 3C) is
correlated with the retention of antheraxanthin and zeaxanthin
(Adams and Demmig-Adams, 1994; Savitch et al., 2002) and
results in increased DEPS (Figure 6D). In contrast to our
expectations, the transition from dynamic to sustained NPQ was
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FIGURE 8 | Effect of elevated temperature on nonstructural

carbohydrates in needles of field-grown white pine seedlings during

autumn. (A) Leaf starch content, expressed as percent dry weight; (B) Total

leaf soluble sugars, composed of the sum of (C–F); (C) Leaf raffinose

content; (D) Leaf sucrose content; (E) Leaf fructose content; (F) Leaf

glucose content; (G) Leaf pinitol content, expressed per unit dry weight.

Samples were collected during August, October and December of 2012. AT

and ET, seedlings grown at ambient and elevated temperature, respectively.

Each bar represents the average of 5 plots, ± S.E. Letters, where present,

indicate significantly different groups (P < 0.05).

not significantly delayed in seedlings from the heated plots, since
the sustained quenching occurred in parallel in both Control and
ET seedlings (Figure 3C).

Elevated Temperature Does Not Affect Pigment

Pool Size
Photosynthetic pigments in ET seedlings from the heated plots
did not reveal any significant differences when compared to

Control seedlings from unheated plots, indicating that mod-
erately elevated temperature did not impact the pool sizes
of chlorophylls or carotenoid pigments (Figure 5, Table 3).
Nonetheless, we observed major changes in pigment com-
position during autumn in Pinus strobus seedlings, which
are consistent with development of sustained nonphotochem-
ical quenching. Total chlorophylls (Figure 5A) and α-carotene
levels (Figure 5D) increased from August to early October,
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FIGURE 9 | Effect of elevated temperature on cold hardening in

field-grown white pine seedlings during autumn. Freezing tolerance was

assessed in (A) August; (B) September; (C) October; and (D) November of

2013. Dotted lines, where present, indicate 95% confidence interval (CI) of

model. AT and ET, seedlings grown at ambient and elevated temperature,

respectively. Solid line indicates ambient temperature model; dashed line

indicates elevated temperature model. Gray lines indicate LT50. Asterisk

indicates significant treatment effect at LT50(
∗P < 0.05).

following the transient increase in assimilation (Figure 2A), and
decreased again during November when assimilation decreased
(Figures 2A, 3B). While photosynthesis and total chlorophyll
levels decreased from October onwards, the pool of total
carotenoids showed the opposite trend and nearly doubled
from October to November (Figure 5C). This was mainly due
to the increase of the photoprotective lutein and xanthophyll
cycle pigments (Figures 6A,C). Increases in these pigments

during autumn have been previously observed in pine species
as well as Pseudotsuga menziesii and Picea pungens (Adams and
Demmig-Adams, 1994; Ensminger et al., 2004; Verhoeven et al.,
2009) and contribute to alleviate the enhanced risk of photo-
oxidative damage (Ensminger et al., 2004).

β-carotene, a component of both reaction centers and core
antenna, serves dual functions as an accessory pigment (Trebst,
2003) and also as a biosynthetic precursor to zeaxanthin (Bart-
ley and Scolnik, 1995). We observed transient accumulation of
β-carotene from October to November followed by a decrease
in December, concurring with results reported by Verhoeven
et al. (2009). Our results suggest that the β-carotene accumulated
during this period is converted to zeaxanthin during the devel-
opment of winter sustained nonphotochemical quenching, as β-
carotene (Figure 5D) and NPQ (Figure 3C) responded similarly
during late autumn. The accumulation of pigments involved in
photoprotective quenching of excess light (Figures 6A–C,E) was
completed by November and thereby also indicated the complete
cessation of photosynthetic gas exchange (Figures 2A, 3B).

Non-Structural Carbohydrates
Elevated Temperature Increases Leaf Starch Content

During Autumn
Starch levels in mature needles were low (2.5–3% of leaf
dry weight) during August, October and December of 2012
(Figure 8A), consistent with autumn starch levels reported pre-
viously (Little, 1970; Pomeroy et al., 1970; Hoch et al., 2003). Ele-
vated autumn temperature caused a small but significant increase
in needle starch content, indicated by higher starch levels in ET
seedlings from the heated plots during the period October to
December 2012 (Table S1). The reason for this increase is unclear.
Typically growth at elevated temperature results in depletion
of starch due to the associated increases in foliar respiration
(Geigenberger, 2011). However, we did not observe an increase
in respiration in seedlings from heated plots. In addition, the
increase in starch cannot be explained by increased assimilation,
since rates of assimilation were always lower in ET seedlings than
in Control seedlings in 2012. However, increases in leaf starch
content resulting from elevated temperature have been reported
recently by Glaubitz et al. (2014). They observed accumulation
of leaf carbohydrates including starch in some Oryza cultivars
in response to asynchronous elevated night time temperature. In
another study, Zhao et al. (2012) showed an increase in leaf starch
content in poplar leaves when growing under elevated temper-
ature. At this point, the cause for the increased starch levels in
seedlings from heated plots remains unclear and deserves further
investigation.

Accumulation of Soluble Carbohydrates During

Autumn Occurs in Response to Low Temperature in

Needles of ET and Control Seedlings
There was no significant difference in soluble carbohydrate con-
tent of needles from heated or control plots (Figure 8; Table S1),
indicating that soluble carbohydrate metabolism did not respond
to the elevated temperature treatment. However, cold acclimation
during the autumn was associated with major changes in the car-
bohydrates assessed in our study. In August, total soluble sugars
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were mainly comprised of fructose and sucrose (Figure 8). Dur-
ing August, we also observed the presence of moderate amounts
of pinitol (2% of leaf dry weight), an osmoprotectant with cry-
oprotective characteristics (Angelcheva et al., 2014); these lev-
els concur with levels observed during the growing season in
P. sylvestris (Ericsson, 1979). The majority of changes in solu-
ble sugar levels occurred between October and December. When
nighttime temperatures decreased to below 10◦C (Figure 1B),
seedlings began to adjust to low temperature and short photope-
riod. Aside from raffinose, which increased by over 20-fold from
October to December (Figure 8C), increases in carbohydrate lev-
els remained between the 1–2 fold range (Figures 8D–G), as
expected for glucose and pinitol (P. sitchensis, Dauwe et al., 2012;
Picea obovata, Angelcheva et al., 2014). Raffinose is known to
accumulate significantly in response to low temperature (Strim-
beck et al., 2008; Dauwe et al., 2012; Angelcheva et al., 2014).
Raffinose is also associated with the enhancement of freezing tol-
erance (Strimbeck et al., 2008), and has been shown to increase
PSII stability during freeze-thaw cycles in Arabidopsis thaliana
(Knaupp et al., 2011).

We observed a 30% increase in sucrose from October to
December (Figure 7D), which concurs with previously reported
levels in other conifer species (Strimbeck et al., 2008; Dauwe
et al., 2012) but is much lower than the 5-fold increase previ-
ously reported for P. strobus (Hinesley et al., 1992). The rather
small changes in leaf soluble carbohydrate content observed here
may be a consequence of the mild winter in 2012 (Figure 1B).
Even so, by December, the amount of total soluble carbohydrates
had doubled (Figure 8B), of which 25% were represented by raf-
finose, which was absent in samples from August and October
(Figure 8C). This shift in leaf carbohydrate composition likely
improved winter freezing tolerance.

Cold Hardiness
Freezing Tolerance is First Induced by Photoperiod,

and is Not Impaired by Elevated Autumn Temperature
ET seedlings from the heated plots did not exhibit delayed induc-
tion of cold hardening in August and September, and in con-
trast to our hypothesis, freezing tolerance was not impaired in
seedlings from the heated plots. Growth at moderately elevated
temperature instead appeared to enhance freezing tolerance in
ET seedlings in October and November (Figure 9C). This con-
curs with a previous study on P. sylvestris, which revealed that
there was no effect of elevated temperature on the induction of
cold hardening and freezing tolerance during midwinter (Repo
et al., 1996).

In 2013, seedlings were already tolerant to freezing expo-
sure at −10◦C in August (Figure 9A), and their freezing toler-
ance continued to increase in September to −16◦C (Figure 9B),
which is within the ranges previously reported for freezing tol-
erance in summer-acclimated conifers (Strimbeck et al., 2008).
Four days after the first frost in October (Figure 1B), freezing
tolerance further increased to −30◦C (Figure 9C), and a signif-
icant treatment effect (P < 0.05) was observed with enhanced
freezing tolerance exhibited by the elevated temperature treat-
ment. By November, following several weeks of exposure to
night temperatures below 0◦C (Figure 1B), seedlings of both

treatments were fully cold hardened, with freezing tolerance
below −60◦C (Figure 9). We conclude that the initial stages of
cold hardening during early autumn are triggered by decreas-
ing photoperiod; similar observations have previously been
reported in Populus tremula× tremuloides (Welling et al., 2002),
Betula pubescens (Welling et al., 2004) and Picea abies (Ros-
tad et al., 2006). The addition of the low temperature sig-
nal in October greatly increased the development of freezing
tolerance.

Conclusions

In contrast to our initial hypotheses, we did not observe a signifi-
cant delay in the downregulation of photosynthesis or cold hard-
ening when seedlings were exposed to elevated temperature in
heated plots, nor did these seedlings exhibit altered carbohydrate
metabolism or impaired cold hardiness. Though exposure to
+1.5/+3◦C in heated plots was insufficient to delay autumn cold
acclimation, it was sufficient to decrease photosynthesis during
the growing season and enhance nonphotochemical quenching.
Our data further indicate that the downregulation of photosyn-
thetic gas exchange occurs synchronously with the accumulation
of photoprotective carotenoids, accumulation of soluble sugars
and early stages of cold hardening, but its timing precedes the
downregulation of the light reactions and the transition from
dynamic NPQ to sustained NPQ. We also observed that the
autumn physiology of P. strobus is most sensitive to elevated tem-
perature during the transition starting at the beginning of the
downregulation of photosynthesis and during the development
of cold hardiness.

Based on our findings it seems unlikely that P. strobus
seedlings will be significantly affected by the moderately ele-
vated autumn temperatures used in our experiment. However,
we have shown that the sensitivity of P. strobus seedlings to ele-
vated temperature is increased under water-limited or chilling
conditions. We have further demonstrated that a +1.5/+3◦C
increase in elevated temperature will not significantly extend
the growing season or adversely affect cold acclimation. Instead
it appears that moderate increases in elevated temperature
will affect productivity during the growing season, when
P. strobus may compromise photosynthetic CO2 uptake under
water-limiting conditions, whereas elevated temperature dur-
ing autumn does not necessarily increase the carbon uptake
period and extend the growing season length in this evergreen
conifer.
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