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In their natural habitat, plants are continuously challenged by adverse environmental conditions.
Among them, cold stress (CS) is a major environmental factor limiting agricultural productivity
and geographic distribution (Chinnusamy et al., 2007). In this respect, chilling (15-0◦C) and freez-
ing (<0◦C) stress should be distinguished (Thomashow, 2010). CS responses at the cellular level
are characterized by an extensive reprogramming of gene expression and metabolic fluxes (Stitt
and Hurry, 2002; Miura and Furumoto, 2013). Clearly, these modifications are mainly linked to
the onset of tolerance mechanisms, which ultimately lead to acclimation. Several metabolites are
known to contribute to this process, including amino acids, polyamines, polyols, and soluble sug-
ars (Krasensky and Jonak, 2012 and references therein). Among them, particular focus was recently
given to understand the multifunctional role of soluble sugars in enhancing cold tolerance (Nägele
and Heyer, 2013).

Accumulation of soluble sugars following CS is known since long (Levitt, 1958), including stud-
ies on their potential roles in stabilizing biological components, particularly for Raffinose Family
Oligosaccharides (RFO) (Santarius, 1973). Despite this well-known correlation, more recent inves-
tigations shed light on the potential underlying biological mechanisms involved (Valluru et al.,
2008; Sicher, 2011; Peng et al., 2014). One of the major factors affecting overall cellular stability
under CS is membrane phospholipid composition regulating membrane fluidity (Ruelland and
Collin, 2011 and references therein) associated with cold stimulus perception, as suggested by
the protein kinases cascade activation triggered by dimethyl sulfoxide (DMSO)-mediated mem-
brane rigidification (Furuya et al., 2014). Different saccharides are capable to directly stabilize
biological membranes under stress conditions. Sucrose (Suc) can directly protect cell membranes
by interacting with the phosphate in their lipid headgroups, decreasing membrane permeabil-
ity (Strauss and Hauser, 1986). Fructans, fructose-based oligo- and polysaccharides, and RFO
can increase stability of phospholipidic mono- and bilayers by direct insertion between polar
headgroups (Vereyken et al., 2001; Hincha et al., 2003). Fructans are localized in the vacuole,
suggesting that their contribution to membrane stabilization may be restricted to the tonoplast.
However, their detection in the apoplast of cold-stressed plants also suggests a role in the pro-
tection of the plasma membrane, where they can be delivered by a vesicle-mediated transport
(Valluru et al., 2008). This scenario seems to be different for RFO. Despite their cytosolic biosyn-
thesis, their protective action may be restricted to chloroplast inner membranes, as suggested by
research on Arabidopsis thaliana (Nägele and Heyer, 2013 and references therein). Thus, spe-
cific changes in subcellular concentrations of potential stress protectants may greatly influence
successful responses (Lunn, 2007) (Figure 1). The regulation of the activity and/or expression of
soluble sugar transporters, especially those involved in chloroplast and Tonoplast Monosaccha-
ride Transporters (TMTs) (Wormit et al., 2006) and Sugars Will Eventually Be Exported Trans-
porters (SWEETs) (Klemens et al., 2013), may play a central role in such processes. Cold-stressed
AtSWEET16 overexpression lines showed increased freezing tolerance and increased glucose
(Glc) and Suc levels (Klemens et al., 2013). The fructose (Fru)-specific transporter AtSWEET17
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FIGURE 1 | Protective effects of cold-induced saccharides at the

subcellular level. The figure highlights the (putative) action sites of

sugars accumulating during CS responses in higher plants cells. The

grey dotted line refers to the proposed vesicular transport mechanism of

fructans from the vacuole to the plasma membrane in fructan

accumulating species (Valluru et al., 2008). The green dotted line refers

to the possible roles of anthocyanins in CS protection. Anthocyanins are

also imported in the vacuole through ABC class transporters (Francisco

et al., 2013), where they can contribute in alleviating CS. The blue

arrow represents the signaling pathway leading to the activation of

CBFs. The biosynthesis and metabolic conversions of the sugars

involved is oversimplified and represented by grey arrows. CBFs,

C-repeat binding factors; GAs, gibberellins; GAox, GA oxidase; GolS,

galactinol synthase; βAM, β-amylase; Suc, sucrose. Specific effects of

different sugars/anthocyanins are highlighted in italic. Readers are

referred to the figure legend and the text for further details.

plays a primary role in Fru homeostasis following 1-week 4◦C
treatment (Guo et al., 2014b). These authors suggested that the
Fru-specific transport features of this carrier may be mediated
by a Fru-specific signaling pathway. Taken together, these works

indicate that the activity and/or expression of sugars transporters
may be regulated by sugar signaling, affecting the subcellular
distribution of sugars and overall cellular sugar homeostasis,
whichmay be tightly linked to the cellular redox homeostasis (see
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next paragraph). In that respect, it will be particularly interesting
to characterize the nature of the Raffinose importer in the chloro-
plast (Schneider and Keller, 2009) and to decipher its activation
by sugar- and hormone signaling under CS in tolerant accessions.

Reactive oxygen species (ROS) production partially con-
tributes to chilling and freezing damage (Nishizawa et al., 2008
and references therein). Recently, several carbohydrates were
proposed as important components of the cellular ROS scaveng-
ing system, perhaps in synergism with other components such
as phenylpropanoids (Couée et al., 2006; Nishizawa et al., 2008;
Van den Ende and Valluru, 2009). Living cells do not possess
an efficient enzymatic system to scavenge the highly deleterious
hydroxyl radical (·OH) (Gechev et al., 2006). Furthermore, car-
bohydrates have generally higher scavenging ability against ·OH
as compared with other radicals, such as superoxide (O·−

2 ) (Stoy-
anova et al., 2011). The recent works of Peshev et al. (2013) and
Peukert et al. (2014) provided new mechanistic insights into this
process. They observed that Fenton reaction-derived ·OH scav-
enging by fructans in vitro lead to the formation of new oligosac-
charides and oxidized sugars. Such oxidized sugars can also be
found in vivo, suggesting that fructans function as scavengers
in planta (Peukert et al., 2014). Alternatively or additionally,
fructans have been proposed as stress signals, further amplifying
stress responses that may be initiated by Suc-specific signaling
pathways (Van den Ende, 2013).

Contrary to fructans, the signaling capacity of small metabolic
sugars is widely recognized (Ramon et al., 2008; Ruan, 2014)
and several lines of evidence indicates their involvement in reg-
ulating various stress responses (Van den Ende and El-Esawe,
2014). Recently, a possible mechanistic link between sugars and
CS tolerance was proposed by Peng et al. (2014). They suc-
cessfully expressed PtrBAM1, a stress-responsive chloroplastic
β-amylase-coding gene from Poncirus trifoliata in tobacco, under
the constitutive promoter CaMV35S. They found that β-amylase
activity was strongly enhanced by CS accompanied with a mas-
sive accumulation of maltose and other soluble sugars (Figure 1).
Importantly, this breakthrough paper provides the first evidence
that PtrCBF1 (C-repeat-binding factor 1), a transcription fac-
tor belonging to a family of central regulators of CS responses
highly conserved throughout plants kingdom (Chinnusamy et al.,
2007), can bind directly to the promoter of PtrBAM1, provid-
ing a unique link between CBF-mediated cold responses and
sugar dynamics. Thus, cold-dependent sugar accumulation may,
at least partially, depend on the CBF transcriptional cascade, as
previously suggested by the CBF-dependent metabolic changes
observed during CS (Cook et al., 2004).

It is noteworthy that Suc can trigger fructan synthesis and
accumulation in fructan accumulators such as wheat, by acti-
vating the transcriptional factor TaMYB13, which directly con-
trols gene expression of enzymes involved in fructan syn-
thesis (Kooiker et al., 2013). A possible scenario for future
research could be that CBF-dependent increases of Suc under
CS may trigger fructan synthesis and accumulation in wheat
and other fructan accumulators, allowing a highly coordinated
metabolic countermeasure onset, via an orchestration of direct
and indirect signaling and scavenging mechanisms, as proposed

above (Figure 1). Accordingly, in winter wheat, fructans accu-
mulate in young plants during cold acclimation in the autumn,
and this process is also associated with increased snow-mold
resistance (Yoshida et al., 1998). The high correlation between
fructan accumulation and cold tolerance in the wheat family
was recently confirmed by studies on artificially obtained wheat
hexaploid lines characterized by different degrees of freezing tol-
erance (Yokota et al., 2015). In line with these views, it has been
shown that transgenic rice plants carrying wheat fructosyltrans-
ferase (FT) genes showed an increased CS tolerance (Kawakami
et al., 2008).

Galactinol synthase (GolS), the enzyme catalyzing the first step
in RFO biosynthesis, is considered as a target gene of the CBF
regulon (Taji et al., 2002), leading to RFO accumulation under
CS. Notably, galactinol, and raffinose have also been proposed as
important signals during biotic interactions (Kim et al., 2008).
Another emerging point of convergence between CBFs and sug-
ars is that AtCBF1 enhances accumulation of DELLA proteins,
fundamental repressors of gibberellin (GA) signaling and posi-
tive regulators of stress responses (Claeys et al., 2014), by stim-
ulating GA catabolism through increased expression of GA2-
oxidase genes (Achard et al., 2008). Furthermore, it has been
recently demonstrated that DELLAs can be specifically stabilized
by Suc, but not by Glc (Li et al., 2014). DELLA proteins stimulate
anthocyanin synthesis through activation of the PAP1/MYB75
transcription factor (Li et al., 2014). In general anthocyanin lev-
els positively correlate with cold tolerance (Janska et al., 2010),
probably by protecting chlorophyll from over-excitement under
freezing conditions (Hannah et al., 2006).

Soluble sugars levels are strictly connected with starch syn-
thesis and breakdown dynamics, which are on their turn tightly
regulated by the circadian clock (Graf et al., 2010). In turn, sugar
levels have fundamental roles in entraining the clock (Haydon
et al., 2013). Cold-responsive genes such as AtCBF1 show diurnal
oscillations in their expression (Nakamichi et al., 2009). More-
over, expression of central clock components and diurnal reg-
ulated genes is largely influenced by CS (Miura and Furumoto,
2013), providing tight connections between the clock, metabolic
adjustments and CS responses. Recently, Sicher (2011) shed light
on the importance of starch dynamics during chilling responses
in Arabidopsis, by comparing starch and different sugar pro-
files during chilling stress in light/dark conditions in wild-type
and pgm1 starchless mutants. This author demonstrates that syn-
thesis and accumulation of the two most highly induced sugars
during chilling stress, maltose and raffinose, strictly depend on
the presence of starch, demonstrating the intimate interconnec-
tion between RFO, sucrose, and starch metabolisms (Figure 2).
It is known that both target of rapamycin (TOR) and SnRK1
kinases influence such processes (Dobrenel et al., 2013), but the
exact underlying mechanisms need further exploration. Future
research on crop species under CS should focus on the dynamics
of all carbohydrate pools in a diurnal context, to be able to better
understand the complete picture.

Besides the CRB signaling pathway, which is necessary but
not sufficient to trigger cold acclimation, chilling, and freez-
ing tolerance, several phytohormones also play critical roles by
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FIGURE 2 | Overview of soluble sugars, RFO, fructans and starch

metabolic pathways. The scheme illustrates connections and

divergences between the above mentioned pathways, taking in account

their different subcellular environments. Enzymes involved in catabolic

steps are written in italic. Note that only the metabolism of linear

fructans is illustrated, due to space constraints. For further details,

readers are referred to http://plantsinaction.science.uq.edu.

au/book/export/html/121 for starch and sucrose metabolism; and to Vijn

and Smeekens (1999) and Nishizawa et al. (2008) for more details on

fructan and raffinose biosynthesis, respectively.

positively or negatively influencing cold resistance and acclima-
tion (Thomashow, 2010; Miura and Furumoto, 2013). Among
them, ethylene and abscisic acid (ABA) stand out for their well-
known crosstalk with sugar signaling pathways (Gazzarrini and

McCourt, 2001). Sugar signaling was also shown to take part in
stress responses, and this is particularly evident when Suc-specific
responses are involved (Van den Ende and El-Esawe, 2014),
including the upregulation of the phenylpropanoid biosynthetic
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pathway (Serrano et al., 2012; Li et al., 2014), with a strong impact
on the anthocyanin biosynthetic branch (Teng et al., 2005). As
in development, during CS response the ABA-ethylene dynam-
ics conserve an antagonistic nature, with CBF1 as major crosstalk
point (Thomashow, 2010; Shi et al., 2012). Both ABA and Suc
promote the accumulation of DELLA proteins (Guo et al., 2014a;
Li et al., 2014), urging further research on possible ABA-sugar
signaling synergisms under CS. Intriguingly, the accumulation of
DELLA proteins is also mediated by CBF1 through posttransla-
tional mechanisms, which seems to be required for the full acti-
vation of freezing tolerance in A. thaliana (Achard et al., 2008).
Thus, it can be speculated that DELLA proteins play an impor-
tant role in orchestrating ABA and sugar-induced CS responses,
but this requires further research. This idea was proposed even in
a much broader context by De Bruyne et al. (2014), considering
DELLA proteins as pivotal modulators of the physiological bal-
ance between growth and overall (also biotic) stress responses by
integrating sugar and hormonal inputs.

Thanks to their biochemical properties and availability, sug-
ars are likely to be used by plants in counteracting the most
commonly occurring adversities in their natural environment.
Overall, modulation of compatible solutes, among which sugars
typically represent a vast majority, may represent one of the basic
mechanisms involved in multistress tolerance (Puniran-Hartley
et al., 2014). Plant responses to evolutionary pressures in
stressful environments led to the diversification of sugar struc-

tures and functions, as well represented by the RFO and fruc-
tan cases, among other oligosaccharides (Van den Ende, 2013).
Furthermore, the ability of sugars to modulate expression of

stress-related genes involved in both abiotic and biotic stress
responses, such as phenylalanine ammonia lyase and pathogen-
esis related proteins (Herbers et al., 1996; Barau et al., 2014),
testifies the high integration level of carbohydrates in cellular
defensive strategies. Moreover, it has been demonstrated that
sugar dynamics in the apoplastic environment need to be dis-
sected from those occurring within the cells, a very impor-
tant notion for future research (Barau et al., 2014). Recent data
strongly support the involvement of invertases, key controllers
of compartment-specific Suc/hexose ratios, in response to both
biotic and abiotic stresses (Albacete et al., 2014; Sun et al., 2014).
An important goal for future research will be to unravel how
invertases and other Suc metabolizing enzymes are precisely con-
nected to the main stress signaling pathways, and in which way
they influence growth/defense balances, intimately connected
to TOR and SnRK1 activities. In the coming years, dissection
of stress-specific signaling pathways initiated by sugar signal-
ing will likely become one of the most exciting topics in plant
physiology, disclosing new possibilities to increase multistress
tolerance in crops.
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