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For decades it has been assumed that the largest vessels are generally found in roots
and that vessel size and corresponding sapwood area-specific hydraulic conductivity
are acropetally decreasing toward the distal twigs. However, recent studies from
the perhumid tropics revealed a hump-shaped vessel size distribution. Worldwide
tropical perhumid forests are extensively replaced by agroforestry systems often using
introduced species of various biogeographical and climatic origins. Nonetheless, it
is unknown so far what kind of hydraulic architectural patterns are developed in
those agroforestry tree species and which impact this exerts regarding important tree
functional traits, such as stem growth, hydraulic efficiency and wood density (WD). We
investigated wood anatomical and hydraulic properties of the root, stem and branch
wood in Theobroma cacao and five common shade tree species in agroforestry systems
on Sulawesi (Indonesia); three of these were strictly perhumid tree species, and the
other three tree species are tolerating seasonal drought. The overall goal of our study
was to relate these properties to stem growth and other tree functional traits such
as foliar nitrogen content and sapwood to leaf area ratio. Our results confirmed a
hump-shaped vessel size distribution in nearly all species. Drought-adapted species
showed divergent patterns of hydraulic conductivity, vessel density, and relative vessel
lumen area between root, stem and branch wood compared to wet forest species.
Confirming findings from natural old-growth forests in the same region, WD showed
no relationship to specific conductivity. Overall, aboveground growth performance was
better predicted by specific hydraulic conductivity than by foliar traits and WD. Our
study results suggest that future research on conceptual trade-offs of tree hydraulic
architecture should consider biogeographical patterns underlining the importance of
anatomical adaptation mechanisms to environment.

Keywords: shade tree, hydraulic conductivity, wood density, aboveground productivity, foliar nitrogen, perhumid
climate, vessel diameter
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Introduction

The water transport pattern in trees is mainly determined by
the plant hydraulic architecture, i.e., the spatial distribution
of various xylem properties from roots to branches of a tree
individual (McCulloh et al., 2010). The hydraulic efficiency of
different compartments along the root-to-leaf flow path can
be described by the sapwood area-specific hydraulic conduc-
tivity (KS), which is directly related to the hydraulic resis-
tance of a given position (Tyree and Ewers, 1991; McElrone
et al., 2004). According to the Hagen–Poiseuille law, even a
small increase in mean vessel diameter causes an exponential
increase of KS. This anatomical pattern represents the most
economical way for a woody plant to enhance the path-length
hydraulic conductivity. Independently of the efficiency of the
hydraulic system water is transported in a metastable state below
its vapor pressure in vascular plants, which makes them vul-
nerable to the formation of gas embolism. This can impair
the transport of water from the soil to the leaves. Particularly
wide vessels are not only most conductive but also most prone
to the risk of hydraulic failure in form of xylem embolisms
(Maherali et al., 2006; Awad et al., 2010; Cai et al., 2010; Hajek
et al., 2014), resulting in a trade-off between hydraulic effi-
ciency and cavitation resistance. As one of the basic organizing
principles of tree hydraulic architecture it has been postulated
that the mean vessel diameter in the xylem tissue generally
decreases acropetally from roots to branches (‘vessel tapering’:
Baas, 1982; Tyree and Zimmermann, 2002; Anfodillo et al.,
2013). This principle has stimulated several conceptual mod-
els on plant hydraulic architecture during the past 15 years.
They state that whole-plant hydraulic conductance dependent
on distance to ground in support of the model by West et al.
(1999) and Murray’s law (McCulloh et al., 2003). Consistent
with these predictions it has indeed commonly been observed
that the largest vessels along the water flow path are found
in roots of trees from temperate or Mediterranean environ-
ments (Martinez-Vilalta et al., 2002; Pratt et al., 2007; Domec
et al., 2009). However, recent studies in tropical forests in
South America (Machado et al., 2007; Fortunel et al., 2013)
and Indonesia (Schuldt et al., 2013) have produced contradic-
tory results regarding the paradigm of continuous vessel taper-
ing. Schuldt et al. (2013) supposed that mechanisms reducing
cavitation risk may not have been evolved in these moist or
perhumid environments where drought stress is normally not
apparent.

Forested perhumid regions particularly in the tropics are
underrepresented in studies so far and are moreover con-
verted rapidly. Worldwide approximately 27.2 million ha of
humid tropical forests have been cleared between 2000 and
2005 (Hansen et al., 2008) mainly for agricultural land use
(Achard et al., 2002; FAO and JRC, 2012). In South-East Asia,
a common driver of deforestation is the conversion of natu-
ral forests into cacao (Theobroma cacao) agroforestry systems.
Cacao is native to tropical South America (Motamayor et al.,
2008) and represents one of the commercially most important
perennial cash crops worldwide. Traditionally cacao trees are
planted under selectively thinned primary or older secondary

forest in Indonesia, but nowadays cultivation is shifting to
non-shaded monocultures or agroforests with introduced fast-
growing legume tree species such as Gliricidia sepium to increase
short-term income (Rice and Greenberg, 2000). Shade trees
in cacao plantations enhance functional biodiversity, carbon
sequestration, soil fertility and drought resistance and provide
microclimatic benefits such as increased humidity and buffer-
ing temperature extremes (Schroth and Harvey, 2007; Tscharntke
et al., 2011).

Considering the ecological relevance of the anatomical
hydraulic properties described above, it is important to note that
systematic studies on the ecological wood anatomy and hydraulic
architecture of cacao and shade tree species are lacking so far.
This is all the more unsatisfying since tropical agroforestry crop
and shade tree species often originate from different biomes and
possess distinct drought adaptations, but it is unknown so far if
this implies differences in the hydraulic strategy of those crop and
shade tree species. It is therefore unknown whether cacao and
shade tree species in the agroforestry systems with different bio-
geographical origin have developed similar hydraulic properties
as the tree species of the natural forest replaced by those.

A high aboveground biomass (AGB) production (including
high crop yield) has been related to several plant functional traits
like high stem hydraulic efficiency, high foliar nitrogen content,
or low stemwood density (WD; Brodribb et al., 2002; Tyree, 2003;
Zhang and Cao, 2009; Hoeber et al., 2014). Thereby low WD
implying lower hydraulic safety is found to be associated with
fast tree growth (Enquist et al., 1999; King et al., 2005; Poorter
et al., 2010), while species with dense wood are considered to be
more resistant to xylem cavitation due to the commonly assumed
relation betweenWD and conduit size and thus xylem wall thick-
ness and resistance to cell wall implosion under negative pressure
(Jacobsen et al., 2005). Consequently, species with dense wood
should show higher hydraulic safety at the cost of lower pro-
ductivity (Meinzer et al., 2003; Bucci et al., 2004). Nevertheless,
several studies, particularly from tropical environments, found
WD decoupled of hydraulic efficiency traits and growth perfor-
mance (Zhang and Cao, 2009; Russo et al., 2010; Fan et al., 2012;
Schuldt et al., 2013). It would therefore be interesting to assess
whether hydraulic properties and WD are related to the above-
ground performance of crop and shade tree species in cacao
agroforests.

In this study, we examined the inter-relationship between sap-
wood area-specific hydraulic conductivity of the root, stem, and
branch xylem tissue with wood anatomical traits along the water
flow path across six common cacao agroforestry tree species with
different biogeographical origins from either seasonally dry or
perhumid tropical environments growing in cacao agroforests
in Central Sulawesi (Indonesia). We moreover wanted to relate
aboveground growth performance to hydraulic efficiency, stem
WD, foliar nitrogen content and foliar δ13C of these species. We
hypothesized (i) that – in contrast to temperate tree species –
the largest vessels along the water flow path are found in the
stem xylem and not in the roots, (ii) that stem xylem hydraulic
properties are unrelated to stem WD, and (iii) that aboveground
productivity across species is positively related to vessel size and
hydraulic conductivity.
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Materials and Methods

Study site, Species, and Sampling
The study was carried out in a cacao agroforestry located in
the Kulawi Valley, Bolabapu District, Central Sulawesi, Indonesia
(S 01◦55.9′ E 120◦02.2′, elevation 571 m above see level) in
May 2012. The climate of the study region is perhumid with-
out a distinct dry season. Mean annual temperature recorded
for the study area by Moser et al. (2010) is 25.5◦C and mean
annual precipitation is 2092 mm between 2002 and 2006. For
the study, a cacao agroforestry plot with multi-species shade
tree layer was selected from a larger number of preselected
cacao agroforestry plots of a different investigation that were
found to be representative in terms of management, above-
ground structure and topographical patterns for this region.
Caution was taken during the selection process that the plot
was far enough above the groundwater table to guarantee
that the trees had no direct access to this water source. All
trees in the agroforest were planted simultaneously around 25
years ago.

Theobroma cacao L. (Malvaceae) originating from rainforests
of lowland northern South America and five common shade tree
species were studied: Leucaena leucocephala (Lam.) de Wit and
Gliricidia sepium (Jacq.) Steud. (both Fabaceae), which are intro-
duced species from seasonal dry forest areas of Central America.
The three other species represent native origins: Gnetum gnemon
L. (Gnetaceae), the short-term drought-tolerating Erythrina sub-
umbrans (Hassk.) Merill (Fabaceae) and the strictly perhumid
species Durio zibethinus. Murr. (Malvaceae). In the following we

TABLE 1 | List of major variables with definition and units employed.

Symbol Unit Definition

H cm Tree height

DBH cm Diameter at breast height

AGB kg Aboveground biomass

BAI cm2 yr−1 Basal area increment

WD g cm−3 Wood density

d μm Vessel diameter

dh μm Hydraulically weighted vessel diameter

VD n mm−2 Vessel density

Alumen % Relative vessel lumen area (lumen to
sapwood area ratio)

Across mm2 Branch cross sectional area

Axylem mm2 Branch sapwood area

KS
emp kg m−1 MPa−1 s−1 Empirical sapwood area-specific

hydraulic conductivity

KS
theo kg m−1 MPa−1 s−1 Theoretical sapwood area-specific

hydraulic conductivity

KL
emp 10−4 kg m−1 MPa−1 s−1 Empirical leaf area-specific hydraulic

conductivity

KL
theo 10−4 kg m−1 MPa−1 s−1 Theoretical leaf area-specific hydraulic

conductivity

Nleaf g kg−1 Foliar mass-specific nitrogen content

SLA cm2 g−1 Specific leaf area

HV 10−4 m2 m−2 Sapwood to leaf area ratio (Huber
value)

δ13C � Carbon isotope signature

have grouped the species according to their drought tolerance as
perhumid (T. cacao, D. zibethinus, G. gnemon) and seasonal (G.
sepium, L. leucocephala, E. subumbrans). All species have diffuse-
porous wood with G. gnemon being a gymnosperm bearing ves-
sels structurally similar to angiosperms (Carlquist, 1994; Fisher
and Ewers, 1995).We chose six tree replicates of each species with
a diameter and height representative for the whole agroforestry
(Table 2). For each tree three sun-exposed upper-crown branches
and three topsoil root segments (diameter 6–14 mm; length 25–
35 cm) were collected as well as one stem core of 5 cm length per
tree taken with an increment corer (Haglöf, Långsele, Sweden)
at 130 cm stem height. To ensure species identity the roots were
traced back to the tree stem. In order to avoid microbial growth
in the extracted tree organs, samples were stored in polyethylene
tubes filled with water containing a sodium–silver chloride com-
plex (Micropur Katadyn, Wallisellen, Switzerland). The samples
were kept cool at 4◦C and the conductivity measurements took
place not more than 7 days after collection.

WD, AGB, and Productivity
Wood density, defined as oven-dry weight over wet volume, was
measured for each stem core. The fresh volume of each sam-
ple was determined by Archimedes’ principle. Samples were then
oven dried for 48 h at 105◦C and dry mass recorded.

Aboveground biomass of the trees was calculated using the
allometric equation of Chave et al. (2005) for tropical wet stands
as: AGB = exp [−2.187 + 0.916 × ln (WD × DBH2 × H)],
where AGB is the estimated aboveground biomass (kg), DBH the
trunk diameter at 130 cm height (cm), H the total tree height
(m), andWD the stem wood density (g cm−3). Since we obtained
proper data on tree height only at the beginning of the study, we
used stem basal area increment (BAI, cm2 yr−1) determined over
a period of 12 months using dendrometer tapes (UMS GmbH,
München, Germany) as indicator for aboveground productivity.
However, it has been shown that AGB increment and BAI are very
closely related in tropical trees (Hoeber et al., 2014). For T. cacao,
G. sepium and D. zibethinus six tree replicates were monitored,
whereas data from just three G. gnemon, two L. leucocephala and
one of E. subumbrans were available for BAI.

Leaf Morphological and Chemical Properties
From each branch segment harvested for the hydraulic and
anatomical measurements, all distal leaves were stripped off
and oven-dried at 70◦C for 48h to determine leaf dry weight.
Specific leaf area (SLA, cm2 g−1) values were determined using
data from nine additional branches per species where leaf sur-
face areas were measured with the WinFOLIA software (Régent
Instruments, Quebec, QC, Canada). Total leaf area per branch
segment (AL, m2) was calculated by dividing dry weight through
species-specific SLA values. Subsequently, leaf samples were
grounded and analyzed for their foliar concentrations of C and
N and for their foliar signatures of δ13C in the leaf bulk tis-
sue with a Delta plus isotope mass spectrometer (Finnigan MAT,
Bremen, Germany), a Conflo III interface (Thermo Electron
Coorperation, Bremen, Germany) and a NA2500 elemental ana-
lyzer (CE-Instruments, Rodano, Milano, Italy) using standard δ
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TABLE 2 | Tree height (H), diameter at breast height (DBH), wood density (WD), aboveground biomass (AGB), and basal area increment (BAI) of the six
tree species in cocoa agroforests.

Species Code n H (m) DBH (cm) WD (g cm−3) AGB (kg) BAI (cm2 yr−1)

Perhumid

Theobroma cacao Th_ca 6 5.83 ± 0.37 11.36 ± 0.45 0.398 ± 0.007 16.89 ± 2.14 6.51 ± 1.92

Durio zibethinus Du_zi 6 14.10 ± 1.44 25.56 ± 4.03 0.430 ± 0.019 230.65 ± 72.72 67.99 ± 20.03

Gnetum gnemon Gn_gn 6 12.40 ± 0.30 18.73 ± 1.63 0.591 ± 0.013 131.80 ± 20.71 28.34 ± 9.71

Seasonal

Gliricidia sepium Gl_se 6 10.90 ± 0.56 11.68 ± 0.51 0.601 ± 0.029 45.75 ± 3.67 19.02 ± 4.83

Leucaena leucocephala Le_le 6 13.75 ± 2.07 36.30 ± 8.61 0.609 ± 0.010 888.20 ± 320.79 87.61 ± 28.87

Erythrina subumbrans Er_su 6 10.06 ± 0.58 33.05 ± 2.29 0.273 ± 0.008 162.03 ± 20.88 10.18∗

Shown values are means ± SE and the number of investigated tree individuals. ∗For BAI, however, only three tree individuals of Gnetum gnemon, two of L. leucocephala,
and one of E. subumbrans were available (see Materials and Methods).

notion: δ = (Rsample/Rstandard − 1) × 1000 (�) in the labora-
tory for stable isotope measurements (KOSI) at the University of
Göttingen.

Empirical Conductivity Measurements
Hydraulic conductivity of one to three root and branch seg-
ments per tree was empirically measured using the method
described by Sperry et al. (1988). In total, 44 root and 39
branch segments were analyzed (mean root segment length
± SE: 291 ± 7.0 mm and diameter: 7.87 ± 0.25 mm;
mean branch segment length: 308 ± 4.3 mm, and diame-
ter: 9.12 ± 0.29 mm). All segments were recut under water
with a razor blade, small lateral roots, and branches cut-off
and sealed with quick-drying superglue (Loctite 431, Henkel,
Düsseldorf, Germany) and activator (Loctite 7452 Aktivator,
Henkel, Düsseldorf, Germany) that function on wet materials.
Afterward, segments were attached under water to the tub-
ing system of the conductivity apparatus, where the pressure
difference of 6 kPa was generated by a 60 cm high water
column. De-ionized water with a sodium–silver chloride com-
plex (16 μg L−1 Ag, 8 mg L−1 NaCl, Micropur katadyn,
Wallisellen, Switzerland) was used as measuring solution in
order to avoid microbial growth in the tubing system, a com-
mon problem in tropical environments. While comparing our
data with conductivities determined by other solutions, it has
to be considered that different perfusion solutions can affect
hydraulic conductivity (Espino and Schenk, 2011). The solu-
tion was passed through a 0.2 μm membrane filter (Maxi
Capsule, Pall Corporation, USA) and each sample measured
three times in row and flushed with the measuring solution
for 5 min at 120 kPa in between each measurement to remove
potential emboli. The hydraulic conductivity (Kh

emp, kg m
s−1 MPa−1) was calculated as Kh = (�V/�t) × (l/�P), where
l is the length of the segment (m), �P the pressure differ-
ence applied to the segment (MPa), �V the amount of water
flowing out of the segment (kg), and �t the time interval of
measurement (s).

Segments of the branches and roots used for conductivity mea-
surements were planed with a sliding microtome (G.S.L.1, WSL,
Birmensdorf, Switzerland) to obtain high-quality top view images
with a stereo-microscope (SteREOV20, Carl Zeiss MicroImaging
GmbH, Göttingen, Gemany) and total cross-sectional (Across,

mm2) and xylem cross-sectional area (Axylem, mm2) analyzed
with ImageJ (v1.44p). Subsequently, for each species a regression
analysis between Across and Axylem was carried out (Table A1).
Empirical sapwood area-specific hydraulic conductivity (KS

emp,
kg m−1 MPa−1 s−1) was calculated by dividing Kh

emp by
the calculated mean xylem cross-sectional area without pith
and bark by applying the species-specific regression coefficients,
and empirical leaf area-specific hydraulic conductivity (KL

emp,
kg m−1 MPa−1 s−1) by dividing Kh by the total supported leaf
area (AL).

Vascular Anatomy
For the cross-sectional xylem anatomical analysis, 3 cm of the
basipetal end of each root or branch segment used for empir-
ical conductivity measurements was stained with safranin (1%
in 50% ethanol, Merck, Darmstadt, Germany) and 10–20 μm
semi-thin disks cut with a sliding microtome (G.S.L.1, WSL,
Birmensdorf, Switzerland). For stem wood anatomy the outer-
most 4 cm of the increment core were used. Photographs of the
cross-sectional cuts were taken with a stereo-microscope with an
automatic stage equipped with a digital camera (SteREOV20, Carl
Zeiss MicroImaging GmbH, Göttingen, Gemany) at 100× mag-
nification. Per sample, 32 up to 107 single images were stitched
together to obtain the whole cross-sectional area. Image process-
ing was done with Adobe Photoshop CS6 (version 13.0.1, Adobe
Systems Incorporated, USA) and ImageJ1 (version 1.47) using
the particle analysis-function for estimating vessel density (VD,
n mm−1), the idealized vessels diameter (d) from major (a) and
minor (b) vessel radii using the equation given byWhite (1991) as
d = [(32 × (a × b)3)/(a2 + b2)]1/4, and cumulative vessels lumen
area (Alumen, m2). Single vessel diameters (d) were used to cal-
culate the hydraulically weighted vessel diameter (dh) according
to Sperry et al. (1994) as dh = �d4/�d5. For these measure-
ments all vessels of a cross section were analyzed, yielding 110
to 3,600 measured vessel per species and organ. The theoreti-
cal hydraulic conductivity (Kh

theo) of a segment was calculated
based on Hagen–Poiseuille’s law asKh

theo = ((π × �r4)/8η) × ρ,
where r is the vessel radius, η the viscosity (1.002 × 10−3 Pa
s) and ρ the density of water (998.2 kg m−3), both at 20◦C.
Theoretical sapwood area-specific hydraulic conductivity (KS

theo,

1http://rsb.info.nih.gov/ij
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kg m−1 MPa−1 s−1) was obtained from Kh
theo by dividing

through the microscopically determined xylem cross-sectional
area without bark and pit, and theoretical leaf area-specific
hydraulic conductivity (KL

theo, kg m−1 MPa−1 s−1) by division
of Kh

theo by the total supported leaf area (AL).

Statistical Analyses
A principal-component analysis (PCA) was done to evalu-
ate how aboveground growth performance, wood anatomi-
cal and leaf traits are associated among each other using
the package CANOCO, version 4.5 (Biometris, Wageningen,
the Netherlands). The matrix species factors were lumen area
(Alumen), VD, hydraulically weighted vessel diameter (dh), stem
basal increment (BAI), empirical (KS

emp) as well as theoreti-
cal hydraulic conductivity (KS

theo). All other statistical calcu-
lations were done with the R software package, version 3.1.0
(R Development Core Team, 2014). Pearson correlations were
calculated for all pairwise combinations of wood anatomical
properties, WD, and hydraulic traits. In case of non-linear rela-
tionships where the data are presented on a log-linear scale,
the data were log10 transformed to achieve normal distribution
before further statistical analyses were conducted. Comparisons
of hydraulic and leaf traits among organs were conducted using
mixed linear models (lme, package: ‘nlme’ and lm package:
‘stats’) with species as random factor to account for pseu-
doreplication. Predicted random effects and residuals of the
models were checked for normal distribution and homoscedas-
ticity using diagnosis plots and dependent variables were log-
transformed and/or variance functions (varIdent or varExp) were
used (Pinheiro and Bates, 2000) when necessary. Subsequently,
multiple comparison tests between group means were tested post
hoc with Tukey HSD tests (glht package: ‘multcomp’). In case
of heteroscedasticity an adjusted statistical framework for simul-
taneous inference and robust covariance estimators (Herberich
et al., 2010) was used to account for different variances between
groups. To test the best predictor for aboveground growth perfor-
mance we applied stepwise backward model selection (step.AIC,
package: ‘MASS’) to identify the most parsimonious model,
defined as the model with the lowest AIC (Akaike informa-
tion criterion) score (Burnham and Anderson, 2002) including
KS

theo, WD, Nleaf, δ13C as well as species affiliation (whether it
is perhumid or seasonal) and their interactions as explanatory
variables.

Results

Tree Size and Aboveground Growth
Performance
The variability in mean AGB between the studied species was
high, ranging between 16.9 kg in T. cacao and 888.2 kg in L. leu-
cocephala reflecting marked differences in height and diameter
between the pruned T. cacao and G. sepium, and the other four
shade tree species (Table 2). L. leucocephala was on average more
than two times higher and larger compared to T. cacao; the other
four species ranged between these two extremes (Table 2) even
though all trees were planted at the same time. Stem WD varied

by a factor of two across the six tree species with E. subumbrans
showing the lowest WD andG. sepium and L. leucocephala show-
ing the highest WD values. AGB was found to be a very good
predictor for the annual BAI amongst all species (Figure 1). BAI
numbers were thus very different across the six tree species and
ranged from 6.5 and 10.2 cm2 yr−1 in T. cacao and E. subum-
brans, respectively, to 68 and 88 cm2 yr−1 in D. zibethinus and L.
leucocephala, respectively (Table 2).

Changes in Hydraulic Conductivity Along the
Water Flow Path
The empirically determined sapwood area-specific hydraulic
conductivity (KS

emp) of root segments differed by a factor of
100 across species with E. subumbrans showing the highest val-
ues by far, whereas the smallest values were observed in roots
of T. cacao (Figure 2; Table A2). The differences in KS

emp

of branches across species were much less pronounced (2.3 to
7.4 kg m−1 MPa−1 s−1) with G. gnemon showing the high-
est and T. cacao the lowest numbers. Overall, root segments
always showed higher hydraulic conductivities than branches
(‘lme’; p < 0.001). Furthermore, KS

emp values (in both root
and branch segments) were always smaller than the theoreti-
cally calculated hydraulic conductivity (KS

theo) as derived from
vessel diameters by Hagen–Poiseuille’s law. Even though branch
and root segments around 30 cm lengths were used, prob-
ably open-cut vessels could not be avoided particularly for
root segments of E. subumbrans. However, mean KS

emp val-
ues reached 9–45% of respective KS

theo values indicating that
open-cut vessels were negligible for most species, except for G.
gnemon where 50–81% of respective KS

theo values were mea-
sured (Figure 2). Empirically measured and calculated specific
conductivity in root segments showed a positive linear rela-
tionship (‘lme’; p < 0.001), but not for branch segments (‘lme’;
p = 0.71).

FIGURE 1 | Relationship between stem basal area increment (BAI) of
cacao and four shade tree species and aboveground biomass (AGB).
Each symbol represents mean values for each tree species (◦ Th_ca;

Du_zi; Gl_se; � Le_le; • Gn_gn). Error bars indicate 1 SE.
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FIGURE 2 | Hydraulic characteristics – (A) empirical sapwood
area-specific hydraulic conductivity (KS

emp), (B) theoretically calculated
sapwood area-specific hydraulic conductivity (KS

theo), (C) vessel
diameter (d), (D) hydraulically weighted vessel diameter (dh), (E) vessel

density (VD), and (F) relative lumen area (Alumen) – of six cacao
agroforestry species (Th_ca; Du_zi; Gn_gn; Gl_se; Le_le; Er_su) among
root (white bars), stem (gray bars) and branch xylem (black bars). Values
are means ± SE.

Anatomical Differences across Species in
Root, Stem, and Branch Wood Properties
We found considerable variation in wood anatomical and derived
hydraulic traits along the flow path from root, to stem and
branch wood for all six species. Exemplary pictures for this
variation from three of the species are given in Figure 3. In
four of the six species average vessel diameter (d) was signif-
icantly largest in the stem and not in the root wood; in the
remaining two species d was comparable between root and stem
wood (Figure 2). Along the flow path smallest vessels were

always observed in the branch wood of all species with the
exception of D. zibethinus (Figure 2). The same pattern was
observed for the hydraulically weighted vessel diameter (dh) for
branch wood, while the differences in dh between root and stem
wood were only significant in T. cacao and D. zibethinus. In
general, several wood anatomical and derived hydraulic traits
allowed a grouping between the three perhumid tree species orig-
inating from strictly wet tropical environments, and the three
seasonal tree species reported to tolerate moderate droughts.
As mentioned above, dh was not significantly higher in stem
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FIGURE 3 | Cross-sections of different tree parts along the flow path:
branch (left row), roots (middle row), and stems (right row) for three
common tree species from cocoa agroforests in Sulawesi, Indonesia.

Erythrina subumbrans (upper line), Theobroma cacao (middle line), and
Gliricidia sepium (lower line). The scale bars are presented in the figures and
black bars represent 1000 μm.

than in root wood for the three seasonal tree species, and VD
was comparable between root and branch wood and did not
differ significantly. On the other hand, highest vessel densi-
ties were observed in the branch wood of all perhumid tree
species, although differences were only significant in two of the
three species. However, when comparing the two groups (per-
humid vs. seasonal) significant differences were found (‘lme’;
p < 0.001). In general, VD varied considerably between the
organs and species as well and was found to decrease in the
order branch – root – stem across all six species (Figure 2).
Variation in VD numbers was lowest (factor < 2) in the root

xylem and highest (factor > 10) in the stem xylem. VD decreased
exponentially with increasing vessels diameter; we therefore con-
centrate on changes in d along the flow path in the following
(Figure 4).

Relative vessel lumen area (Alumen), i.e., the ratio of lumen
to sapwood area, was lowest in the stem wood in all species
except of G. gnemon (Figure 2). Root and branch wood showed
therefore higher Alumen values that tended to show similar
dimensions with the exception of the seasonal tree species
that showed significantly higher Alumen values in the root
segments.
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FIGURE 4 | Mean vessel diameter in relation to vessel density in tree
organs (roots, stems, and branches) along the flow path for the six
tree species.

When concentrating on hydraulic properties we found a simi-
lar pattern in KS

theo, where hydraulic conductivity was highest in
roots of seasonal tree species (‘lme’; p < 0.001), while there is no
overall significant difference between the root and stem wood in
the perhumid species (p > 0.05).

Leaf Morphological, Chemical, and
Hydrological Properties
Specific leaf area of sun-exposed leaves was higher by roughly a
factor of two in E. subumbrans, G. sepium, and L. leucocephala
than inD. zibethinus, T. cacao, andG. gnemon (Table 3). The sap-
wood to leaf area ratio (‘Huber value,’ HV) of the sun-lit branch
samples was lowest in G. sepium and T. cacao, and highest in
E. subumbrans. Empirical leaf area-specific hydraulic conductiv-
ity (KL

emp) in these branch samples showed a large variation
across species ranging from 1.2 10−4 kg m−1 MPa−1 s−1 in T.
cacao over 4.3–4.8 10−4 kg m−1 MPa−1 s−1 in D. zibethinus,
G. sepium, E. subumbrans, and L. leucocephala to 14.2 10−4 kg
m−1 MPa−1 s−1 in G. gnemon. The variation in theoretical leaf

area-specific hydraulic conductivity (KL
theo) derived from the

wood anatomical properties was less pronounced. Lowest val-
ues were found in T. cacao, followed by G. sepium, while the
other four tree species had ca. 2–5 times higher KL

theo values
(Table 3).

Mass-specific foliar nitrogen concentration (N leaf) was lowest
in T. cacao, medium high in D. zibethinus and G. gnemon, and
highest in the three seasonal species G. sepium, L. leucocephala,
and E. subumbrans (Table 3). Variation in leaf carbon isotopic
composition was rather small. The two species E. subumbrans and
L. leucocephala revealed a ca. 1.0–1.8 higher δ13C value than the
four other species that did not show significant differences in this
variable.

Interrelationships between Vascular
Properties, Tree Stem Growth, and Hydraulic
Conductivity
A PCA on the inter-relationships between the investigated traits
explained a large proportion of the total variance of the data set
along the first four axes (Table 4). The first axis was strongly
positively associated with all wood anatomical traits (including
HV and δ13C), but negatively with WD. Axis 1 was further-
more positively related to DBH. Axis 2 was strongly associ-
ated with stem and branch lumen area as well as with the
leaf traits (KL

emp and N leaf). In contrast to KS
emp in root seg-

ments, branch KS
emp was associated with axis 2 and there-

fore showed an inter-relationship with KL
emp. BAI showed an

only moderate association with the first axis and thus was only
weakly correlated with the majority of wood anatomically and
tree structural variables. BAI was correlated best with the third
axis that was only associated with the variables AGB, DBH,
and WD (positively), as well as root KS

theo and KS
emp (neg-

atively). A Pearson’s coefficient of correlation analysis, how-
ever, revealed a strong relationship between BAI and KS

theo

on a species level for root, stem, and branch wood tissue
(Figures 5A–C).

A systematic correlation analysis of pairs of traits con-
firmed that most of the inter-relationships identified in the
PCA on a species level were also valid on a tree individual
level (Table 5). BAI was strongly interrelated with AGB as
well as DBH and showed moreover a significant correlation

TABLE 3 | Leaf morphological, hydraulic, and chemical properties of the six investigated tree species.

Species SLA
(cm2 g−1)

HV
(m2 m−2)

KL
emp × 10−4

(kg m−1 MPa−1 s−1)
KL

theo × 10−4

(kg m−1 MPa−1 s−1)
Nleaf

(g kg−1)
δ13C
(�)

Perhumid

T. cacao 125.76 ± 8.38 a 3 (9) 1.34 ± 0.33 a 6 1.23 ± 0.75 a 2 9.90 ± 1.89 a 6 1.87 ± 0.25 a 6 (18) –29.45 ± 0.39 ab 6 (18)

D. zibethinus 124.74 ± 12.19 a 3 (9) 3.07 ± 0.99 a 6 4.27 ± 0.92 a 6 51.11 ± 13.18 b 6 2.28 ± 0.25 a 6 (18) –29.87 ± 0.46 a 6 (18)

G. gnemon 146.75 ± 5.35 a 3 (9) 2.90 ± 0.71 a 6 14.23 ± 4.22 b 6 29.81 ± 10.57 ab 6 2.69 ± 0.21 ab 6 (18) –29.83 ± 0.42 a 6 (18)

Seasonal

G. sepium 271.48 ± 19.74 b 3 (9) 1.72 ± 0.26 a 6 4.29 ± 1.09 a 6 13.31 ± 1.97 ab 6 3.35 ± 0.17 be 6 (18) –29.09 ± 0.19 a 6 (18)

L. leucocephala 293.2 ± 21.3 b 3 (6) 2.07 ± 0.52 a 6 4.79 ± 0.81 a 6 47.16 ± 11.23 ab 6 3.59 ± 0.12 c 6 (18) –27.93 ± 0.08 c 6 (18)

E. subumbrans 264.38 ± 11.11 b 3 (9) 3.91 ± 1.40 a 6 4.76 ± 1.69 a 6 38.25 ± 14.05 ab 6 3.59 ± 0.14 c 6 (18) –27.89 ± 0.28 be 6 (18)

Values are means ± SE; the number of investigated trees and measured samples (in parentheses) is also given. Different small letters indicate differences between
species. See Table 1 for definition of abbreviations.
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TABLE 4 | Results of a Principal Components Analysis (PCA) on the response of six agroforestry tree species with respect to stem BAI, anatomical
properties of the coarse root, stem and branch wood as well as hydraulic and leaf traits.

Axis 1 (EV 0.46) Axis 2 (EV 0.21) Axis 3 (EV 0.16) Axis 4 (EV 0.12)

AGB 0.31 (0.10) –0.25 (0.16) 0.87 (0.93) 0.06 (0.93)

DBH 0.81 (0.65) 0.08 (0.65) 0.54 (0.94) 0.06 (0.94)

BAI 0.17 (0.03) –0.09 (0.04) 0.83 (0.72) 0.52 (1.00)

WD –0.58 (0.34) –0.05 (0.34) 0.75 (0.90) –0.11 (0.94)

Alumenroot 0.90 (0.81) –0.03 (0.81) –0.03 (0.81) –0.42 (0.99)

Alumenstem –0.29 (0.08) 0.79 (0.70) 0.43 (0.88) –0.32 (0.98)

Alumenbranch –0.12 (0.01) 0.93 (0.88) –0.11 (0.90) 0.21 (0.94)

dhroot 0.92 (0.84) 0.13 (0.86) –0.11 (0.87) –0.36 (1.00)

dhstem 0.91 (0.82) 0.11 (0.83) –0.17 (0.86) 0.32 (0.97)

dhbranch 0.82 (0.68) –0.37 (0.81) 0.04 (0.82) 0.27 (0.89)

Ks
theo root 0.88 (0.77) 0.10 (0.78) –0.26 (0.84) –0.39 (1.00)

Ks
theo stem 0.88 (0.78) 0.36 (0.91) –0.05 (0.92) 0.27 (0.99)

Ks
theo branch 0.89 (0.79) –0.09 (0.80) 0.06 (0.80) 0.39 (0.95)

Ks
emp root 0.85 (0.72) 0.18 (0.76) –0.18 (0.79) –0.45 (0.99)

Ks
emp branch –0.29 (0.08) 0.66 (0.52) 0.31 (0.62) –0.40 (0.78)

Ks
emp –0.21 (0.04) 0.87 (0.79) 0.35 (0.92) –0.27 (0.99)

Ks
theo 0.78 (0.61) 0.39 (0.76) 0.26 (0.83) 0.41 (1.00)

HV 0.77 (0.59) 0.64 (0.51) –0.02 (0.70) 0.05 (0.98)

Nleaf –0.23 (0.05) 0.68 (0.51) –0.44 (0.70) 0.53 (0.98)

δ13C 0.71 (0.50) –0.41 (0.67) 0.28 (0.74) –0.49 (0.99)

Given are the loadings of the selected variables along the four main explanatory axes as well as the cumulative r2 values (in brackets) for a given variable. Numbers below
the four axes indicate the eigen values (EV) of the axes. Numbers in bold indicate the variables with the closest relation to the respective axis.

FIGURE 5 | Relationship between stem basal area increment (BAI) of cacao and four shade tree species and theoretically calculated cross sectional
sapwood area-specific hydraulic conductivity (KS

theo) in the root (A), stem (B), and branch wood (C). Each symbol represents mean values for each tree
species (◦ Th_ca; Du_zi; Gl_se; � Le_le; • Gn_gn). Error bars indicate 1 SE.

with stem dh and stem KS
theo. None of these three variables

were correlated with WD that generally showed only few and
moreover relatively low correlations with other variables in the
Pearson correlation analysis. Mixed effect models incorporating
the pseudoreplication due to species confirmed that WD does
not explain neither KS

theo, dh nor BAI in our data well (‘lme’;
p > 0.05).

Contrary to significant relationships of stem wood KS
theo with

AGB, BAI and DBH, no relationship of KS
emp between any of

these traits could be found, except for KS
emp in root segments

that were related to DBH.

As expected, all species and organs showed a positive rela-
tionship between KS

theo and dh (Table 5). Foliar nitrogen con-
tent (N leaf) as well as the carbon isotope signature (δ13C) did
not show any relation with neither leaf area-specific hydraulic
conductivity (KL

theo), KS
emp nor HV, but a strong significant cor-

relation within each other. N leaf was unrelated to BAI among
species (p > 0.1, r = 0.05) also when excluding the three seasonal
species.

Stepwise model selection confirmed that KS
theo is the best pre-

dictor for AGB together with WD and neither N leaf, δ13C nor
KS

emp were explaining the variability in our data significantly.

Frontiers in Plant Science | www.frontiersin.org 9 March 2015 | Volume 6 | Article 191

http://www.frontiersin.org/Plant_Science/
http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Science/archive


Kotowska et al. Hydraulic architecture in tropical agroforestry trees

TA
B

L
E

5
|P

ea
rs

o
n

’s
co

ef
fi

ci
en

ts
o

f
co

rr
el

at
io

n
b

et
w

ee
n

p
ai

rs
o

f
tr

ai
ts

.

B
A

I
A

G
B

D
B

H
W

D
A

lu
m

en

ro
o

t

A
lu

m
en

st
em

A
lu

m
en

b
ra

nc
h

d
h

ro
o

t

d
h

st
em

d
h

b
ra

nc
h

K
s

th
eo

ro
o

t

K
S

th
eo

st
em

K
S

th
eo

b
ra

nc
h

K
S

em
p

b
ra

nc
h

K
S

em
p

ro
o

t

K
L

em
p

K
L

th
eo

H
V

δ
13

C

A
G

B
0.

77

D
B

H
0.

82
0.

93

W
D

n.
s.

n.
s.

n.
s.

A
lu

m
en

ro
ot

n.
s.

n.
s.

0.
45

–0
.4

1

A
lu

m
en

st
em

n.
s.

0.
38

n.
s.

0.
37

n.
s.

A
lu

m
en

b
ra

nc
h

n.
s.

n.
s.

n.
s.

n.
s.

n.
s.

0.
36

d
h

ro
ot

n.
s.

0.
34

0.
47

–0
.3

8
0.

83
n.

s.
n.

s.

d
h

st
em

0.
63

0.
50

0.
64

–0
.5

2
0.

55
n.

s.
n.

s.
0.

68

d
h

b
ra

nc
h

n.
s.

n.
s.

n.
s.

n.
s.

0.
45

n.
s.

n.
s.

0.
52

0.
80

K
s

th
eo

ro
ot

n.
s.

0.
35

0.
49

–0
.4

0
0.

94
n.

s.
n.

s.
0.

97
0.

64
0.

50

K
s

th
eo

st
em

0.
70

0.
68

0.
73

n.
s.

0.
48

0.
36

n.
s.

0.
64

0.
87

0.
59

0.
59

K
s

th
eo

b
ra

nc
h

0.
48

n.
s.

0.
35

n.
s.

0.
40

n.
s.

n.
s.

0.
44

0.
79

0.
86

0.
44

0.
66

K
s

em
p

b
ra

nc
h

n.
s.

n.
s.

n.
s.

n.
s.

n.
s.

n.
s.

n.
s.

n.
s.

n.
s.

n.
s.

n.
s.

n.
s.

n.
s.

K
s

em
p

ro
ot

n.
s.

n.
s.

0.
42

n.
s.

0.
66

0.
36

n.
s.

0.
74

n.
s.

n.
s.

0.
75

0.
46

n.
s.

n.
s.

K
L

em
p

n.
s.

n.
s.

n.
s.

n.
s.

n.
s.

0.
43

n.
s.

n.
s.

n.
s.

n.
s.

n.
s.

n.
s.

n.
s.

0.
75

n.
s.

K
L

th
eo

n.
s.

0.
44

0.
44

n.
s.

0.
35

n.
s.

n.
s.

0.
42

0.
58

0.
54

0.
40

0.
66

0.
64

n.
s.

n.
s.

n.
s.

H
V

n.
s.

n.
s.

n.
s.

n.
s.

n.
s.

0.
40

n.
s.

n.
s.

n.
s.

n.
s.

n.
s.

0.
35

n.
s.

n.
s.

n.
s.

0.
43

0.
82

δ13
C

n.
s.

n.
s.

n.
s.

n.
s.

0.
58

n.
s.

n.
s.

0.
38

n.
s.

n.
s.

0.
49

n.
s.

n.
s.

n.
s.

n.
s.

n.
s.

n.
s.

n.
s.

N
le

af
n.

s.
n.

s.
n.

s.
n.

s.
n.

s.
n.

s.
0.

54
n.

s.
n.

s.
n.

s.
n.

s.
n.

s.
n.

s.
n.

s.
n.

s.
n.

s.
n.

s.
n.

s.
–0

.4
0

H
ig

hl
y

si
gn

ifi
ca

nt
co

rr
el

at
io

ns
ar

e
sh

ow
n

in
bo

ld
(p

<
0.

00
1)

,
no

n-
si

gn
ifi

ca
nt

co
rr

el
at

io
ns

(p
>

0.
05

)a
re

n.
s.

Th
e

co
rr

el
at

io
n

an
al

ys
is

w
as

ba
se

d
on

co
m

pa
ris

on
s

on
tr

ee
in

di
vi

du
al

le
ve

l.

Frontiers in Plant Science | www.frontiersin.org 10 March 2015 | Volume 6 | Article 191

http://www.frontiersin.org/Plant_Science/
http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Science/archive


Kotowska et al. Hydraulic architecture in tropical agroforestry trees

Discussion

Patterns in Xylem Anatomy among Species
in Stem, Root, and Branch Wood
Most studies on hydraulic anatomical properties in trees describe
vessel sizes to be largest in roots and basipetally taper to
the branches (Tyree and Zimmermann, 2002; McElrone et al.,
2004; Goncalves et al., 2007; Domec et al., 2009; Lintunen
and Kalliokoski, 2010). The first notification of this paradigm
even goes back to observations by Nehemiah Grew in the 17th
century (Baas, 1982). Generally, variation in conduit diame-
ter is a compromise between hydraulic efficiency, safety, and
the maximization of conductivity per growth investment due
to conduit tapering (Sperry et al., 2008, 2012). As concluded
by Tyree and Zimmermann (2002) the reason for conduit
tapering is the control of water distribution, and more impor-
tantly to counter increases in flow resistance and gravimetri-
cally forces with tree height to minimize the increasing risk of
xylem dysfunction with path length (West et al., 1999; Anfodillo
et al., 2006; Sperry et al., 2012). This is additionally mirrored
in the meanwhile commonly observed relation between con-
duit size and vulnerability to cavitation (Wheeler et al., 2005;
Maherali et al., 2006; Cai et al., 2010; Domec et al., 2010; Sterck
et al., 2012). It is argued that in roots water stress will not
be as great as in stems, since water potentials drop in going
from root to stem to leaf (Tyree and Zimmermann, 2002).
As long as soil water is still extractable, roots would then be
less exposed to drought-induced embolism and might there-
fore afford larger vessels. Furthermore, with a small need of
structural support and embedded in a soil matrix, biomechan-
ical stress is unlikely to affect roots (McElrone et al., 2004;
Pratt et al., 2007). Additionally, most plants have developed a
mechanism to restore vessel functionality by refilling embolized
vessels through living rays and paratracheal parenchyma. The
contribution of paratracheal parenchyma was recently shown
for grapevine by Brodersen et al. (2010), while the molec-
ular and physiological paths were investigated by Chitarra
et al. (2014). As coarse roots are located close to the water
source it seems beneficial to restrict hydraulic failure to areas
within the complex hydraulic network that are easily refilled.
Embolism reversal is thought to occur by active transport of
sugars into empty conduits, which are generally accumulated
in high amounts within a trees rooting system (Würth et al.,
2005).

Our results are in contrast to the common assumption as we
found the largest vessels along the flow path in the stem xylem
and not in the roots. Supporting our first hypothesis, our results
are in accordance with the observations of a hump-shaped ves-
sel size distribution along the flow path found in tropical trees of
Indonesia (Schuldt et al., 2013), supported by findings from South
America where the largest vessels were observed in the stemwood
(Machado et al., 2007) or comparing just root and branch wood
both organs showed similar vessel sizes (Fortunel et al., 2013).
Our confirmative finding could represent a response to perma-
nent water availability and low evaporative demand in this humid
region, where trees without severe drought limitation might have
developed roots with large relative lumen area and less structural

tissue that can achieve sufficiently high axial conductivities in
these organs. Thereby they would compensate for the smaller
vessel diameters in roots than in the trunk in accordance with
the pipe model theory by Shinozaki et al. (1964). Originally, this
theory attempted to explain plant architecture in a quantitative
way by proposing that photosynthetic organs should be sup-
ported by an adequate structure of non-photosynthetic organs
in order to guarantee functionality (Chiba, 1998). Nevertheless,
one has to keep in mind that the pipe model theory is not
a hydraulic model, but should be viewed as a biomass allom-
etry model with no particular implications concerning either
hydraulics or biomechanics as proposed by McCulloh and Sperry
(2005).

Machado et al. (2007) argued that shallow roots of moist
tropical forest species, which is a common rooting pattern in
tropical moist forests (Leuschner et al., 2006; Hertel et al.,
2009), are subjected to variations in water availability and
the narrower vessels in the root wood are a safety trade-off
against cavitation. However, the vessel sizes found in coarse
roots in the present study as well as in other tropical stud-
ies (Machado et al., 2007; Fortunel et al., 2013; Schuldt et al.,
2013) are at least 30% larger compared to, e.g., temperate for-
est tree species (Köcher et al., 2012), and therefore might not
directly be rated as an increased safety against cavitation com-
pared to the stem or branch wood. It seems rational to assume
that not the coarse root xylem, despite large vessel sizes, rep-
resents the most drought-sensitive organ, but rather that of
fine roots with smaller diameter. In contrast to coarse roots,
which are primarily responsible for axial water transport, fine
roots represent the highest resistance for water transport within
the rooting system due to radial water flow either along the
apoplastic or cellular pathway (Steudle, 2000). As the most dis-
tal organs they are scarified in response to drought in order
to avoid serious harm to coarse and large roots like it has
been observed in various temperate and boreal forests (Gaul
et al., 2008; Chenlemuge et al., 2013; Hertel et al., 2013). Fine
roots might thereby act as a sort of ‘hydraulic fuse,’ which
evolved from Zimmermann’s segmentation hypothesis (Tyree
and Zimmermann, 2002) in analogy to the leaf petiole (Zufferey
et al., 2011). At the root level this ‘hydraulic segmentation’
might additionally protect the below-ground system prevent-
ing the reverse water flow from main to lateral roots and back
to the dryer soil as discussed for grapevine by Lovisolo et al.
(2008). Woody plants would accordingly restrict hydraulic fail-
ure to redundant organs that are readily replaced (Sperry et al.,
2002) although it has been argued that the term ‘hydraulic
fuse’ should be reconsidered since roots are not necessarily an
‘expandable’ organ (Gonzalez-Benecke et al., 2010). The con-
struction costs of fine roots and lignified small-diameter roots
in term of carbon and nutrients may not be much smaller
than for twigs and leaves, and the loss of roots is directly
related to the loss of absorption capacity for nutrients and
water. However, comparable data on fine root mortality and
percentage loss of conductivity in coarse roots that would empir-
ically support the idea that fine root are sacrificed in order
to protect the hydraulic system are to our knowledge not
available so far.
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Concurrently with decreasing vessel size, conduit frequency
is generally reported to increase from the roots to the branches
(e.g., Lintunen and Kalliokoski, 2010). This commonly observed
trade-off between VD and vessel diameter (Preston et al., 2006;
Sperry et al., 2008; Zanne et al., 2010) could not be confirmed
in our study where the stem wood showed by far the lowest VD
compared to roots and branches. Since flow in capillary systems
is proportional to the fourth power of vessel radius according to
Hagen–Poiseuille law, variations in vessel diameter has a much
greater effect on KS

theo than variations in VD. However, due to
the occurrence of a higher relative vessel lumen area and a few
large vessels in roots we have observed that specific conductiv-
ity in the three seasonal species, i.e., G. sepium, E. subumbrans,
and L. leucocephala, was higher in roots than in stems, even
though the largest vessels were observed in the stem wood. At
least for E. subumbrans and L. leucocephala this pattern could
additionally be explained by the highest relative vessel lumen
area found in roots, i.e., less space was occupied by tracheids
or fibers compared to the stem or branch wood. Furthermore,
disproportionately high empirical conductance measured in E.
subumbrans might be attributed to the presence of open-cut ves-
sels, which are highly conductive as water does not have to pass
pit membranes, which generally account for more than 50%of the
total hydraulic resistance (Choat et al., 2008). However, since tree
hydraulic traits have been associated with general habitat pref-
erences of various species (Sperry, 2000; Maherali et al., 2004),
this finding could be due to the biogeographic background and
could represent genetically determined adaptations to different
water availability in the natural habitat of the species. While T.
cacao, D. zibethinus and G. gnemon are known to be strictly
wet tropical forest trees rather sensitive to drought and low air
humidity (Brown, 1997; Carr and Lockwood, 2011), the other
three species are reported to be fast-growing drought-resistant
trees (Mrema et al., 1997; Fagbola et al., 2001). While drought
resistance is recorded for some Erythrina species (da Silva et al.,
2010; Manoharan et al., 2010), not many data are available on E.
subumbrans, which is a species native to Indonesia. In a habi-
tat where water stress is generally modest or absent such as
the humid climate in Sulawesi, cavitation-avoiding mechanisms
might be less beneficial than hydraulic efficiency and largest ves-
sels can occur in stem xylem, thereby reducing the hydraulic
resistance along the flow path. However, it remains specula-
tive why the largest vessels along the flow path are observed in
the root xylem only in biomes that frequently experience either
drought- or frost stress. The size of a vessel is thought to be
caused by the concentration of the plant hormone indole-3-acetic
acid (IAA), an endogenous auxin, at the time of cell differenti-
ation (Aloni, 1987; Lovisolo et al., 2002), which is also related
to the cambial age and related cambial activity as seen by the
radial increase in vessel size at the stem base of a tree (Spicer and
Gartner, 2001). It would thus be of interest to extent the results
of the present study to a quantification of IAA concentration
in both coarse root and stem cambium in tropical and temper-
ate trees; the latter should show higher concentrations in the
root xylem independently of cambial age in agreement with the
common paradigm that largest vessels are found in the rooting
system.

Relationships between Vascular Properties,
Tree Stem Growth, and Hydraulic
Conductivity
Wood density is an easy to measure functional wood prop-
erty that has been linked to various ecological and other func-
tional traits. In species showing a relatively large fraction of
vessels close to the hydraulically weighted mean vessel diam-
eter (dh), KS

theo should correlate negatively with WD (Bucci
et al., 2004; Meinzer et al., 2008; Gonzalez-Benecke et al., 2010).
Similar to observations on tropical forest trees from perhu-
mid tropical environments (Poorter et al., 2010; Schuldt et al.,
2013) we expected WD to be unrelated to wood anatomical
and hydraulic properties. Even though we found a correlation
between WD and dh on tree level, this relationship could not be
confirmed on species level accounting for species pseudorepli-
cation in mixed effect models. Also we found no significant
relationship of WD to basal stem area increment, contradict-
ing former results on a close relation between WD and growth
for tropical trees (King et al., 2006; Poorter et al., 2010; Hietz
et al., 2013). Several other studies report WD to be partially
decoupled from hydraulic conductivity due to variation of fre-
quency and size of fibers in angiosperms (Preston et al., 2006;
Martinez-Cabrera et al., 2009; Zanne et al., 2010). Results on
the relationship between WD and vascular properties as well as
tree growth are thus partly conflicting; while some studies con-
firm that WD varies inversely with vessel size (Preston et al.,
2006; Jacobsen et al., 2007; Thomas et al., 2007; McCulloh et al.,
2011; Gleason et al., 2012), others did not support this find-
ing (Martinez-Cabrera et al., 2009; Poorter et al., 2010; Russo
et al., 2010; Zanne et al., 2010; Fan et al., 2012). These con-
tradicting results are indicating that the relation between WD
and growth or vessel traits is not necessarily interrelated and
should be viewed separately. We further suspect that the rela-
tion between wood properties and tree hydraulics may depend
as well on biogeographical origin and drought-adaptation strat-
egy of the species investigated since convergent environmen-
tal factors such as water availability are known to lead to
adaptations in functional wood anatomical properties (Swenson
and Enquist, 2007; Gleason et al., 2013; Richardson et al.,
2013).

We found wood anatomical and derived hydraulic proper-
ties to be a much better predictor for tree stem growth per-
formance than WD as KS

theo of the all tree organs studied
were strongly positively correlated with stem BAI on a species
level. This is in accordance with a growing body of studies
showing strong links between growth rate and wood anatom-
ical traits (Zhang and Cao, 2009; Poorter et al., 2010; Russo
et al., 2010; Fan et al., 2012). In contrast, neither empirically
measured branch and root KS

emp, nor foliar δ13C or foliar
nitrogen content were good predictors for aboveground growth
performance.

We expected to find close correlations between functional leaf
traits assumed to be associated with high aboveground productiv-
ity, i.e., high foliar N content and more negative foliar δ13C, and
stem increment in our samples. However, no such correlation was
found. This is most likely explained by the fact that our sampled
species contained several N-fixing legume species, our relatively
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low species number as well as due to the fact that our study was
conducted in a perhumid region were drought stress is not to be
expected.

Conclusion

Our study results suggest that even though vessel traits, growth
performance, and WD relations follow distinct conceptually
determined trade-offs, some of these long-established paradigms
might not be uniformly applicable to tree species from all bio-
geographic regions presumably due to their varying drought
adaptation strategies. In moist tropical environments we could
not confirm the paradigm of continuous conduit tapering from
roots to branches although some traits (VD, relative vessel
lumen area, and theoretical sapwood area-specific conductiv-
ity) enabled a clear separation between the three strictly wet
tropical species and the three seasonal tree species. We there-
fore expect patterns in vessel traits along the flow path from
roots to branches to be dependent on the long-term precipita-
tion regime at the biogeographic origin of the investigated tree
species. Furthermore and contrary to common knowledge, the
investigated tree species did neither show a relationship between
aboveground growth performance and WD nor foliar nitrogen
content, nor between WD and vessel size. Instead, we found
growth rate to be closely linked with wood anatomical and
derived hydraulic traits. Future research should thus include a
systematic approach to different biogeographic regions and cover

a wider range of ecosystem types particularly underrepresented
biomes.
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