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Environmental factors contribute to over 70% of crop yield losses worldwide. Of these
drought and salinity are the most significant causes of crop yield reduction. Rice is an
important staple crop that feeds more than half of the world’s population. However
among the agronomically important cereals rice is the most sensitive to salinity. In the
present study we show that exogenous expression of anti-apoptotic genes from diverse
origins, AtBAG4 (Arabidopsis), Hsp70 (Citrus tristeza virus) and p35 (Baculovirus),
significantly improves salinity tolerance in rice at the whole plant level. Physiological,
biochemical and agronomical analyses of transgenic rice expressing each of the
anti-apoptotic genes subjected to salinity treatment demonstrated traits associated
with tolerant varieties including, improved photosynthesis, membrane integrity, ion
and ROS maintenance systems, growth rate, and yield components. Moreover, FTIR
analysis showed that the chemical composition of salinity-treated transgenic plants
is reminiscent of non-treated, unstressed controls. In contrast, wild type and vector
control plants displayed hallmark features of stress, including pectin degradation upon
subjection to salinity treatment. Interestingly, despite their diverse origins, transgenic
plants expressing the anti-apoptotic genes assessed in this study displayed similar
physiological and biochemical characteristics during salinity treatment thus providing
further evidence that cell death pathways are conserved across broad evolutionary
kingdoms. Our results reveal that anti-apoptotic genes facilitate maintenance of
metabolic activity at the whole plant level to create favorable conditions for cellular
survival. It is these conditions that are crucial and conducive to the plants ability to
tolerate/adapt to extreme environments.

Keywords: anti-apoptotic, programmed cell death, TUNEL, ROS, salinity stress, rice, abiotic stress, apoptosis

Introduction

By 2050, the world population is expected to reach 9.6 billion people (UNFPA, 2014). To sustain-
ably provide sufficient food for the increasing population crop productivity needs to increase by
∼44 million metric tons annually. This is a challenge because there is very little potential for future
expansion of arable lands whilst climate predictions suggest that a larger portion of the globe will be
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subjected to erratic environmental conditions and abiotic stress
(Eckardt, 2009; FAO, 2009, 2012; Cominelli et al., 2013). Two abi-
otic stress factors that significantly hinder world crop production
are soil water deficit and salinization (Munns, 2011).

Rice (Oryza sativa L.) is an important crop that feeds more
than half of the world’s population and is the model system
for monocotyledonous plants that include members of the agro-
nomically important cereals. Approximately 90% of the world’s
production and consumption of rice are in Asia (Khush, 2005).
Rice has been considered as the single most important source
of employment and income for rural people in humid and
sub-humid Asia, it provides 50–80% of the calories consumed
(Hossain and Fischer, 1995; Khush, 2005).However, rice is very
sensitive to salinity stress and is currently listed as the most salt
sensitive cereal crop with a threshold of 3 dSm−1 for most cul-
tivated varieties (USDA, 2013). Rice yield in salt-affected land is
significantly reduced with an estimation of 30–50% yield losses
annually (Eynard et al., 2005). Further yield losses due to climate
change are predicted (Eynard et al., 2005).

Methods for salinity tolerance screening are important for
the success of a breeding program. As improving yield of plants
undergoing salinity stress is one of the main targets of plant
breeding, salinity tolerance screening based on agronomical
parameters such as growth, yield and yield components has
become the method of choice by labs worldwide (Gregorio et al.,
1997; Zeng et al., 2002; Lee et al., 2003; Moradi and Ismail, 2007;
Cha-Um et al., 2009; El-Hendawy et al., 2009). Recently phys-
iological parameters have also gained recognition as important
selection criteria for screening salinity tolerance in plants due to
the reliability of information attained (Ashraf, 2004; Munns et al.,
2006; El-Hendawy et al., 2009).

To date, salinity tolerance strategies have utilized three major
approaches: (i) conventional breeding, (ii) marker assisted selec-
tion and (iii) genetic engineering. Of these, genetic engineer-
ing displays great potential and has become a powerful tool
in plant breeding programs since it allows the introduction of
select gene(s) without affecting the desirable characteristics of
an elite genotype (Bhatnagar-Mathur et al., 2008).Genetic engi-
neering for salinity tolerance in plants has focused on genes
that encode compatible organic solutes, antioxidants [detoxifi-
cation of reactive oxygen species (ROS)], ion transport, heat-
shock and late embryogenesis abundant proteins (Ashraf et al.,
2008). Despite some promising reports, the development of
cultivars with enhanced salinity tolerance using a transgenic
approach is awaiting further investigation. Currently we are
able to produce crops with enhanced salinity tolerance that
survive in the glasshouse, however, once applied in the field
the tolerance fails due to combined stresses; salinity is com-
monly associated with drought or temperature stress. One
approach with prospective application for the generation of
the “next frontier of crop plants” with broad-spectrum tol-
erance is the exogenous expression of anti-apoptotic genes
that suppress innate programmed cell death (PCD) path-
ways.

Programmed cell death or simply “the decision of whether
a given cell should live or die” is essential for all multicellu-
lar (Metazoan) organisms (Williams and Dickman, 2008). Under

several stimuli, this decision is dependent on the battle between
anti-apoptotic and pro-apoptotic (pro-death) proteins and sig-
nal transduction pathways (Li and Dickman, 2004; Williams and
Dickman, 2008; Williams et al., 2014). Previous studies have
assessed the applicability of anti-apoptotic genes for “broad stress
tolerance,” however, these have focused primarily on model crops
(Dickman et al., 2001; Doukhanina et al., 2006;Wang et al., 2009).

AtBAG4, Hsp70 and p35 are anti-apoptotic genes that have
been reported to confer tolerance to salinity and drought stresses
in transgenic tobacco. AtBAG4 is a Bcl-2- associated athano-
gene from Arabidopsis thaliana.TheA. thaliana genome contains
seven homologs of the BAG family, including four with a domain
organization similar to animal BAGs (Kabbage and Dickman,
2008). The BAG gene family has been identified in yeast, plants
and animals, and is believed to function through a complex inter-
action with signaling molecules and molecular chaperones such
as heat shock proteins (Hsp; Sondermann et al., 2001; Takayama
and Reed, 2001; Doukhanina et al., 2006).

Heat shock proteins are powerful chaperones that are
expressed in response to a variety of physiological and envi-
ronmental stresses and are localized in a variety of sub-cellular
organelles. By protein-protein interaction Hsp70 proteins can
facilitate anti-apoptotic Bcl-2 proteins to inhibit apoptosis path-
ways at distinct key points (Joly et al., 2010). The broad-spectrum
activity of Hsp70s requires the recruitment of co-chaperones
and other chaperone systems (Brodsky and Bracher, 2007).
Overexpression of Hsp70 in tobacco conferred tolerance to
drought stress (Cho and Hong, 2006).

The function of p35, a Baculovirus anti-apoptotic protein has
been extensively studied in different organisms (Clem et al., 1991;
Clem and Miller, 1994; Bump et al., 1995; Xue and Horvitz,
1995; Bertin et al., 1996). Expression of p35 in tobacco, tomato
and passion fruit significantly improved tolerance to abiotic
and biotic stresses (Lincoln et al., 2002; Freitas et al., 2007;
Wang et al., 2009). Transgenic tobacco expressing p35 dis-
played broad-spectrum tolerance to a range of abiotic stresses
including salinity, upon further investigation this tolerance was
attributed to the ability to sequester ROS of p35 (Wang et al.,
2009).

In plants, ROS are versatile molecules playing dual roles as
both toxic compounds and signal transduction molecules that
mediate responses to environmental stresses, pathogen infection,
developmental stimuli and even PCD (Mittler et al., 2004, Miller
et al., 2010). Accordingly, responses of plants to ROS are dose
dependent, high ROS concentrations may cause cellular damage
or trigger PCDwhile low ROS concentrations serves as signals for
development and/or stress responses (Bhattacharjee, 2012).

Here we present for the first time the development of salin-
ity tolerance in one of the most important staple crops – rice
(O. sativa L.) by constitutive-overexpression of AtBAG4 (NCBI
Reference Sequence: NM_115037),Hsp70 (GenBank: EU857538)
and p35 (GenBank: KF022001) and evaluation of their ability
to confer salinity tolerance in rice using agronomical, biochem-
ical and physiological assessments. By investigating the ability of
anti-apoptotic genes (from different sources) to confer tolerance
to salinity stress via maintenance of ROS, photosynthetic effi-
ciency and growth rate thereby minimizing yield loss, a possible

Frontiers in Plant Science | www.frontiersin.org 2 March 2015 | Volume 6 | Article 175

http://www.frontiersin.org/Plant_Science/
http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Science/archive


Hoang et al. Anti-apoptotic genes enhance salt tolerance

mechanism of anti-apoptotic genes tomaintainmetabolic activity
in plants under salinity stress is also elucidated.

Materials and Methods

Generation of Constructs
AtBAG4 from A. thaliana, Hsp70 from Citrus tristeza virus and
p35 from Baculovirus driven by the maize polyubiquitin-1 (Ubi-
1) promoter were cloned into the binary vector pCAMBIA1301.
All constructs were sequenced prior to the transformation for
confirmation of fidelity.

Rice Transformation and Molecular
Characterization of Transgenic Plants
Embryogenic calli were initiated from mature seeds of O.
sativa L. ssp. Japonica cv. Nipponbare, and transformed by
Agrobacterium-mediated transformation as described in Hoang
(2014). Briefly, 300–320 clumps of embryogenic rice calli were co-
cultivated with recombinant Agrobacterium tumefaciens (strain
AGL1) harboring the respective genes of interest at 25–27◦C
in dark for 3 days. Following co-cultivation contaminating
Agrobacteria were removed by washing in 2N6 liquid media
and sterile water containing 200 mg/L−1 timentin before blot-
ting dry on sterile Whatman R© filter paper and cultivation on
2N6 selection media supplemented with 200 mg/L−1 timentin
and 25 mg/L−1 hygromycin; calli were transferred onto fresh
2N6 selection media containing 50 mg/L−1 hygromycin and
200 mg/L−1 timentin every 14 days. Seven weeks post-co-
cultivation, individual proliferating callus clumps (cream white
in color) were transferred to regeneration media supplemented
with 200 mg/L−1 timentin and 25mg/L−1 hygromycin and incu-
bated at 27◦C in the dark for the first 7 days and then exposed
to day/night cycle of 16/8 h at 25◦C for shoot formation. Shoots
with at least three well-formed leaves were transferred to rooting
media supplemented with 200 mg/L−1timentin and 25 mg/L−1

hygromycin. Culture vessels were incubated in tissue culture
growth room at 25◦C with a 16 h photoperiod and monitored
for plant growth, elongation and root development.

One plant from each petri dish was sampled for PCR and
RT-PCR using gene specific primers and hygromycin specific
primers (Supplementary Table S1). Briefly, genomic DNA was
isolated from 100 mg of fresh leaf tissue using a DNeasy R© Plant
Mini Kit (Qiagen, Valencia, CA, USA). PCR analysis was car-
ried out in a 20 µL reaction mixture containing 2X GoTaq
green (Promega, Madison, WI, USA), 5 pM each forward and
reverse primers, 100 ng of genomic DNA and a volume of DNase,
RNase free water up to 20 µL using standard PCR parame-
ters. For RT-PCR, total RNA was isolated from 50 mg of leaf
tissue using an RNeasy Plant Mini kit (Qiagen, Valencia, CA,
USA) following the manufacturer’s instructions and treated with
RNase free DNase (Promega, Madison, WI, USA) RT-PCR was
carried out using the SuperScript R© III first strand synthesis sys-
tem (Invitrogen-Life Technologies Australia Pty Ltd, Musgrave,
VIC, Australia) using gene specific primers following the manu-
facturer’s instructions. Plants that were confirmed transgenic by
PCR and having the gene of interest expressed (confirmed by

RT-PCR) was considered as one transgenic line. This plant was
multiplied in vitro until at least 30 clones (plants) were obtained.

Salinity Stress Experiments at Seedling and
Reproductive Stages
Rice plants were acclimatized from tissue culture in the
glasshouse at 28/21◦C day/night as described in Hoang (2014).
Briefly, pots containing potting mix and rice plants were placed
in a container filled with tap water for 14 days and Aquasol
fertilizer (Yates, NSW Australia) was applied. One week post-
fertilization the salinity stress experiment at seedling stage (three
fully expanded leaves and the fourth leaf has emerged) was
started; water in the container was removed and tap water sup-
plemented with 100 mM NaCl was added until the water level
reached ∼1 cm above the level of soil. The water level was main-
tained daily at 1 cm above the soil level by adding tap water (not
salt water) into the container. The salinity stress experiment at
reproductive stage was carried out on 30 day-old acclimatized
rice plants as described by Moradi and Ismail (2007) and Hoang
(2014).

Detection of H2O2
In Situ H2O2 production in rice leaves exposed to 100 mM NaCl
for 30 h was detected by 3,3′-Diaminobenzidine (DAB) Enhanced
Liquid Substrate System for Immuno-histochemistry solution,
D3939 (Sigma, Saint Louis, MO, USA) following the manufac-
turer’s instructions. Briefly, pieces of the youngest fully expanded
leaf (∼1 cm long) were excised from rice plants and immediately
immerging into 0.5 mL of mixed D3939 solution for 60 min at
room temperature. The DAB solution was decanted and replaced
with 1 ml of Ethanol: Acetic acid (3:1 v/v) for destaining of
chlorophyll.

TUNEL Assay
The Terminal deoxynucleotidyl transferased UTPNick End
Labeling (TUNEL) assay was carried out using an In Situ Cell
Death Detection Kit, Fluorescein (Roche Diagnostics Australia
Pty Ltd, Castle Hill, NSW, Australia) following the manufac-
turer’s instructions. Briefly, root tips fragments (∼1 cm) were
taken from plants, washed three times with fresh phosphate
buffer saline (PBS) and fixed in 4% paraformaldehyde solution
at 4◦C for 1 h. Once fixed, root tips were washed two times
with fresh PBS before immersing in fresh permeability solution
(0.1% triton X 100 and 0.1% sodium citrate) and microwaving
at 700 W for 1 min. Fresh PBS were used to immediately cool
the sample after microwaving, followed by two more PBS washes.
The samples were then mixed with a 50 µL aliquot of TUNEL
reaction mix in a 1.5 mL Eppendorf tube. As a negative con-
trol, a 50 µL aliquot of TUNEL label solution without enzyme
was also included. Samples were incubated at 37◦C for 1 h under
high humidity, washed two times with fresh PBS and counter-
stained with 0.5 mg/mL propidium iodide (Sigma-Aldrich Pty.
Ltd, Sydney, NSW, Australia) for 15 min in the dark at room tem-
perature. Stained root tips were washed two times with fresh PBS
and squash mounted onto slides and examined under a Nikon A1
confocal microscope.
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Electrolyte Leakage Measurement
Electrolyte leakage from rice leaves at the seedling and repro-
ductive stages was measured using a CM 100-2 conductivity
meter (Reid & Associates CC, South Africa). Briefly, detached
leaves were sectioned into 0.5 cm pieces, washed two times with
deionised water, blotted dry with paper towel and loaded into
wells of the CM 100-2 conductivity meter containing 1.25 mL
of deionised water. Measurements were taken at 2 min intervals
over a 60 min period. Dry weight (DW) was determined after the
samples were dried overnight in an oven at 70◦C. Electrolyte leak-
age was normalized by DW and was calculated as the slope of
electrolyte leakage over time.

Infrared Spectroscopy
Fourier transform infrared (FTIR) was used to analyze the chemi-
cal composition of wild type (WT), vector control (VC), AtBAG4,
Hsp70 and p35 leaves exposed to 0 and 100 mM NaCl. For anal-
ysis, 2 cm leaf sections excised 5 cm from the base of the flag
leaf, were lysophilised in 2 mL Eppendorf tubes overnight at
−83◦C using a Flexi-Dry MPTm Freeze Dryer (FTS systems,
Stone Ridge, NY, USA) under a vacuum pressure of <500 Kpa.
Once freeze dried, samples were ground to a fine powder using
a Qiagen Tissue Lyser and analyzed by ATR/FTIR spectroscopy.
IR spectra were collected in the range of 4000 to 525 cm−1 using
a Nicolet 870 Nexus FTIR spectrometer equipped with a smart
endurance single bounce diamond ATR accessory (Thermo-
Nicolet, Madison, WI, USA).

Relative Water Content Determination
Leaf relative water content (RWC) was calculated using the
method described by Lafitte (2002). A piece of leaf tissue
(∼10 cm) from the middle section of the youngest fully expanded
leaf was excised, weighed [fresh weight (FW)] and placed in a
15 mL Falcon tube containing distilled water and kept in dark at
4◦C overnight for determination of turgid weight (TW). To avoid
error due to residual water prior to weighing, the leaves were blot-
ted dry with tissue paper. For determination of DW samples were
weighed after drying at 70◦C in a vacuum oven for 3 days. The
RWC was calculated as RWC = ((FW-DW)/(TW-DW))∗100.

Gas Exchange Measurements
Net photosynthesis (A) was measured using a LiCOR Infra-Red
Gas Analyser LI-6400 XT (John Morris Scientific, Chatwood,
NSW, Australia). Measurement of net photosynthesis at seedling
stage was performed on the third leaf and was recorded at 0,
3, 7, 10, and 13 days after salinity treatment; reproductive stage
measurements were taken on the flag leaf.

Measurement of Leaf Sodium/Potassium Contents
The amount of Na+ and K+ in the leaf tissue of salinity-
stressed plants at both the seedling and reproductive stages were
determined using an Atomic Absorption Spectrophotometer
(Shimadzu A-7000, Shimadzu Scientific Instrument, Sydney,
NSW, Australia). Fifteen milligrams of dried leaf was cut into
0.5 cm long segments and immersed in 30 mL deionised water
in a 50 mL Falcon tube as described in Dionisio-Sese and Tobita
(2000). The mixture was boiled in a water bath for 1 h followed by

20 min autoclaving at 121◦C. Samples were cooled down to room
temperature and filtered using the Whatman filter paper No 40
(Thomas Scientific, Swedesboro, NJ, USA).

Statistical Analysis
All experiments in this study were conducted using a random-
ized block design and where applicable, data were analyzed using
one-way ANOVA and Tukey’s HSD (honest significant differ-
ence) or Fisher’s LSD (least significant difference) tests (Minitab
Version 16).

Results

Generation of Transgenic Rice Expressing
Anti-Apoptotic Genes
The TUNEL assay confirmed that salinity induces PCD in WT
Nipponbare rice (Figure S1). To study the potential of the manip-
ulation of PCDpathways for enhancing tolerance to salinity stress
in rice, the coding regions of the AtBAG4, Hsp70 and p35 genes
were placed under the control of the maize ubiquitin-1 promoter
(Figure S2A). The respective expression cassettes and a VC (the
vector backbone without gene of interest, VC) were introduced
to O. sativa L. ssp. japonica cv. Nipponbare by Agrobacterium-
mediated transformation of Nipponbare embryogenic calli. Fifty-
six PCR-confirmed transgenic lines were generated (Figure S2B).
The expression of AtBAG4,Hsp70 and p35 in the transgenic lines
was examined using RT-PCR (Figure S2C). The RT-PCR results
show that 100% of PCR-positive transgenic lines of AtBAG4
and Hsp70 have the gene of interest expressing and approxi-
mately 90% of PCR-positive lines expressing p35 (Supplementary
Table S1).

The WT, VC and the transgenic plants expressing anti-
apoptotic genes were grown under normal growth conditions to
reveal any differences in morphology and physiology between the
plants at the seedling and reproductive stages. The results show
that no significant difference was observed between WT, VC and
the transgenic plants under normal growth conditions at both
developmental stages (Figure S3 and Figure S4).

An initial screening for salinity stress tolerance was con-
ducted on 10 transgenic rice lines (10 plants/line) containing
each of AtBAG4, Hsp70 and p35, VC expression cassettes and
WT Nipponbare in a glasshouse at seedling stage (≈ 2 weeks
post-acclimation). Morphological data such as leaf damage and
survival rate were captured and analyzed (Figure S3). The results
showed that more than 70% of the transgenic lines tested exhib-
ited higher survival levels and less leaf damage in comparison
to the WT and VC plants (Figure S5).The best transgenic lines
expressing each of the above geneswere selected for further study.

Expression of Anti-Apoptotic Genes
Suppresses Salinity-Induced Programmed
Cell Death and Promotes Reduced Cellular
ROS Levels During Salinity Stress
To examine whether expression of anti-apoptotic genes pre-
vents salinity-induced PCD, TUNEL assays were conducted on
root tips of rice plants expressing AtBAG4, Hsp70 and p35 after
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36 h exposure to 100 mM NaCl; WT and VC plants were also
included as controls. The data show that there was no or very lit-
tle cell death in transgenic rice plants expressing anti-apoptotic
genes while noticeable cell death was observed in WT and VC
plants (Figure 1). As expected, no cell death observed in the
non-stressed WT, VC or transgenic controls (data not shown).

Programmed cell death has shown to be triggered by sig-
nals including ROS that originate from different organelles such
as the chloroplast and mitochondria (Foyer and Noctor, 2005;

FIGURE 1 | Transgenic rice expressing AtBAG4, Hsp70 and p35
can reduce cell death under salinity stress. (A) Wild type (WT);
(B) Vector-control (VC); (C) AtBAG4; (D) Hsp70; and (E) p35 root tips,
(F) TUNEL-positive cells. WT, VC, AtBAG4, Hsp70 and p35transgenic
plants were subjected to 100 mM NaCl, TUNEL assay and propidium iodide
counter-staining were carried out at 36 h after salinity stress. Nucleic acid in
TUNEL positive cells are selectively stained and fluoresces green, indicating
the presence of apoptotic-like bodies, whereas all nucleic acid is counter-
stained with propidium iodide and fluoresces red. Magnifications as indicated.

Rhoads et al., 2006). ROS levels were reported to increase in plant
cells during salinity stress (Borsani et al., 2005; Zhu et al., 2007;
Chawla et al., 2013). To elucidate whether the expression of anti-
apoptotic genes in rice coincides with reduced ROS production
caused by salinity stress rice leaves were assessed for in situH2O2
production by DAB staining 30 h post exposure to 100 mMNaCl.
As shown in Figure 2 more H2O2 production was observed in
WT and VC leaves while lower levels of H2O2 were detected
in the leaves of transgenic plants expressing the anti-apoptotic
genes. This result indicates that the expression of anti-apoptotic
genes is associated with reduced H2O2 production during salinity
stress.

Expression of Anti-Apoptotic Genes
Prevents Changes in Cellular Chemical
Composition During Salinity Stress
Fourier transform infrared spectroscopy, FTIR, is an established
and powerful technique for the analysis of structural and com-
position changes in both animal and plant cells (Griffiths, 1975;
Ellerbrock et al., 1999; Barth, 2000; Yang and Yen, 2002; Meissl
et al., 2007). To investigate potential protein structural and chem-
ical compositional changes that occur during salt stress IR spectra
were obtained and analyzed from rice leaves harvested from
plants treated with 0 mM and 100 mM NaCl. Previously, studies
have established the deconvolution and analysis of two absorp-
tion regions as key indicators of stress levels and metabolic
status, amide I (1580–1700 cm−1), and pectin accumulation
(1745 cm−1; Griffiths, 1975; Barth, 2000; Yang and Yen, 2002);
we therefore focused on these spectral regions. Moreover, the
amide I absorption region is particularly sensitive to salt stress
and proteins with higher proportions of the minor amide I band
(1633 cm−1) rather than the major band (1653 cm−1) have been
associated with salinity tolerance and protein stability in the ice
plant (Mesembryanthemum crystallinum) due to more ordered

FIGURE 2 | Expression of anti-apoptotic gene suppresses ROS (H2O2)
level in leaf of rice exposed to 100 mM NaCl. DAB (3,3′-DAB) staining
was conducted 30 h after salinity stress.
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hydrogen bonding between the peptide bonds (Yang and Yen,
2002). Therefore, protein stability can be accurately assessed by
measuring the ratio of themajor andminor bands of non-stressed
and stressed samples. As can be seen in Figure 3, the ratio of the
major band of the WT and transgenic control samples increased
substantially (>1.5) upon comparison of the 0–100 mM treated
samples. In contrast, transgenic lines expressing AtBAG4 and
Hsp70 maintained a higher proportion of the minor band and
gave low major/minor band ratios (<1) indicated stable pro-
tein structures. The p35 expressing transgenic line displayed an
intermediate major band ratio thus correlating with the tolerance
levels observed in the salinity assays.

Another key indicator of stress is the rate of cell wall synthe-
sis and pectin accumulation which can be observed by analysis
the ester at the absorption band at 1745 cm−1. Studies by Yang
and Yen (2002) demonstrated Arabidopsis plants which are sensi-
tive to salinity treatment do not accumulate cell wall precursors.
In contrast, tolerant ice plants continue to generate pectin and
other cell wall precursors. As shown in Figure 3, cell wall synthe-
sis inWT and transgenic controls plants wasmuchmore sensitive
to salinity treatment compared to the respective transgenic lines
which maintained cell wall synthesis rates. Taken together, the
FTIR data clearly show that the transgenic lines contain proteins
with a higher level of ordered H-bonds and continue to syn-
thesize cell wall precursors during salinity stress than their WT
and transgenic control counterparts. These results correlate with
those observed in other salinity tolerant plant species such as the
ice plant and suggest that the transgenic lines are able to maintain
higher-ordered forms of proteins in leaves during salinity stress.

Constitutive-Overexpression of Cell Death
Regulators Enhanced Tolerance to Salinity
Stress in Rice
Previous reports have indicated that rice is relatively tolerant to
salinity stress during germination, tillering and maturity but sen-
sitive during seedling and reproductive stages (Heenan et al.,
1988; Zeng et al., 2001). Salinity stress at seedling stage, shows
the most distinct difference between shoot growth and dry weight
of salt sensitive and salt tolerant cultivars (Lee et al., 2003; Cha-
Um et al., 2009). Salinity stress at the reproductive stage has been
reported to significantly reduce yield components, especially the
number of tillers per plant, number of spikelets per panicle and
panicle length (Zeng et al., 2001, 2003). These parameters there-
fore were examined in transgenics expressingAtBAG4,Hsp70 and
p35 as well as VC and WT plants. Under salinity stress, shoot
growth and dry weight of WT and VC plants were significantly
reduced compared to that of the transgenics (Figures 4A–E).
This result indicates that at the seedling stage, transgenic rice
expressing AtBAG4, Hsp70 and p35 are more tolerant to salin-
ity stress than the WT and VC plants. Salinity tolerance of the
respective plants at the reproductive stage was also determined
based on yield components including the number of tillers per
plant, panicles length and the number of spikelet per panicle. As
shown in Figure 5, salinity stress resulted in significantly reduced
yields of VC andWT plants whereas transgenic plants expressing
AtBAG4, Hsp70 and p35 genes exhibited significantly higher yield
components.

Transgenic Plants Expressing
Anti-Apoptotic Genes Display Improved
Physiological Characteristics
Membrane integrity, Na+, K+ concentrations and the ratio
between Na+ and K+ are key parameters that differenti-
ate sensitive and tolerant rice cultivars during salinity stress
(Dionisio-Sese and Tobita, 1998, 2000; Cha-Um et al., 2009).
Transgenics, VC and WT rice plants were exposed to 100 mM
NaCl for 13 days at seedling stage and 30 days at the repro-
ductive stage and assessed for electrolyte leakage (an indica-
tor for membrane integrity) and leaf Na+, K+ concentrations.
Results showed that relative electrolyte leakage was increased
in WT and VC plants under 100 mM NaCl treatment at
both the seedling and reproductive stages (Figures 6A,D).
Electrolyte leakage was also increased in transgenic rice plants
expressing anti-apoptotic genes but at lower levels when com-
pared to WT and VC plants. These results combined with
TUNEL and ROS assays indicate that transgenic rice express-
ing anti-apoptotic genes unlike their WT and VC counter-
parts can maintain cell membrane integrity during salinity
stress.

Under salinity stress, tolerant rice cultivars accumulate less
Na+ in the leaf and shoot than their sensitive counterparts
(Dionisio-Sese and Tobita, 1998, 2000; Lee et al., 2003; Moradi
and Ismail, 2007; Cha-Um et al., 2009; Ghosh et al., 2011). In this
study, leaf Na+, K+ and Na+/K+ ratios of transgenic, VC and
WT rice were assessed following exposure to NaCl stress at both
the seedling and reproductive stages. As shown in Figures 6B,E,
salinity stress results in significant accumulation of Na+ in WT
and VC plants and subsequently an increased Na+/K+ ratio
(Figures 6G,H). In contrast, the transgenic plants expressing
AtBAG4, Hsp70 and p35 maintained lower Na+ levels and a
lower Na+/K+ ratio following NaCl exposure at the seedling stage
(Figures 6C,F). As expected, no significant differences in leaf Na+
content or leaf Na+/K+ ratio was observed between the trans-
genic plants, WT and VC plants under non-stressed conditions
(Figure S4).

Photosynthesis is a fundamental physiological process that
provides a vital energy source for plant growth as well as arse-
nal to facilitate plant adaptation to environmental and biotic
stresses. During salinity stress, net photosynthesis and RWC
were reported to be maintained higher in tolerant than sensi-
tive rice cultivars (Dionisio-Sese and Tobita, 2000; Moradi and
Ismail, 2007; Cha-Um et al., 2009). To investigate the poten-
tial of anti-apoptotic genes to enhance salt tolerance in rice by
maintaining high photosynthesis efficiency and high RWC under
salinity stress, the net photosynthesis and RWC of transgenic
plants expressing AtBAG4, Hsp70 and p35 were examined and
compared withWT and vector-control plants at both the seedling
and reproductive stages. As shown in Figures 7A,B, 100 mM
NaCl stress treatment resulted in differential responses between
the transgenic anti-apoptotic and control plants. Although the
trend of net photosynthesis was different between the plants
tested in the first 7 days of salinity exposure, this difference
was not statistically significant. Net photosynthesis of all trans-
genic and control plants decreased at day 10 in both unstressed
(Figure S4) and salinity stressed growth conditions (Figure 7A).
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FIGURE 3 | (A) IR spectroscopic characteristic of wild type rice in non-stress conditions. (B) IR spectroscopic characteristic of (a) WT, (b) VC, (c) p35, (d) Hsp70 and
(e) AtBAG4 leaf rice samples in non-stress conditions.(C) IR spectroscopic characteristic of (a) WT, (b) VC, (c) p35, (d) Hsp70 and (e) AtBAG4 leaf rice samples
at100 mM NaCl. (D) FTIR analysis of protein structure and cell wall synthesis.
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FIGURE 4 | Anti-apoptotic transgenic plants exhibit less damage and
better growth than WT and VC under salinity stress at seedling stage.
(A) WT, VC and AtBAG4 plants; (B) WT VC and Hsp70 plants; and (C) WT,
VC and p35 plants after 13 days exposed to 100 mMNaCl. (D) Shoot growth
and (E) Dry weight of WT, VC and anti-apoptotic transgenic plants after
13 days of 100 mM NaCl exposure. Data represent the mean and SE of three
replicates. Bars that share a common letter are not significantly different by
Tukey HSD (Honest Significant Differences) test at 95% confidence intervals.

This decrease was possibly due to developmental effects such as
senescence (photosynthesis was measured using the third leaf
at seedling stage). However, net photosynthesis in WT and VC
plants without anti-apoptotic genes subjected to salinity dropped
significantly more rapidly than the transgenics. After 13 days
exposure to 100 mM NaCl, net photosynthesis of WT and VC
plants was significantly lower than that of the transgenic plants;
and the net photosynthesis of AtBAG4, Hsp70 and p35 trans-
genic plants was not significantly different from that of their
non-stressed counterparts.

The previous data showed that the anti-apoptotic transgenic
rice plants can maintain cell membrane integrity during salinity
stress. To determine whether this correlated with higher water
retention, leaf RWCs of the transgenic, WT and VC plants in

unstressed and following NaCl treatment were assessed at both
the seedling and reproductive stages. As shown in Figures 7C,D
under 100 mM NaCl treatment at the seedling stage, the trans-
genic plants maintained significantly higher leaf RWC compared
to WT and VC plants. Leaf RWC of AtBAG4 and p35 trans-
genic rice plants following salinity treatment at the reproductive
stage was significantly higher than that of the WT and VC plants
(Figure 7D). However, no significant differences were observed
between Hsp70 transgenic plants, WT and VC plants when sub-
jected to 100 mMNaCl at the reproductive stage (Figure 7D).

Discussion

Climate change forecasts indicate that vast areas of the globe
will become significantly more prone to aberrant environmen-
tal conditions. This potential crisis is exacerbated by predicted
trends in population growth that suggest global food production
needs to increase significantly to reach sustainable levels. The
next frontier of agronomic crops should be both high yielding
and tolerant to a multitude of stresses, thus enabling them to sur-
vive and yield in future environments. In this study we generated
and assessed transgenic rice plants expressing the anti-apoptotic
genes AtBAG4, Hsp70 and p35 for enhanced salinity tolerance
using a variety of agronomical and physiological characteristics.

Transgenic rice expressing AtBAG4, Hsp70 and p35 were
found to possess many characteristics that have been reported
in salt tolerant rice cultivars subjected to salinity stress. This
includes maintenance of ROS, growth and yield levels, minimi-
sation of cellular membrane electrolyte leakage, high photosyn-
thetic efficiency and low Na+ accumulation. In contrast, the
WT and the vector-control rice plants, remained salt sensitive
with serious damage at the whole plant level such as stunted
growth, cell membrane damage, low photosynthetic efficiency,
high sodium ion content and finally death or yield losses.

Previous studies have shown that PCD pathways are trig-
gered by increased ROS levels, among other signals, that originate
from a variety of organelles including the chloroplast and mito-
chondria (Foyer and Noctor, 2005, 2009; Rhoads et al., 2006).
Moreover, salinity stress is associated with increased ROS accu-
mulation that can cause significant injury and if prolonged even
death (Borsani et al., 2005; Zhu et al., 2007; Chawla et al., 2013).
Consistent with these reports, the level of ROS in leaves of
WT, VC and transgenic rice expressing AtBAG4, Hsp70 and p35
increased during salinity stress. Importantly, however, despite
showing increased levels, the amount of ROS observed in the
transgenics was significantly lower than in the WT and VC con-
trols. Although speculative, the genes used in this study may
regulate ROS levels either directly (p35) or indirectly (Hsp70 and
AtBAG4).

Expression of p35 has been reported to inhibit H2O2-induced
PCD in insect cells by directly sequestering ROS. This antioxidant
function of p35 has been attributed to the presence of metal-
binding sites in the proteins that could enhance its antioxidant
property and/or its three-dimensional structure contains some
amino acids that confer electro-dynamically stable configuration
conducive to ROS-trapping. The antioxidant role of p35 is also
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FIGURE 5 | Yield components of transgenic rice expressing AtBAG4,
Hsp70, p35 and control plants under NaCl stress condition at
reproductive stage. (A) Representative photo of panicles from WT, VC and
anti-apoptotic transgenic rice. (B) Number of tiller per plant; (C) Number of

panicle per plant; (D) Panicle length and (E) Number of spikelet per panicle.
Data represent the mean and standard error of three replicates. Bars that share
a common letter are not significantly different by Fisher’s method (Least
Significant Differences) at 95% confidence intervals.

supported by the chemical radio-protectors formed by six cys-
teine residues in its sequence which can react with certain ROS in
a constant rate (Sah et al., 1999). In agreement with this report,
the results in this study show that expression of p35 in rice is
associated with lower cellular ROS levels and PCD during salinity
stress.

The exact mechanistic details of how Hsp70 and AtBAG4 sup-
press cellular ROS levels remain unknown, though we can spec-
ulate on a few plausible scenarios. (i) constitutive expression of
Hsp70 and AtBAG4 genes might reduce ROS levels indirectly by
facilitating the function of cellular processes which if not working
efficiently promote the generation of ROS and (ii) maintenance of
ion homeostasis.

If left unchecked, copious ROS production can denature pro-
teins. To mitigate the denaturation of proteins, cells employ a
complex network of molecular chaperones and foldases which
promote efficient and correct folding of cellular proteins (Hartl
et al., 2011). Members of the highly conserved Hsp family are

chaperones that play a key role within the promotion of correct
protein folding and proteostasis control (Hartl et al., 2011). A
definitive feature of the BAG family of proteins is their ability to
bind and facilitate the function of HSPs (Doukhanina et al., 2006;
Williams et al., 2010). The expression of Hsp70 and AtBAG4may
assist in the folding of proteins and prevention of protein denatu-
ration in high ROS environments, thus maintaining efficiency of
cellular processes andmitigating the production of ROS and plant
damage. The suppression of ROS in transgenic plants expressing
anti-apoptotic genes is perhaps one of the most important steps
to protect cells from oxidative damage and enable the plants to
maintain photosynthetic efficiency which in turn provides energy
for plants to grow and survive under salinity stress conditions.

Accordingly, homeostasis of cellular ROS levels promotes
maintenance of cellular membrane integrity. Previous studies
have shown that ROS-induced cell death can result from oxida-
tive processes such as membrane lipid peroxidation (LPO), pro-
tein oxidation (PO), enzyme inhibition and DNA, RNA damage
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FIGURE 6 | Cell membrane integrity, Na+, K+, and Na+/K+ ratios of
transgenic rice and controls under 100 mM NaCl treatment at seedling
and reproductive stages. (A) and (E) Relative electrolyte leakage of leaf cell at
seedling and reproductive stages respectively; (B) and (F): Na+ concentration in

leaf at seedling and reproductive stages respectively. (C) and (G) K+
concentration in leaf at seedling and reproductive stages respectively. (D) and
(H) Na+/K+ ratios at seedling and reproductive stages respectively. Data
represent the mean and standard error of three replicates.

(Mittler, 2002). The cell membrane is the first site of signal per-
ception as well as the primary defense against abiotic stresses
including salinity and it is one of the most vulnerable tar-
gets for ROS due to the predominance of lipids (Ghosh et al.,
2011). Electrolyte leakage analysis in this study indicated that
the cell membrane in rice expressing AtBAG4, Hsp70 and p35
is less damaged than in WT and VC plants during salinity
stress. Cell membrane integrity probably enables the plants to
maintain ion homeostasis under salinity stress. During salinity
stress, increased extracellular Na+ concentrations create a large
electrochemical gradient that favors the passive transport of Na+

into the cell through K+ transporters result in high cytosolic Na+
concentration (Blumwald, 2000). To maintain low cytosolic Na+
concentrations, plant cells need to extrude Na+ of the cell or
compartmentalize Na+ into vacuoles. The main mechanism for
Na+ extrusion in plant cells is mediated by the plasmamembrane
H+-ATPase (Sussman, 1994). As the cell membrane in WT and
VC plants was damaged it could not use this strategy to pump
Na+ out of the cell hence the Na+ concentration was recorded at
high levels in leaf cells of those plants. On the other hand, trans-
genic plants expressing AtBAG4, Hsp70 and p35 can maintain
cell membrane integrity and therefore could use the H+-ATPase
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FIGURE 7 | Net photosynthesis and relative water content of
transgenic rice, WT and VC under 100 mM NaCl treatment at seedling
and reproductive stages. (A) and (B) Net photosynthesis at seedling and
reproductive stages respectively. (C) and (D) Relative water contents at
seedling and reproductive stages respectively. Data represent the mean and
SE of three replicates.

to extrude Na+ thus maintaining a low concentration of Na+ in
cytoplasm. The high maintenance of low cytosolic Na+ concen-
trations facilitates a high concentration of K+ therefore ensuring
a low Na+/K+ ratio that could offer an optimal cellular environ-
ment for enzymes thus supporting metabolism. High cytosolic
K+ concentrations in transgenic rice plants expressing AtBAG4,
Hsp70 and p35 enable the plants to inhibit PCD. Themaintenance
of high K+ concentrations in cells of transgenic plants expressing
anti-apoptotic genes correlated with less cell death in those plants
(Hoang et al., 2014).

One of the factors that lead to yield loss in rice cultivated
in salt-affected land is photosynthetic inefficiency. There is a

close link between increased photosynthesis with yield (Long
et al., 2006). Photosynthesis and cell growth are among the pri-
mary processes that are affected by salinity (Munns et al., 2006;
Chaves et al., 2009). Under salinity stress, the net photosynthesis
in sensitive rice cultivars was significantly decreased in com-
parison to that in tolerant cultivars (Dionisio-Sese and Tobita,
2000; Moradi and Ismail, 2007; Cha-Um et al., 2009). Previous
studies have suggested that a low Na+/K+ ratio improves pho-
tosynthesis and overall plant growth (Rodrigues et al., 2013).
The maintenance of photosynthetic capacity in Barley, wheat
and rice under salinity stress was associated with low Na+,
high K+ and a low Na+/K+ ratio in cytoplasm (James et al.,
2006). Consistent with these reports, transgenic plants express-
ing AtBAG4, Hsp70 and p35 maintained low cytosolic Na+, high
K+ and a lowNa+/K+ ratio which promoted high photosynthetic
capacity. Maintaining high photosynthetic efficiency provides
essential energy/additional artillery for transgenic plants to cope
with salinity stress as energy is required for many cellular pro-
cesses to sustain growth; energy is also required for pumping the
Na+ out of cells and supports reduced levels of ROS. It is evi-
dent that reduced photosynthetic rates increase the formation of
ROS (Apel and Hirt, 2004; Foyer and Noctor, 2005; Foyer and
Shigeoka, 2011).

Transgenic rice expressing AtBAG4, Hsp70 and p35 maintain
growth rate (shoot growth and dry weight) and yield compo-
nents (number of panicles per plant and number of spikelets
per panicle) during salinity stress. This is probably also a result
of the maintenance of high cytosolic K+ and homeostasis in
transgenic rice plants expressing AtBAG4, Hsp70 and p35. In
response to osmotic stress caused by salinity, shoot growth rate
decreases immediately (Munns and Tester, 2008). High cytoso-
lic K+ in transgenic plants expressing anti-apoptotic genes allow
plants to adjust to osmotic stress and maintain high growth rates
(Maathuis and Amtmann, 1999). The maintenance of growth
rate leads to higher yield components in transgenic rice express-
ing AtBAG4, Hsp70 and p35 in comparison to WT and VC
which had very low cytosolic K+ under salinity stress condi-
tion. Another factor that causes reduced growth rates in high salt
environments is inadequate photosynthesis due to limited carbon
dioxide uptake as a consequence of stomatal closure (Zhu, 2001).
AtBAG4, Hsp70 and p35 transgenic rice plants maintained high
net photosynthesis which provided ample energy for their growth
and development.

The three genes assessed in this study all of different func-
tions at the cellular level, but are all involved in the suppression
of PCD. The decision of whether a given cell lives or dies is
obviously an extremely important one for the wellbeing of the
organism and hence PCD pathways are regulated by a series
of checks or balances which are dictated by the pro- and anti-
survival machinery. The master switch of PCD pathways and the
cell life/death decision during salinity as well as other stresses is
the balance of the pro-death and anti-apoptotic signals within
that given system. Expression of anti-apoptotic genes coincided
with reduced pro-death signals such as ROS levels which in
turn supported the maintenance of cell membrane integrity and
Na+ homeostasis. Low ROS levels reduce the risk of cellular
damage caused by LPO and PO; two established hallmarks of
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oxidative damage. The maintenance of membrane integrity and
Na+ homeostasis promoted sustained photosynthetic efficiency
which in turn provided energy for growth. Maintenance of ROS
levels also facilitates photosynthesis and growth by minimizing
LPO in chloroplasts [see (Foyer and Shigeoka, 2011; Considine
and Foyer, 2014; Noctor et al., 2014)]. Well-maintained growth
further dilutes Na+ concentration which helps maintain Na+
homeostasis leading to the increased membrane integrity, RWC,
net photosynthesis and finally growth and yield. Hence the
transgenic rice was able to minimize the toxicity caused by the
accumulation of Na+ and water deficit under salinity stress.

In conclusion this research focused on the improvement of
salinity tolerance in rice by manipulating PCD pathways. The
exogenous expression of three anti-apoptotic genes from dif-
ferent sources in this study displayed similar physiological and
biochemical characteristics during salinity treatment thus pro-
viding further evidence that cell death pathways are conserved
across broad evolutionary kingdoms. This study also provided
mechanistic evidence for the biochemical and physiological basis
of salinity tolerance in transgenic rice expressing anti-apoptotic
genes and proposes that anti-apoptotic genes improve stress
tolerance by “creating” an optimal cellular environment that min-
imizes pro-death signals including accumulation of ROS. Once

created, this environment facilitates cellular metabolism even
during stressful conditions to suppress flicking of the “cellular kill
switch” that is apoptotic-like cell death.
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