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acquired resistance
Qing-Ming Gao1†, Shifeng Zhu1,2†, Pradeep Kachroo1 and Aardra Kachroo1*
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Salicylic acid (SA) is an important phytohormone that plays a vital role in a number of
physiological responses, including plant defense. The last two decades have witnessed
a number of breakthroughs related to biosynthesis, transport, perception and signaling
mediated by SA. These findings demonstrate that SA plays a crictical role in both local
and systemic defense responses. Systemic acquired resistance (SAR) is one such SA-
dependent response. SAR is a long distance signaling mechanism that provides broad
spectrum and long-lasting resistance to secondary infections throughout the plant.
This unique feature makes SAR a highly desirable trait in crop production. This review
summarizes the recent advances in the role of SA in SAR and discusses its relationship
to other SAR inducers.
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Introduction

Plants being sessile are constantly exposed to a number of pathogenic microbes, which based
on their infectious lifestyles can be broadly divided into biotrophs and necrotrophs (Glazebrook,
2005; Mengiste, 2012; Lai and Mengiste, 2013). Biotrophic pathogens rely on nutrients from liv-
ing host cells, whereas necrotrophic pathogens feed on dead cells. Plants employ distinct immune
responses to counter these pathogens and this aspect has been covered in detail in several recent
reviews (Spoel and Dong, 2012; Dangl et al., 2013). This first layer of host defense involves the
recognition of pathogen (or microbe) associated-molecular patterns (PAMPs/MAMPs), such as
bacterial flagellin, lipopolysaccharides, and peptidoglycans. PAMPs are recognized by specialized
transmembrane proteins in the plant, termed pattern recognition receptors (PPRs). PRR-mediated
recognition of PAMPs triggers downstream signaling leading to the activation of basal resistance
termed PAMP-triggered immunity (PTI; Schwessinger and Ronald, 2012). PTI can be suppressed
by pathogen encoded effector proteins commonly known as avirulence (avr) factors (Göhre and
Robatzek, 2008; Cunnac et al., 2009; Bozkurt et al., 2011; Caillaud et al., 2012; Marrtin and Kamoun,
2012; Cheong et al., 2013; Cui et al., 2013; Dangl et al., 2013; Giraldo and Valent, 2013). The avr fac-
tors are in turn recognized by the host encoded resistance (R) proteins, which confer more durable
and robust resistance termed R gene- or effector-triggered immunity (ETI; Bogdanove andMartin,
2000; Mackey et al., 2002, 2003; Gu et al., 2005; Jones and Dangl, 2006; Narusaka et al., 2009; Cesari
et al., 2013). ETI is generally associated with programmed cell death (PCD) at the site of infection
and this phenomenon is called hypersensitive response (HR; Holliday et al., 1981; Dangl et al., 1996;
Morel and Dangl, 1997).

Induction of local responses is associated with the transport of defense signals through-
out the plant resulting in broad-spectrum disease resistance against secondary infections.
This phenomenon, known as systemic acquired resistance (SAR), is conserved among diverse
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plants and confers long-lasting resistance to unrelated pathogens
(Chaturvedi et al., 2008; Dempsey and Klessig, 2012; Fu and
Dong, 2013; Kachroo and Robin, 2013; Lucas et al., 2013; Shah
and Zeier, 2013; Wendehenne et al., 2014). Several studies have
shown that the establishment of SAR involves the generation
and transport of signals via phloem to the uninfected distal tis-
sues (Guedes et al., 1980; Tuzun and Kuc, 1985). Among the
signals contributing to SAR are salicylic acid (SA) and several
components of the SA pathway including the methylated deriva-
tive of SA (methyl SA,MeSA, Park et al., 2007). Additionally, the
diterpenoid dehydroabietinal (DA, Chaturvedi et al., 2012), the
nine carbon (C9) dicarboxylic acid azelaic acid (AzA, Jung et al.,
2009), an amino acid derivative pipecolic acid (Pip; Návarová
et al., 2012), auxin (Truman et al., 2010), the phosphorylated
sugar glycerol-3-phosphate (G3P, Chanda et al., 2011; Mandal
et al., 2012; Yu et al., 2013), the free radicals nitric oxide (NO)
and reactive oxygen species (ROS; Wang et al., 2014a; El-Shetehy
et al., 2015), galactolipids (Gao et al., 2014), factors contributing
to cuticle formation (Xia et al., 2009, 2010, 2012) and the lipid
transfer proteins (LTPs) DIR1 (Defective in Induced Resistance,
Maldonado et al., 2002) and AZI1 (AzA insensitive, Jung et al.,
2009), have all been proposed to serve as SAR signals. Here, we
review the role of SA in SAR and discuss its relationship to these
various SAR signals.

SA Biosysnthesis and SAR

Salicylic acid biosynthesis occurs via the shikimic acid pathway,
which forms two distinct sub-branches both of which synthe-
size SA. These branched pathways, designated as isochorismate

synthase (ICS)- and the phenylalanine ammonia-lyase (PAL)-
derived pathways, utilize chorismate as the common precursor
(Shah, 2003; Chen et al., 2009; Kachroo and Kachroo, 2009;
Yu et al., 2010; An and Mou, 2011; Dempsey et al., 2011; Vlot
et al., 2009; Singh et al., 2013; Figure 1). The first step of
the PAL pathway involves conversion of phenylalanine (Phe)
to trans-cinnamic acid and this reaction is catalyzed by PAL,
a key enzyme of this pathway that is induced by pathogen
infection. The Arabidopsis genome encodes four PAL isoforms
and PAL quadruple mutants or wild-type plants treated with
the PAL inhibitor, 2-aminoindan-2-phosphonic acid contain
reduced SA, show increased susceptibility to pathogens and
are unable to induce SAR (Yalpani et al., 1993; Mauch-Mani
and Slusarenko, 1996; Pallas et al., 1996; Huang et al., 2010).
Although relative contributions of PAL versus ICS branches
toward SA biosynthesis vary between different plant species,
at least in Arabidopsis majority of the pathogen-induced SA
appears to be derived from the ICS branch. The ICS branch
involves conversion of chorismate to isochorismate by ICS fol-
lowed by coversion of isochorismate to SA by isochorismate
pyruvate lyase (IPL). The Arabidopsis genome encodes two iso-
forms of ICS, of which ICS1 (SID2) accounts for ∼95% of
basal- or pathogen-induced SA (Strawn et al., 2007; Garcion
et al., 2008). A mutation in ICS1 also impairs SAR (Wildermuth
et al., 2001; Jung et al., 2009; Chanda et al., 2011; Wang
et al., 2014a), suggesting that SA contributed by both PAL-
and ICS-pathways is critical for the induction and/or establish-
ment of SAR. This together with the compromised SAR pheno-
type of transgenic plants expressing bacterial salicylate hydrox-
ylase (NahG; Vernooij et al., 1994), an enzyme that catalyzes
the conversion of SA to catechol, reemphasize the importance

FIGURE 1 | Simplified scheme for salicylic acid (SA) biosynthesis in plants. Critical enzymes are shown in red. ICS, isochorismate synthase; IPL,
isochorismate pyruvate lyase; PAL, phenylalanine ammonia-lyase; BA2H, benzoic acid 2-hydroxylase.
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of SA in SAR. It is unclear what factors govern the specific
recruitment of the PAL or ICS pathways for SA biosynthe-
sis.

Salicylic acid synthesized in the chloroplasts is exported out
to the cytosol via EDS5, a member of the MATE (Multidrug and
Toxin Extrusion) transporter family, located in the chloroplast
envelope (Nawrath et al., 2002; Serrano et al., 2013). Notably, a
mutation in EDS5 results in complete shut down of SA biosyn-
thesis rather than SA accumulation within the chloroplasts. Thus,
mutations in ICS1 and EDS5 similarly affect SA levels and the cor-
responding mutants thereby exhibit overlapping defense defects.
This is likely due to negative feed-back regulation of ICS1 by
SA (Fragnière et al., 2011; Serrano et al., 2013). The triphos-
phate tunnel metalloenzyme 2 is a negative regulator of the
SA feed-back loop and functions in defense signal amplifica-
tion (Ung et al., 2014). Pathogen induced expression of ICS1
requires the binding of calmodulin binding protein CBP60g and
its homolog, non-calmodulin binding SARD1 (SAR Deficient 1)
to the ICS1 promoter. CBP60g and SARD1 specifically bind the
GAAATTTTGG sequence in the ICS1 promoter (Truman and
Glazebrook, 2012). The induction of ICS1 and thereby SA biosyn-
thesis is inhibited in cbp60g sard1 double mutant, resulting in
compromised SAR (Zhang et al., 2010).

Although a number of studies have demonstrated the critical
requirement of SA in SAR, a specific requirement for SA accumu-
lation beyond basal levels during SAR has not been established.
For instance, plants lacking a functional R protein RPS2 accu-
mulate normal levels of SA in their distal tissues in response to
infection by Pseudomonas syringae pv. tomato expressing avr-
Rpt2, yet these plants are compromised for SAR (Cameron et al.,
1999). Additionally, exogenous application of either G3P or AzA,
which induce SAR in wild-type plants, do not induce SA accu-
mulation. However, neither G3P nor AzA can confer SAR in ics1
(sid2) mutant plants, which contain significantly reduced basal-
and pathogen-induced SA. Thus, although SA is clearly critical
for SAR, accumulation of SA alone is insufficient to establish SAR.
Furthermore, although SA has been shown to accumulate to vary-
ing levels in the distal tissues of SAR induced plants (Table 1),
there is no evidence suggesting that this accumulation is essential
for SAR.

In comparison to local tissues, the distal tissues of SAR-
induced plants have been shown to accumulate a broad range
of SA ranging from as low as 10 ng/ g FW to ∼2.6 μg/g FW
(Table 1; Rasmussen et al., 1991; Yalpani et al., 1991; Meuwly and
Métraux, 1993; Molders et al., 1994; Vernooij et al., 1994; Lawton
et al., 1995; Shulaev et al., 1995; Cameron et al., 1999; Kiefer and
Slusarenko, 2003; Mishina and Zeier, 2006; Attaran et al., 2009;
Liu et al., 2010, 2011; Xia et al., 2010; Chanda et al., 2011;
Gao et al., 2014). The inability to accumulate SA in distal tis-
sues has also been suggested to contribute to impaired SAR in
ald1 (agd2-Like Defense response protein 1) and fmo1 (Flavin
Monooxygenase 1) mutants, both of which accumulate normal
SA in the local tissue (Song et al., 2004a,b; Mishina and Zeier,
2006). ALD1 encodes an aminotransferase that catalyzes the
biosynthesis of the SAR inducer Pip, (Song et al., 2004b; Návarová
et al., 2012) and FMO1 has been suggested to function down-
stream of Pip (Návarová et al., 2012). Thus, other factors besides

SAmight contribute to the SAR defect of ald1 and fmo1mutants.
One possibility is that SAR can be induced via SA-independent
factors so long as a minimum basal level of SA can be maintained.
Alternatively, SA accumulation in distal tissues might contribute
to the priming process resulting in the activation of stronger
defense responses upon secondary infections (Návarová et al.,
2012; Gruner et al., 2013).

SA-Derivatives and SAR

A majority of the synthesized SA is converted and stored
as biologically inactive derivatives via glucosylation, methyla-
tion and amino acid conjugation since accumulation of the
acidic SA has adverse physiological consequences (Heil and
Baldwin, 2002; Heidel et al., 2004). These include SA 2-O-β-
D-glucose (SAG), SA glucose ester (SGE), methyl SA (MeSA),
and SA-amino acid conjugates (Pierpoint, 1994; Vlot et al., 2009;
Dempsey et al., 2011). Most recently, SA was shown to be
derivatized to 2,3-dihydroxybenzoic acid (2,3-DHBA) and this
reaction is catalyzed by SA 3-hydroxylase (S3H; Zhang et al.,
2013). As predicted s3h knockout plants contain very high lev-
els of SA, while plants expressing S3H gain-of-function muta-
tions accumulate high amounts of 2,3-DHBA (Zhang et al.,
2013). SA derivatives serve as storage forms that can be con-
verted back to free SA (Hennig et al., 1993; Kawano et al.,
2004; Kachroo and Kachroo, 2012). With the exception of
MeSA however, the exact role of SA derivatives in SAR remains
unclear.

Methyl SA is a volatile and phloem mobile SA derivative,
which accumulates in infected and distal tissues in response
to pathogen infection. Like MeSA, SA also accumulates in the
phloem of tobacco leaves infected with tobacco mosaic virus or
Colletotrichum lagenarium and in cucumber leaves infected with
tobacco necrosis virus (Malamy et al., 1990; Métraux et al., 1990;
Park et al., 2007). For SAR, MeSAmust be converted to SA in the
distal tissues between the 48–72 h period post primary infection.
This time-frame correlates with that of pathogen-inducible MeSA
accumulation in infected and systemic tissues. The biosynthesis
of MeSA is catalyzed by SA methyltransferases (SAMT/BSMT),
and the conversion of MeSA back to SA is mediated by methyl
esterase (MES; Chen et al., 2003; Effmert et al., 2005; Koo et al.,
2007). The tobacco MES was first identified based on its ability
to bind SA, and therefore designated as SA-binding protein 2
(SABP2; Kumar and Klessig, 2003). Grafting studies in tobacco
plants silenced for SABP2 have shown that SABP2 activity in
scions, but not root-stocks is required for normal SAR (Park
et al., 2007). Furthermore, the synthetic SA analog, 2,2,2,2′-
tetra-fluoroacetophenone, which inhibits the esterase activity of
SABP2, also inhibits SAR (Park et al., 2009). As in tobacco,
homologs of SABP2 (AtMES9) and SAMTAtBSMT1 are required
for SAR in Arabidopsis (Liu et al., 2011). Thus, the ability to
derivatize SA toMeSAand reconvert MeSAback to SA are critical
for SAR. Intriguingly, the requirement for AtBSMT1 in SAR can
be bypassed by prolonged exposure to light after pathogen inoc-
ulation (Attaran et al., 2009; Liu et al., 2011). However, the role
of light signaling in SAR and how it might compensate for MeSA
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is unclear. It is also not known whether MeSA merely functions
to deliver SA to the distal tissues or has other function(s) in SAR.
Notably, a certain percentage of SA is always transported from
the inoculated to distal tissues (Meuwly et al., 1995; Kiefer and
Slusarenko, 2003). The biological significance of this transport is
unclear, particularly in view of the fact that SA is not considered
to be themobile SAR signal since wild-type tobacco scions grafted
onto NahG root-stocks exhibit normal SAR (Vernooij et al., 1994;
Meuwly et al., 1995; Kiefer and Slusarenko, 2003).

Regulation of SA Accumulation and
SAR

Besides proteins that directly contribute to SA biosynthesis (ICS
and PAL) or transport (EDS5), a number of other proteins have
been identified that participate in pathogen induced SA accumu-
lation and thereby SAR. These include EDS1 (Enhanced Disease
Susceptibility 1), PAD4 (Phytoalexin Deficient 4), and NDR1
(Non-race-specific Disease Resistance 1; Century et al., 1995,
1997; Falk et al., 1999; Jirage et al., 1999; McDowell et al., 2000;
Feys et al., 2001; Coppinger et al., 2004; Ishihara et al., 2008;
Bhattacharjee et al., 2011; Cacas et al., 2011; Heidrich et al., 2011;
Knepper et al., 2011; Lu et al., 2013). Unlike ICS1 and EDS5,
mutations in EDS1, PAD4, orNDR1 cause partial reduction in SA
levels. EDS1 and PAD4 are lipase-like proteins, which together
with another lipase-like protein SAG101 (Senescence Associate
Gene 101) form binary and ternary complexes (Feys et al., 2005;
Zhu et al., 2011). EDS1 interacts with PAD4 in both cytosol and
nucleus, and with SAG101 only in the nucleus. EDS1, PAD4,
and SAG101 function cooperatively as well as independently in
pathogen defense (Feys et al., 2005; Venugopal et al., 2009; Rietz
et al., 2011; Zhu et al., 2011). For instance, all three proteins
are required for R-mediated resistance against Turnip crinkle
virus (TCV) but only PAD4 is required for the SA-mediated
induction of the R gene which confers HR against TCV (HRT;
Chandra-Shekara et al., 2004, 2006, 2007). Interestingly, EDS1,
but not PAD4 or SAG101, interacts with HRT and potentiates
HRT-mediated HR to TCV (Zhu et al., 2011). Similarly, only
PAD4 is required for resistance to the green peach aphid, whereas
EDS1 and SAG101 are not (Pegadaraju et al., 2005, 2007; Louis
et al., 2010, 2012). Both nuclear and extranuclear localization
of EDS1 is important for its defense function (García et al.,
2010). However, the role of binary or ternary complex formation
between EDS1, PAD4, and SAG101 proteins remains unknown.
EDS1 was recently shown to participate in both SAR signal gen-
eration in the local tissues as well as perception in the distal leaves
(Breitenbach et al., 2014).

The Arabidopsis genome encodes two isoforms of EDS1
that function redundantly and can compensate for each other
(Zhu et al., 2011). However, some Arabidopsis ecotypes, such as
Wassilewskija, Landsberg, and Dujon, contain only one func-
tional EDS1 isoform, and this is sufficient for normal resistance
in these ecotypes. Like Arabidopsis, soybean also contains two
EDS1 isoforms. Interestingly, Arabidopsis eds1mutant expressing
the soybean EDS1 orthologs is only partially restored in SA lev-
els, but completely restored in bacterial resistance (Wang et al.,

2014b). This further questions the requirement for increased SA
accumulation during defense activation and raises the possibility
that a certain threshold of SA may be sufficient to induce appro-
priate defense responses. The soybean EDS1 orthologs are unable
to potentiate TCV coat protein-derived activation of HRT even
though they do interact with HRT (Wang et al., 2014b). This sug-
gests that EDS1 orthologs in different plants may have evolved to
perform overlapping as well as distinct functions.

SA Signaling Components

Salicylic acid-mediated signaling leading to SAR is dependent
on the ankyrin repeat containing protein NPR1 [Non-expressor
of Pathogenesis-Related (PR) genes] (Dong, 2004). Under basal
or uninduced conditions, NPR1 exists as a cytosolic inactive
oligomer formed by intermolecular disulfide bonding (Mou et al.,
2003). Reducing conditions resulting from accumulation of SA
cause dissociation of the NPR1 oligomer into active monomers
and the monomeric form of NPR1 is translocated into the
nucleus (Kinkema et al., 2000; Mou et al., 2003; Tada et al., 2008).
Nuclear localization of NPR1 facilitates its interaction with mem-
bers of the TGACG motif binding (TGA) transcription factors
that belong to the basic leucine zipper (bZIP) protein family
(Zhang et al., 1999; Després et al., 2000; Niggeweg et al., 2000;
Zhou et al., 2000; Chern et al., 2001; Fan andDong, 2002; Kim and
Delaney, 2002). This in turn enhances binding of the TGA factors
to promoter elements of NPR1-dependent target genes (Wang
et al., 2006, 2011). Like NPR1, TGA factors are also required for
SAR; the tga2 tga5 tga6 triple mutant is non-responsive to SA
and is defective in SAR (Zhang et al., 2003). Recent studies have
shown that NPR1 and TGA1 also undergo S-nitrosylation, which
is necessary for the proper functioning of NPR1 in immunity and
increases the DNA binding activity of TGA1 (Tada et al., 2008;
Lindermayr et al., 2010). On the other hand, thiol S-nitrosylation
has also been shown to promote NPR1 oligomerization and
thereby its inactivation (Tada et al., 2008). The nuclear NPR1 is
phosphorylated and degraded in a proteasome-dependent man-
ner (Spoel et al., 2009), and the turnover of NPR1 is essential for
SAR establishment. The Arabidopsis genome contains five par-
alogs of NPR1 (Liu et al., 2005). Like NPR1, NPR3, and NPR4
also interact with TGA proteins (Zhang et al., 2006). The npr3
npr4 mutant plants accumulate elevated levels of NPR1 and are
consequently defective in SAR. NPR3 and NPR4 bind SA and
function as adaptors of the Cullin 3 ubiquitin E3 ligase to medi-
ate NPR1 degradation in an SA-dependent manner (Fu et al.,
2012). However, the two differ in that NPR3 has higher affinity
for SA than NPR4, and SA promotes the NPR1–NPR3 interac-
tion but inhibits the NPR1–NPR4 interaction. These contrasting
effects might offer a possible explanation for the nuances under-
lying NPR1-dependent immunity under different levels of SA.
For instance, high concentration of SA in infected tissues might
favor binding of NPR3 with SA, which would mediate degrada-
tion of the cell-death suppressor NPR1, and initiate PCD and
local immunity. On the other hand, lower SA levels in the dis-
tal uninfected tissue would minimize NPR3-SA binding, thereby
inhibiting PCD. Interestingly, in yet another study, NPR1 was
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also shown to bind SA via the transition metal copper (Wu
et al., 2012; Manohar et al., 2015). The binding of SA to NPR
was suggested to induce a conformational change in NPR1 (Wu
et al., 2012), which in turn is important for NPR1-dependant PR1
expression.

NPR1 is also required for transgenerational SAR, which in
turn involves epigenetic changes (Jaskiewicz et al., 2011; Luna
et al., 2012). NPR1 othologs have been characterized from a num-
ber of plants including rice, tobacco, soybean, and cacao (Chern
et al., 2001, 2005, 2014; Ekengren et al., 2003; Zwicker et al.,
2007; Sandhu et al., 2009; Shi et al., 2010; Chen et al., 2013).
Transgenic expression of Arabidopsis NPR1 confers enhanced
resistance in heterologous plants (Lin et al., 2004; Shi et al.,
2010; Chen et al., 2012). Conversely, transgenic expression of
soybean orthologs can complement the Arabidopsis npr1 muta-
tion (Sandhu et al., 2009). Overexpression of NPR1 also enhances
pathogen resistance in monocots (Chern et al., 2005; Yuan et al.,
2007). However, studies in rice and barley suggest that NPR1
function may not be fully conserved in monocots and dicots and
that SA signaling and SAR in monocots might involve NPR1-
independent pathways (Shimono et al., 2007; Dey et al., 2014).
Transcription analysis in distal tissues revealed that bacteria-
triggered SAR in barley was likely associated with jasmonic
acid, ethylene and ABA, rather than SA. In contrast, SAR in
maize is associated with SA accumulation in local and dis-
tal leaves (Balmer et al., 2013). Additionally, petiole exudates
from pathogen infected Arabidopsis plants induced SAR in wheat
(Chaturvedi et al., 2008). This suggests that SAR signaling in bar-
ley may not be similar to that in other monocots like maize and
wheat.

The stability of NPR1 is dependent on Mediator (MED) 16
[allelic to Sensitive to Freezing (SFR) 6] (McKown et al., 1996;
Warren et al., 1996), a subunit of the MED complex which
functions as a bridge between transcription factors and the gen-
eral RNA polymerase II transcriptional machinery (Zhang et al.,
2012). A mutation inMED16 compromises SAR and SA-induced
defense responses but does not affect SA levels or nuclear localiza-
tion of NPR1. Thus, MED16 likely functions downstream of SA
in the SARpathway. Interestingly, MED16 is also required for jas-
monic acid/ethylene-responsive gene expression and resistance
to necrotrophic pathogens (Zhang et al., 2012). Thus, MED16
might function by relaying signals from transcription factors
that are specific to the SA and JA/ethylene pathways. A muta-
tion in another MED subunit, MED 15 (isolated in a screen
for non-recognition-of-the SA analog, BTH, nrb4), also attenu-
ates SAR and SA responsiveness (Canet et al., 2012). However,
MED15 is not required for NPR1 stability or localization and
likely functions downstream of NPR1.

SA versus Other SAR Inducers

Systemic acquired resistance is a complex phenomenon that
involves the interplay of a diverse group of chemicals and asso-
ciated proteins, besides SA. Most of these molecules can now
be placed in one of two main branches that comprise the SAR
pathway. One branch involves SA and its signaling component

NPR1, and the other branch involves the free radicals NO and
ROS, which function directly upstream of AzA, which in turn is
upstream of G3P (Wang et al., 2014a; Wendehenne et al., 2014;
El-Shetehy et al., 2015). Unlike G3P and AzA, exogenous appli-
cation of Pip or DA induces SA accumulation in the absence
of pathogen infection (Chaturvedi et al., 2012; Návarová et al.,
2012). Therefore, Pip and DA likely function in the SA branch
of SAR. The presence of two SAR branches is supported by the
fact that SA cannot restore SAR in mutants defective in NO,
ROS, or G3P biosynthesis, while NO/ROS cannot confer SAR
on mutants defective in SA synthesis or signaling. Furthermore,
pharmacological inhibitors of NO synthesis or NO scavengers
attenuate SA-induced SAR in tobacco (Song and Goodman,
2001). Interestingly, unlike SA, both NO and ROS function in a
concentration dependent manner because they can confer SAR
only when present at an optimal concentration (Wang et al.,
2014a). Free radicals are well known to operate similarly in ani-
mal systems where too little or too much can produce opposing
physiological effects (Delledonne et al., 1998; Besson-Bard et al.,
2008; Wink et al., 2011). Free radicals are thought to participate
in SAR by mediating the oxidation of carbon (C) 18 unsatu-
rated fatty acids (FAs) containing a double bond on C 9. This
results in the formation of 9-oxo nonanoic acid (ONA), which
is converted to the di-carboxylic acid AzA by the addition of
a carboxylic group. AzA is unable to confer SAR on mutants
unable to synthesize G3P, indicating it functions upstream of
G3P. Exogenous AzA increases the expression of the G3P synthe-
sizing GLY1 and GLI1 genes, which encode G3P dehydrogenase
and glycerol kinase, respectively. G3P operates in a feedback
loop with the LTPs DIR1 and AZI1 such that lack of DIR1 or
AZI1 impairs pathogen-induced G3P accumulation while lack
of G3P results in reduced DIR1 and AZI1 transcripts (Yu et al.,
2013). DIR1 and AZI1 form homo- and hetromers suggesting
that a complex comprising these proteins might function in SAR.
Perhaps such a complex or the individual LTPs serve in trans-
porting SAR essential signal(s) to the distal tissues. G3P appears
to be the logical choice for such a transported signal since it is
a precursor for lipid biogenesis. However, no direct interaction
could be detected between G3P and DIR1 raising the possibil-
ity that G3P may be derivatized and this derivative may then
be transported from infected to distal tissues. Radiolabel feed-
ing experiments showed that G3P is indeed converted to an as
yet unidentified derivative which can translocate from infected
to distal tissues in a DIR1-dependent manner (Chanda et al.,
2011).

Recent studies have shown that the C 18 FAs which serve as
precusors for AzA are derived from the major plastidal lipids,
monogalactosyldiacylglycerol (MGDG) and digalactosyldiacyl-
glycerol (DGDG), which comprise ∼80% of the total lipids in
plants (Zoeller et al., 2012; Gao et al., 2014). Thus, besides SA,
NO, ROS and G3P, chloroplasts also serve as an important site
for AzA biosynthesis. Notably, both galactose sugars in DGDG
appear to be important for SAR since dgd1 plants producing
α-glucose-β-galactose diacylglycerol via transgenic expression of
a bacterial glucosyltransferase, are not restored in SAR even
though they are partially restored in chloroplast function. Thus
it appears that the position of the hydroxyl group on C 4 of
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galactose may be important for SAR since glucose and galactose
are sterioisomeric sugars which differ only in the position of their
axial hydroxyl group at C 4.

Cross Talk between SA and NO
Pathways in SAR

Monogalactosyldiacylglycerol and DGDG galactolipids also serve
additional functions in SAR. For instance, DGDG is required for
SA and NO biosynthesis (Gao et al., 2014) and for AzA respon-
siveness. Interestingly, in spite of their impaired SA and NO
synthesis, petiole exudates from pathogen-infected dgd1 plants
were able to confer SAR in wild-type plants. This suggests that
dgd1 plants can make signals that are capable of inducing SA- and
NO-synthesis in plants with normal DGDG levels. These results
show that SAR involves DGDG-dependent retrograde signaling
between the chloroplast and nucleus and emphasizes the fact that
the two branches of SAR are intricately linked (Gao et al., 2014).

In fact it is well known that there is cross talk between
SA- and NO-mediated signaling. For example, NO mediated
S-nitrosylation of NPR1 can result in the oligomerization and
nuclear localization of NPR1 (Tada et al., 2008; Lindermayr et al.,
2010). Moreover, SA has been suggested to regulate chloroplast

structure since exogenous SA can cause swelling of grana thy-
lakoids, coagulation of the stroma and increased chloroplast
volume (Uzunova and Popova, 2000; Rivas-San Vicente and
Plasencia, 2011). Regulation of SA and AzA levels by EDS1 is
another case in point (Wittek et al., 2014). Together, these results
suggest that the parallel operation of the interlinked SA- and NO-
pathways might allow multiple points of regulation in fine tuning
the optimal onset of SAR. This may be particularly relevant for
signals like NO and ROS, which are functional within specific
concentration ranges (Wang et al., 2014a).

Conclusion and Perspectives

Recent work on SAR has identified a number of chemical
and protein signals and placed them in a common path-
way that comprises at least two parallel branches (Figure 2).
However, these studies also indicate the involvement of
additional unknown signal(s) that function upstream of
the branchpoint separating SA-NPR1- and NO-ROS-
AzA-G3P-derived pathways. In addition, several chemical
signals, including G3P and AzA, undergo derivatization into
unknown compounds and at least one of the G3P-derivative
is SAR bioactive (unpublished data). Identification of these

FIGURE 2 | A simplified model showing pathways, chemicals, and
proteins involved in SAR. Infection with avirulent (avr) pathogen induces
accumulation of SA and nitric oxide (NO) in a digalactosyldiacylglycerol
(DGDG)-dependent manner. NO operates in a feedback loop with reactive
oxygen species (ROS), which catalyze oxidation of C18 unsaturated fatty
acids (FA) present on monogalactosyldiacylglycerol (MGDG) and DGDG lipids.
Oxidation of C18 FAs at C9 carbon (indicated by the arrows) generates
azelaic acid (AzA), which triggers biosynthesis of glycerol-3-phosphate (G3P)

via upregulation of genes encoding G3P biosynthetic enzymes (glycerol
kinase, GK and G3P dehydrogenase, G3Pdh). G3P-mediated signaling is
dependent on DIR1 and AZI1, which interact with each other and require
G3P for the stability of their respective transcripts. Conversely, DIR1 and
AZI1 are also required for G3P biosynthesis, suggesting that G3P and
DIR1/AZI1 regulate SAR via a feedback loop. In the SA branch, EDS1
regulates both SA and AzA levels. NPR1 is a key downstream component in
the SA branch which is nitrosylated by NO.
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signals should provide useful insights into signaling events lead-
ing to the induction and establishment of SAR. Another area of
SAR research that has not received much attention is the trans-
port and perception of signals in the distal tissues. Although
cuticle was implicated in the perception of SAR signals (Xia
et al., 2009), later studies on cuticle mutants have suggested that
perception might relate to the severity of cuticular damage or per-
haps other unknown factors (Xia et al., 2012). These aspects of
SAR should provide exciting avenues for studying how SAR over-
laps with basic physiological processes and the distinct events that
decide the onset of SAR versus normal growth and development.
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