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Cooperative interactions are widespread in biochemical networks, providing the nonlinear

response that underlies behavior such as ultrasensitivity and robust switching. We

introduce a temporal correlation function—the conditional activity—to study the behavior

of these phenomena. Applying it to the bistable genetic switch in bacteriophage lambda,

we find that cooperative binding between binding sites on the prophage DNA lead

to non-Markovian behavior, as quantified by the conditional activity. Previously, the

conditional activity has been used to predict allosteric pathways in proteins; here, we

show that it identifies the rare unbinding events which underlie induction from lysogeny

to lysis.

Keywords: gene regulatory networks, markov state models, phage lambda, mutual information, information

theory, conditional activity

1. Introduction

Cells use biochemical networks to sense, process information, and respond to their environments.
Many cellular behaviors have been found to be controlled by genetic switches, in which the expres-
sion levels of a set of genes form a stable memory of a transient stimulus, allowing the cell to make
a decision and remember it. These networks range from a simple bistable switch to complicated
networks involving dozens of genes and many stable states of the switch (fixed points). In bacteria
and viruses, these switches enable phenotypic switching to optimize the fitness of the organism in
response to environmental conditions. In temperate bacteriophages, a switch selects between dor-
mancy and virulence, and in Escherichia coli, bistable switches are known to regulate the lactose
(Ozbudak et al., 2004) and arabinose utilization systems (Fritz et al., 2014). More complex gene
regulatory networks are used in plants and animals to coordinate development and determine cell
fates. In Arabidopsis thaliana, a fifteen-gene network was identified whose fixed points correspond
to the ten flower cell types (Espinosa-Soto et al., 2004). This is typical of many gene regulatory
networks, where the phenotype corresponds not to expression of any single gene, but rather to the
collective state of the system. These systems are challenging to study theoretically and experimen-
tally, since the effects of a given gene on phenotype is difficult to disentangle from the behavior of
the other genes in the network. We propose a theoretical technique which identifies the functional
connectivity between different elements in a biochemical network. This map elucidates the often
non-intuitive connection between genotype and phenotype in these networks, and may be used to
design experimental interventions whichmost effectively modify or disrupt this collective behavior,
and hence most directly affect phenotype.
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The multistability which characterizes these switch-like gene
networks often results from the interplay of feedback and ultra-
sensitivity. These dynamics arise from individual binding inter-
actions between the nucleic acids, proteins, and small ligands that
comprise these networks. Information propagates between these
species through macromolecular complexes containing multi-
ple binding sites. The presence of a ligand at one binding site
modulates the activity or binding strength of another binding
site through cooperativity or conformational change (allostery).
Allosteric regulation has been widely and successfully described
by the Monod-Wyman-Changeux (MWC) model (Monod et al.,
1963), while cooperativity and other forms of indirect regulation
have been described by generalizations thereof (Marzen et al.,
2013). These models describe the thermodynamic equilibrium of
these systems. For the two-site MWC model, cooperative bind-
ing energies can be fit to experimental binding curves. However,
the number of possible cooperative interactions increases rapidly
with the number of binding sites, and for complex systems these
interactions are often too numerous to constrain experimentally.
In the cases for which it is not possible to fit a model, ther-
modynamic correlations within the system can still be inferred
by observing the system and calculating the mutual informa-
tion between its binding sites. However, for systems stabilized
by cooperative binding, important behavior may be invisible to
thermodynamic correlations and evident only from the timing of
binding events.

Inspired by the physics of glasses, we introduce a new quan-
tity, the conditional activity, to measure temporal correlations of
binding activity in a biochemical system. The conditional activ-
ity can be calculated from direct experimental measurements or
from a stochastic model. Recently, we used the conditional activ-
ity to measure temporal correlations between different regions
of proteins as calculated from molecular dynamics simulations
(Lin, under review). For these proteins, the conditional activ-
ity correctly distinguished functional modules and identified the
allosteric connections between sites within a protein. This type of
intramolecular communication was not detectable using mutual
information or other equilibrium-based correlation functions.

In this contribution, we go beyond the molecular scale and
apply the conditional activity to study temporally-correlated
binding activity in a gene regulatory network. In these networks,
complex system-level behaviors—such as adaptation, switching,
and oscillation—arise from macromolecular binding of tran-
scription factors to DNA and the resulting modulation of gene
transcription, and this binding is often subject to cooperativ-
ity and competition between transcription factors. We consider
the genetic switch in E. coli infected with bacteriophage lambda,
whose bistability emerges from cooperativity between six bind-
ing sites, including long-range DNA looping. The switch reliably
maintains its initial pathway—lysogeny—until it is flipped into
another pathway—lysis—by an external trigger (the bacterium’s
SOS response).

Lambda, a bacterial virus, infects an E. coli cell, and depending
on the environment inside the E. coli proceeds along one of two
pathways (Figure 1 top). In the more-common lytic pathway, the
virus DNA enters free-floating into the bacterium. The host bac-
terium’s own machinery replicates and synthesizes protein from

the viral DNA, which in turn self-assemble into new bacterio-
phages. When approximately one hundred progeny phage have
been produced, the viral DNA produces proteins that rupture
the bacterial cell and the newly-made phages are released into
the environment. In some cases, however, the viral DNA inte-
grates itself into the host DNA and lies dormant—this is the
lysogenic pathway. Once there, it is replicated along with the host
DNA and is passed on to daughter cells upon division. The dor-
mant state is exceedingly stable, and the virus may lie dormant
for hundreds of millions of generations without activation (Little
andMichalowski, 2010). However, the bacterium’s SOS response,
triggered by DNA damage, reliably induces the activation of the
virus genes, and the virus switches over to the lysis pathway,
replicating itself before it lyses its host.

Upon infecting its host bacterium, the lambda phage chooses
one of these two pathways. This choice is maintained by a bistable
genetic switch composed of the cI gene, the cro gene, and an
operator that modulates the rate of their transcription. The CI
and Cro proteins, upon dimerizing, become transcription fac-
tors which bind to this operator region. The lysogenic pathway is
characterized by expression of cI and inactivation of cro, whereas
the lytic pathway is initiated by expression of cro, which in turn
inactivates cI. CI and Cro each negatively autoregulate, maintain-
ing stable levels of protein when their gene is turned on (Figure 1
bottom). The cooperativity and competition between the binding
of CI and Cro to the operator couples these negative-feedback
loops, resulting in switch-like behavior.

We analyze this system looking for correlations in binding
state between different binding sites, using the mutual infor-
mation, and correlations in binding times (i.e., non-Markovian
behavior), using the conditional activity. Since cooperative bind-
ing leads to stability, we find that the mutual information fails
to describe any nontrivial relationships between binding sites
because mutual information is small for stable systems. The con-
ditional activity, however, is sensitive to rare collective fluctu-
ations of the system and uses this information to infer a rich
network of interactions between binding sites.

2. Materials and Methods

2.1. Model
We adopt a standard model for the phage lambda switch
(Ackers et al., 1982; Shea and Ackers, 1985; Santillán andMackey,
2004; Tian and Burrage, 2004; Gedeon et al., 2008). The region
of the lambda phage DNA relevant to this switch contains the
right operator with three binding sites (OR1, OR2, OR3) sand-
wiched between two promoter regions (PR and PRM, governing
transcription of cI and cro, respectively), and the left operator
with three binding sites (OL1, OL2, OL3) and a promoter region
(PL, whose function is immaterial here). Each operator site can
be bound by a CI dimer, a Cro dimer, or left unbound. Each pro-
moter region may be bound by RNA polymerase (RNAP) or left
unbound. The promoter regions physically overlap the operator:
RNAP bound to PR blocks anything from binding to OR3; RNAP
bound to PRM blocks binding at both OR1 and OR2; and RNAP
bound to PL block binding at OL1 and OL2. All possible binding
configurations of these nine sites give 1200 microstates.

Frontiers in Plant Science | www.frontiersin.org 2 April 2015 | Volume 6 | Article 214

http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org
http://www.frontiersin.org/Plant_Science/archive


Shenker and Lin Cooperativity leads to correlated fluctuations

FIGURE 1 | Top: The lifecycle of lambda phage, showing the lysis

and lysogeny pathways. Bottom, Left: The negative-feedback

loop active in the lysogenic pathway, maintaining a constant level

of CI, and one of the looping configurations which exhibits at

high CI concentrations. Bottom, Right: The negative-feedback

loop active in the lysis pathway, maintaining a constant level of

Cro. DNA does not loop under lytic conditions. (Adapted from

Ptashne, 2004).

The energies of binding and cooperativity of CI, Cro, and
RNAP have been measured experimentally (Reinitz and Vaisnys,
1990; Darling et al., 2000a,b), and from these we may calculate
the free energies 1Gi of each microstate i. The probabilities that
the system will be found in a microstate i is given by

Ki =
1

Z
exp(−1Gi/RT)[CI2]

αi [Cro2]
βi [RNAP]γi (1)

where αi, βi, γi are the numbers of bound CI, Cro, and RNAP
in each microstate i, [x] indicates the concentration of x, R is

the universal gas constant and T = 310 K is the temperature.
The partition function Z is a normalization chosen to ensure that
the system lies in one of the microstates at all times, i.e., that the
probabilities sum to one:

∑1200
i= 1 Ki = 1.

As we show below, this model exhibits behavior under lyso-
genic conditions that is qualitatively different from that under
lytic conditions (see Results). This difference arises because
lysogeny and lysis occur at different concentrations of CI and
Cro, yielding different equilibrium probabilities Ki. The concen-
trations of CI, Cro, and RNAP that correspond to the lysogenic
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and lytic pathways are obtained using the model and parameters
from Santillán and Mackey (2004) (see Supplementary Material
for details and parameter values). We choose a repressor degre-
dation rate γcI = 0.015 min−1, which lies in the range consistent
with bistability.

Note that CI bound to OR2 increases the transcription rate of
CI elevenfold when RNAP is bound to PRM. This cooperativity
betweenCI and RNAP is a key interaction in phage lambda. How-
ever, our analysis encompasses only the behavior of the system
on the fast timescale of macromolecular binding and unbind-
ing, and not the far slower timescale of protein production. As
such, in this work we consider cooperativity only in the sense of
cooperative binding. Furthermore, because our model does not
model the dynamics of protein production and degredation, our
model cannot transition between lysogenic and lytic pathways by
varying the protein concentrations, as the protein concentrations
are held fixed at either lysogenic or lytic conditions. However, we
examine the tendency for the system to switch from lysogeny to
lysis by considering the binding of RNAP to PR. The more often
PR is bound by RNAP, the faster Cro is being produced, pushing
the system toward lysis.

The probabilities Ki describe the occupancies of a system
in thermodynamic equilibrium. For each of the two pathways,
we now construct a continuous-time Markov chain which adds
kinetic information—namely, the rates of transitions between
microstates—to this thermodynamic model. In these Markov
models, each transition corresponds to a single binding or
unbinding event. We consider the substitution of one ligand for
another as two distinct transitions: an unbinding of the first lig-
and followed by a binding of the second ligand. Since the binding
and unbinding rates have not been directly determined experi-
mentally, we infer approximate kinetics from the thermodynam-
ics. Assuming detailed balance fixes the ratio between the for-
ward (qij) and backwards (qji) rates for each transition, qij/qji =
Kj/Ki. We are free to choose the qij so that binding events have
the same rate D:

qij =

{

D i→ j is a binding transition

D
Kj

Ki
i→ j is an unbinding transition

(2)

Here we have assumed detailed balance and equal binding rates
D to derive the kinetics qij from the equilibrium occupancies Ki.
This approximation is reasonable because all binding rates repre-
sent the physical process of diffusion-limited binding of macro-
molecules to DNA. Furthermore, not only was our choice of rates
the simplest and most natural consistent with detailed balance,
but we also have found that our results are highly insensitive to
large deviations in these rates.

In Figure 2 we show the Markov model by illustrating each
microstate and the transitions between them, where the size of
each microstate (gray circles) is proportional to the logarithm
of its occupancy probability Ki and the width of each arrow is
proportional to the logarithms of the flux (Kiqij) between two
microstates. Even with this simple model of nine binding sites
and three species of ligands, the resulting graph is complex and
the functionality of the system is not evident: from the graph, it
is difficult to discern how different binding sites couple to one

FIGURE 2 | The 1200 microstates of the left and right operator complex

are projected down to the space of the 40 microstates of the right

operator complex and the transitions between them for the (left)

lysogeny and (right) lysis pathways. Thus, the occupancies for each of the

40 microstates of the right operator complex shown is the sum of the

occupancies of the 30 microstates that correspond to different microstates of

the left operator complex. A binding event occurs in the direction of each

arrow; unbiding occurs backwards along arrows. Arrows are colored

according to the binding site experiencing a binding/unbinding event. The

sizes of the microstates indicate the occupancy of the microstate, whereast

the widths and transparency of the arrows represent the flux between

microstates. Note that for the purpose of depicting the model, we have

applied a highly nonlinear scaling; the four largest microstates account for the

vast majority of occupancy (see Supplementary Figure 1).

another. To learn about the connections between binding sites,
we may use a correlation function to project the connections
between the 1200 microstates into the smaller space of nine bind-
ing sites. Note that the transitions between the 1200 microstates
are Markovian; the non-Markovian dynamics arise when the
model is projected into the space of the nine binding sites. In
most experimental contexts it is not possible to observe all bind-
ing sites simultaneously, so the binding dynamics of the subset
of binding sites which is observed appears non-Markovian. The
conditional activity uses these non-Markovian dynamics to infer
functional connectivity between the binding sites.

We now define two correlation functions with the aim of
demonstrating that they capture orthogonal and complimentary
information about a molecular system. In Section 2.2, we review
themutual information, a widely used correlation function which
is useful for characterizing the dominant behavior of a system.
We then define the conditional activity, which we introduced in
Lin (under review), and is sensitive to fluctuations away from
the dominant behavior. In Section 2.3, we demonstrate how the
conditional activity may be directly calculated from the transi-
tion rate matrix for a Markov model of a molecular system; these
correlation functions can also be calculated from simulating the
Markov model, as described in Section 2.4.

2.2. Correlation Functions
The mutual information is commonly used to infer connectivity
in networks (Margolin et al., 2006). Here we use it to deduce the
coupling between different binding sites. Themutual information
(Shannon and Weaver, 1949; Cover and Thomas, 2006) between
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two binding sites a, b is defined as

MI(a, b) =
∑

x∈X

P(a = x) log2 P(a = x)

+
∑

y∈Y

P(b = y) log2 P(b = y) (3)

−
∑

x∈X

∑

y∈Y

P(a = x, b = y) log2 P(a = x, b = y)

where site a takes on binding configurations X, site b takes on
binding configurations Y , and P is the probability function. Note
that P can be written in terms of the Ki: P(a = x, b = y) =
∑1200

i= 1 Kiχ
i
a,xχ

i
b,y

, where χ i
a,x is 1 if site a is in binding configu-

ration x in system microstate i and 0 otherwise. We see that the
mutual information is entirely a thermodynamic quantity, since
it depends only on the equilibrium occupation probabilities Ki.

The conditional activity is defined for systems with degrees-
of-freedom that take on discrete configurations (or may be
sensibly discretized), and captures correlations in the times
between the times at which different degrees-of-freedom transi-
tion between configurations. As such, the CA is sensitive to the
kinetics of the system, not only the thermodynamics. In this case,
the degrees-of-freedom are the different binding sites, and each
binding/unbinding event is considered a transition. Let T(a, t)
be the t-th transition time of binding site a and τ ≡ T(a,N(a))
the duration of the observation period, with N(i)≫ 1 being the
number of recorded transitions. W(a,T) is the time between
time T and the next transition of a after T [e.g., W(a,T(a, t)) =
T(a, t+ 1)− T(a, t), the time between a given binding event and
the next unbinding event, or the time between a given unbinding
event and the next binding event].

We define the mean observed persistence time to be half
the mean squared waiting time between transitions for a given
binding site a:

τp[a] ≡
1

2τ

N(a)
∑

t= 1

W(a,T(a, t))2 (4)

For each transition time of binding site b, there is a previous tran-
sition of b and a next transition of a. These three times define two
adjacent time periods, and the mean observed exchange time for
a following b is:

τx[a← b] ≡
1

τ

N(b)−1
∑

t= 1

W(a,T(b, t + 1))W(b,T(b, t)) (5)

The persistence time τp[a] and exchange time τx[a ← a] cor-
respond to standard notions in glassy physics (Jung et al., 2005;
Hedges et al., 2007); here we extend the exchange time to the
case when a 6= b. We now define the conditional activity of a
following b:

CA[a← b] ≡ − log10
τx[a← b]

τp[a]
(6)

If a and b are independent, then CA[a ← b] = 0; if the transi-
tions of a are Markovian, CA[a ← a] = 0. Note that the con-
ditional activity, unlike the mutual information, is asymmetric:
in general, CA[a ← b] 6= CA[b ← a], because the conditional
activity depends on the time-ordering of transitions.

For a real system, the occupancy probabilities Ki may be mea-
sured experimentally; for the Markov model, they are given in
Equation (1). From these, the mutual information may be cal-
culated using Equation (3). Similarly, using Equation (6), the
conditional activity may be obtained from a time-series of con-
figuration changes for each binding site. This time-series may
be obtained experimentally for a real system. For the Markov
model, we may generate this time-series data by simulating the
continuous-time Markov chain using the Gillespie algorithm
(Gillespie, 1977). However, the conditional activity is sensitive to
rare events, so a long simulation is required to accurately calcu-
late the conditional activity. For our simple Markov model, this
simulation is still very tractable, but would pose a problem for
more complicated models. We now use techniques of Markov
chain theory to express the conditional activity directly in terms
of the transition rates qij given above in Equation (2).

2.3. Direct Calculation of Conditional Activity
From the Transition Rates
Given the transition rates qij, for each binding site a define
the transition rate matrix Qa where transitions that change the
binding configuration of site a are disallowed:

(Qa)ij =























qij i 6= j and microstates i, j have site a in
the same binding configuration

0 i 6= j and microstates i, j have site a in
different binding configurations

−
∑

k 6=i qik i = j

The state space of all 1200 microstates may partitioned into sub-
spaces, where each subspace is a connected component of the
transition graph where transitions that change the binding con-
figuration of site a are disallowed. The Qa matrices are block
diagonal (under a relabeling of the indices), and each block rep-
resents the transitions within a given subspace. In the language
of Markov chain theory, each of these blocks represents a Markov
chain where the transitions that change the binding configuration
of site a have been made absorbing. Using techniques for analyz-
ing absorbing Markov chains (Kemeny and Snell, 1961; Tavare,
1979; Syski, 1992), we may express the exchange and persistence
times in terms of the fundamental matrix for a regular Markov
chain Na = −(Qa)−1.

We now define

Ba = NaRa (7)

Ka
i =

∑

j Kj(R
a)ji

∑

j

∑

k Kj(Ra)jk
(8)

where the matrices Ra encode the transitions between subspaces:

(Ra)ij =







qij
i 6= j and microstates i, j have site a in different

binding configurations
0 otherwise.
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(Ba)ij is the probability that j is the first microstate in which the
binding configuration of site a has changed, given that the system
has started in microstate i. Ka

i represents the probability of find-
ing the system in microstate i just after the binding configuration
of a has changed.

We may now define the persistence time

τp[a] =
1

τ a

∑

i

∑

j

∑

k

Ka
i (N

a)ij(N
a)jk (9)

and exchange time

τx[a← b] =
1

τ b

∑

i

∑

j

∑

k

∑

l

Kb
i (N

b)ij(B
b)jkK

a
k (N

a)kl (10)

where τ a =
∑

i

∑

j K
a
i (N

a)ij is a normalization. The conditional

activity then follows from Equation (6).
(See the Supplemental Material for a derivation).

2.4. Simulation
The conditional activity and mutual information may be directly
calculated from the Markov model, as described above, or from
simulated or experimental time-series data. For a reduced five
binding site model, the analytic calculations presented above
agreed with the same quantities calculated from simulated
time-series data (Supplementary Figure 3) simulated using the
Gillespie algorithm (Gillespie, 1977).

3. Results

The lysogenic and lytic pathways exhibit differing levels of fluc-
tuations, as can be seen qualitatively in Figure 2. In the lyso-
genic pathway, the system is stabilized by long-range DNA
looping—cooperativity between the left and right operators—and
cooperative interactions between adjacent sites on each opera-
tor (Santillán andMackey, 2004; Anderson and Yang, 2008; Zurla
et al., 2009; Norregaard et al., 2013). With more than 99% prob-
ability the system exists in one of three microstates exhibiting an
octomeric configuration of CI bound to OR1, OR2, OL1, and OL2

(Supplementary Figure 1).
This high degree of stability is quantified by the entropies

of each binding site (Figure 3 top left). Most binding sites are
fixed in one microstate with high probability. Only the PRM,OR3,
and OL3 sites are fluctuating, as shown by their non-negligible
entropy. The high mutual information between PRM and OR3

represents the near perfect anticorrelation between the two sites:
one is almost always bound and no more than one may be bound
at a time because they physically block each other.

Similarly, in the lytic pathway, the mutual information
(Figure 3 top right) clearly indicates that PR overlaps with, and
hence is anticorrelated with, both OR1 and OR2; PRM overlaps
with OR3; and PL overlaps with OL1 and OL2. The mutual infor-
mation between OR1 and OR2, and that between OL1 and OL2,
arise because when those sites are unbound by their overlap-
ping RNAP, the high concentration of Cro leads to both sites
being bound simultaneously with Cro. Note that this simulta-
neous binding is highly correlated, but does not represent any

cooperative binding effects: there is cooperativity between bind-
ing at OR1 and OR2, and between OR2 and OR3, yet there is only
mutual information between the former pair, that which overlaps
PR. Similarly, there is cooperativity between OL1 and OL2, and
between OL2 and OL3, and again we only see mutual information
between the former pair, that which overlaps PL. This indicates
that correlations indicated by high mutual information are due
solely to high concentrations of Cro, leading to simultaneous
binding as soon as the blocking RNAP unbinds.

We see that the mutual information is sensitive only to corre-
lations that occur between physically-overlapping binding sites.
Since these overlaps were explicitly introduced when construct-
ing the model, the mutual information does not give any new
information. The conditional activity, however, shows a rich net-
work of interactions between binding sites that is not evident
directly from the model. Furthermore, unlike the mutual infor-
mation, the conditional activity is highly informative even when
the system is in a highly stable regime (as is the lysogenic path-
way), because it is sensitive to fluctuations away from equilibrium
behavior even when they are rare.

In the lysogenic pathway (Figure 3 lower left), the conditional
activity maps out the interactions which can lead the system to
switch to lysis. Lysogeny is characterized by the maintenence of a
stable level of CI by RNAP binding to PRM, and strong repression
of Cro production. Thus, RNAP is bound to PRM with 86% prob-
ability, whereas RNAP is bound to PR with probability ≤ 10−5.
Because RNAP binding to PR leads to production of Cro, and
high levels of Cro lead to lysis, those events represent fluctuations
of the system toward the lysis pathway.

PR physically overlaps with OR1 and OR2, so both must be
unbound before RNAP may bind to PR. However, OR1 and OR2

are kept bound with CI by cooperative binding with each other
and with OL1, OL2. An unbinding event of OR1, OR2, OL1, or OL2

therefore represents a deviation from this highly-stable octomeric
configuration, incurring the associated penalty of breaking mul-
tiple cooperative binding interactions. Once the octomer is dis-
rupted, it is more likely thatOR1 andOR2 will unbind, thus allow-
ing RNAP to bind to PR. This is indicated by the large CA arrows
originating at OR1, OR2, OL1, and OL2 and pointing at PR.

The binding behavior of PR is highly non-Markovian, as quan-
tified by CA[PR ← PR] ≈ 5.4, indicating that the binding
state of PR changes rarely, but just after it changes it will change
again ∼ 105 times sooner than it would have otherwise. This
large conditional activity is due to a long persistence time. Since
RNAP binding at PR and the resulting production of Cro serves
to move the system from lysogeny to lysis, this large persistence
time provides a measure of the stability of the lysogenic pathway.
The much shorter exchange time indicates that RNAP binding at
PR is controlled by other cooperative binding processes, which
are revealed by the off-diagonal elements of the CA matrix (see
below).

Similarly, OL1 and OL2 have CA arrows pointing at PL since
they physically overlap PL, and hence their unbinding makes
RNAP more likely to bind at PL. The octomeric configuration
with OR3 either bound by CI or unbound is the dominant behav-
ior in the lysogenic pathway. OL3 is slightly more likely to be
bound with CI than unbound, whereas is OR3 significantly more
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FIGURE 3 | Top: A graph showing the mutual information between each

binding site. The entropies of each binding site is shown as the size of the

circle. Bottom: A graph of the conditional activity between each binding site.

CA[a← b] is drawn as an arrow from b to a, whereas CA[a← a] is shown

as the size of a. See Supplementary Figure 2 for the same data shown in

matrix form.

likely unbound than bound with CI. Thus, when the binding
configuration of OL3 changes, it is more likely to be an unbind-
ing event, which eliminates the cooperativity between CI at OL3

and OR3 which could recruit CI to bind to OR3. Hence, we see a
negative CA arrow from OL3 to OR3.

The conditional activity in the lysis pathway (Figure 3 bottom
right) shows a much smaller degree of non-Markovian behav-
ior than that seen in the lysogenic pathway. The small, positive
CA arrows between OR1 and OR2, and between OL1 and OL2,
represent the same correlated binding shown by themutual infor-
mation. The small, negative CA originating at OL1 and OL2 and
pointing at PL represent the same correlations due to overlap as
were detected by the mutual information. (There are also small,
negative CAs originating at PR and pointing at OR1 and OR2, too

small to be plotted in this figure. They are visible in Supplemen-
tary Figure 2). The conditional activity is evidently diminished
for systems in which fluctuations are common; this is the regime
correspond to large entropies and mutual information values.

The mutual information and conditional activity thus provide
orthogonal, and complimentary, representations of the behav-
ior of the system. Because cooperativity should lead to corre-
lated binding, we expected the mutual information to recover
cooperative interactions between binding sites. However, we find
that mutual information fails to do so. Cooperativity does lead
to correlations between binding activity at different sites. How-
ever, cooperativity is also a strongly stabilizing effect, leading to
the system residing in one of a few microstates which maximize
cooperative interactions, and hence to small entropies. Because
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the mutual information between two binding sites is bounded
above by the entropy of each binding site, this implies that sys-
tems exhibiting strong cooperative interactions are also likely to
show little mutual information. By looking for correlations in
the binding times instead of correlations between equilibrium
binding states, the conditional activity is sensitive to the rare
fluctuations which reveal the effects of cooperativity.

4. Discussion

We designed the conditional activity to be a quantitative mea-
sure of the deviation from Markovian dynamics. While the
Markov model of transitions between the 1200 microstates is
Markovian by construction, the cooperative binding and over-
lap of binding sites encoded in the transition rate matrix lead
to highly non-Markovian behavior when the space of 1200
microstates is projected down to the space of the nine bind-
ing sites. Because non-Markovian dynamics are a general feature
of systems exhibiting cooperativity, the conditional activity can
be used to study the interactions and flow of information in
such systems. Furthermore, since the conditional activity is an
efficiently-computable low-dimensional representation of a high-
dimensional stochastic model that preserves important informa-
tion about the dynamical behavior of the system, it is an ideal tool
for model inference andmodel reduction of biochemical systems.
Since simulating the Markov model is computationally expensive
or intractable for large models with widely-separated time scales,
a major contribution of this paper is deriving an analytic expres-
sion for the conditional activity in terms of the Markov transition
matrix for the microstates of the system, bypassing the need for
simulations.

Cooperativity in biochemical systems often results in highly
stable configurations of macromolecular complexes. In this work,
we showed that rare fluctuations away from these stable con-
figurations contain information about important interactions
between binding sites and mechanisms of switching between
lysogeny and lysis in phage lambda. We find that the conditional
activity is sensitive to these fluctuations, whereas the mutual
information is not. Our results illustrate the limited utility of
the mutual information in characterizing systems with strong
cooperative interactions. In Lin (under review), we showed that
proteins exhibit non-Markovian dynamics on the intramolecular
scale, and that the conditional activity effectively characterized
the flow of information through these molecular systems. In this
work, we find cooperativity leads to non-Markovian dynamics
at the intermolecular level, and motivate the conditional activity
as a tool for studying information flow through gene regulatory
networks.

For the model of phage lambda, the energies of each of the
1200 microstates were known experimentally, allowing for the
construction of a full Markov model involving the rates of tran-
sition between microstates. Therefore, we could calculate the
correlation functions between the different binding sites directly
from the transition rate matrix as well as from explicitly sim-
ulating the Markov model. By recording the times of binding
events for pairs of binding sites, the conditional activity may be
measured experimentally. Since cooperativity and the resulting

stability are typical features of biochemical systems, the limita-
tions of mutual information we encounter here will apply equally
to those systems, and we expect the methods we present here to
be useful in analyzing a wide variety of such systems.

The lac operon in E. coli is a bistable switch with an almost
identical architecture to that of the phage lambda switch we
have considered here (except its most stable configuration is a
DNA loop bound by a repressor tetramer; it lacks the octomeric
configuration of the phage lambda switch). Just as our anal-
ysis of the phage lambda switch found that Cro production
resulted from unbinding of CI repressor from the highly-stable
octomer in the looped-DNA configuration, Choi et al. (2008)
reach the same conclusion experimentally in the lac system. Their
single-molecule experiment observed bursts of protein produc-
tion following unbinding of the repressor from the tetrameric
configuration.

Our results demonstrate that one may infer such behavior
without directly observing it experimentally, as it is revealed in
temporally-correlated binding activity when the system is fluc-
tuating around a stable configuration—the conditional activity
elucidates the architecture of the bistable switch without actu-
ally observing it switch. Furthermore, our analysis suggest that
in some cases it may not be necessary to perform a difficult
single-molecule time-series experiment to directly measure the
conditional activity in gene regulatory networks. All our results
were calculated using thermodynamic parameters alone (bind-
ing energies), which in some cases may be obtained in vitro and
are often easier to measure than real-time single-molecule bind-
ing activity. We suspect that the strategy of inferring kinetics
from thermodynamic parameters by assuming detailed balance
and equal binding rates, and then calculating dynamic quanti-
ties from these kinetics, is valid for a large class of biochemical
systems. It remains for future work to explore the limits of this
approximation (see e.g., Daniels et al., 2008).

Colquhoun and Hawkes (1981) and subsequent work on
ion channels compellingly demonstrated how non-Markovian
behavior could bridge scales in biological systems: by measuring
non-Markovian dynamics on observable scales one could place
strong constraints on microscopic behavior which may not be
directly accessible experimentally. This line of work leverages
explicit stochastic models of ion channels to relate observable
dynamics with microscopic parameters, so that the latter may be
inferred from the former. The conditional activity, however, was
designed to detect interactions between parts of the system in a
model-independent way.

Because the lac system is well-studied and relatively simple,
Choi and coauthors were able to hypothesize that the disso-
ciation of the repressor tetramer would lead to bursts of pro-
tein production, and could design an experiment to observe
this phenomenon. As one considers more complex and less
well-understood biochemical networks, it becomes highly non-
intuitive to design an appropriate experiment to observe the
desired phenomena, since the interactions between the compo-
nents in the network may not be known. By identifying the func-
tional connectivity between the elements in a biochemical net-
work, the conditional activity could serve to guide the design of
such experiments. Developmental gene regulatory networks are a
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particularly interesting application of this approach. For the gene
network which controls cell-fate determination in Arabidopsis,
the conditional activity would suggest the perturbations to which
the system is insensitive and also those experimental interven-
tions which would most efficiently lead to specific cell fates.

In future work, we also aim to move beyond systems with
established models and seek to demonstrate the efficacy of the
conditional activity in characterizing systems for which a full
Markov model is not yet known. This approach has promise
in neural systems, where almost all of the information in the
network is encoded by the times of spike events and effective
experimental protocols exist for recording spike times for large
networks of neurons. Previous work has shown how correlations
between subsequent waiting times (Farkhooi et al., 2009; Schwal-
ger and Lindner, 2010) reveal the dynamics of a single neuron;

our results suggest that correlations of waiting times between
different neurons may reveal the functional connectivity of the
network.
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