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Flower color is one of the most important features of ornamental plants. Its development
and regulation are influenced by many internal and external factors. Therefore,
understanding the mechanism of color development and its regulation provides an
important theoretical basis and premise for the cultivation and improvement of new
color varieties of ornamental plants. This paper outlines the functions of petal tissue
structure, as well as the distribution and type of pigments, especially anthocyanins,
in color development. The progress of research on flower color regulation with a
focus on physical factors, chemical factors, and genetic engineering is introduced.
The shortcomings of flower color research and the potential directions for future
development are explored to provide a broad background for flower color improvements
in ornamental plants.
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Introduction

Flower color can attract pollinators and protect floral organs. Furthermore, people enjoy these
colors in daily life. For ornamental plants, flower color is an important quality determinant that
not only affects the ornamental merit of a plant but also directly influences its commercial value.
Although there is a wide range of natural flower colors, colors are limited in some important
ornamental plants. For example, Chinese rose and chrysanthemum lack blue, and herbaceous
peony and cyclamen lack yellow. Therefore, making flower color improvements has always been
an important goal for breeders.

Over the years, much research has been conducted on the development and regulation of orna-
mental plant color. Researchers have found that the development of flower color is related to
petal tissue structure, pigment distribution and its types; it can be regulated through environmen-
tal factors and genetic engineering. In this review, we described recent advances toward a better
understanding of the development and regulation of flower color in ornamental plants.

Mechanism of Flower Color Development

When a petal is exposed to light, the light penetrates the pigment layer and is partially absorbed.
Some of the remaining light is reflected by the sponge tissue and passes back through the pigment
layer. Therefore, it is sensed by our eyes as color. The color of flowers is related to the internal
or surface tissue structure of a petal and the type and amount of pigments in the petal cells, but
pigment plays a major role.
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Petal Tissue Structure and Pigment
Distribution

Petal tissue structure is similar to leaf blade structure, which
can be divided into four parts: upper epidermis, palisade tis-
sue, sponge tissue, and lower epidermis. Under normal circum-
stances, petal pigments are mainly distributed in the upper epi-
dermal cells, but they can also be found in the palisade tissue
and the lower epidermis of dark colored petals. For example, pig-
ment exists in the palisade tissue of pale blue grape hyacinth (Qi
et al., 2013) as well as in the petal lower epidermis of tulip (Shoji
et al., 2007), Ipomoea tricolor (Figure 1; Yoshida et al., 2009) and
meconopsis (Yoshida et al., 2006). Typically, no pigment is dis-
tributed in the sponge tissue. However, its thickness and density
is related to the brightness of flower color. The thicker and denser
the sponge tissue, the brighter the color (An, 1989).

Different pigments in the same tissue can exhibit different sub-
cellular localization. In general, carotenoids are deposited in the
plastids of cytoplasm, and flavonoids are deposited in vacuoles. It
has also been found that flavonoids can exist in different forms in
cells, Markham et al. (2000) reported the presence of flavonoids
in lisianthus petal epidermal cell walls.

In addition, various shapes of petal epidermal cells can also
have an important impact on flower color. Conical cells can
increase the proportion of the incident light on epithelial cells,
which enhances the light absorption by pigments, thereby leading
to darkened flower color and enhanced color saturation. Flat cells
can reflect more incident light, leading to lighter flower color.
The epidermal cells with protruding papillae can generate a velvet
sheen on the petals. Noda et al. (1994) found that when magenta
snapdragon was mutated to pink, conical epidermal cells became
flat (Figure 2), this transformation was regulated by a MYB fam-
ily transcription factor, MIXTA.And Vignolini et al. (2015) found
that the diffraction from the regularly folded cuticle overlying the
petal epidermal cells in Hibiscus trionum generated the irides-
cent effect. In addition, Yoshida et al. (1995) believed that the

length and arrangement of iris petal epidermal cells had certain
influences on the flower color.

Pigment Types

People have extracted pigments from colorful flowers to study
their components since the mid-19th century. After more than
150 years of research, a wide variety of pigments have been found
which could be generally divided into three groups, carotenoids,
flavonoids, and alkaloids according to their chemical structures,
cellular localizations and biochemical synthesis pathways.

FIGURE 2 | Petal color and scanning electron micrograph of
snapdragon and its mutant (Noda et al., 1994). A(i) Wild-type flower with
magenta petals; A(ii) Scanning electron micrograph of wild-type petal; B(i)
Mutant flower with pink petals; B(ii); Scanning electron micrograph of a
mutant petal.

FIGURE 1 | Petal color change and transverse sections in the open process of Ipomoea tricolor (Yoshida et al., 2009). (A) Whole flower growth. The right
photos are half-cut buds; (B) Transverse sections of petals.
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Carotenoids are the most widely distributed pigments in
nature. In addition to flowers, they can also be found in fruits,
leaves and roots in higher plants. Carotenoids can be divided
into the two major categories of carotene and lutein. Both groups
are cyclization-produced organic molecules of a C40 polyene
backbone with an ionone ring at the end. This structure makes
carotenoids able to absorb visible light of short wavelengths.
The wavelength of light being absorbed is determined by the
number and properties of double bonds. Therefore, carotenoids
can be brilliant red, orange and yellow (Britton et al., 2004).
Although carotenoids exist in the petals of different ornamen-
tal species, their specific compositions are not the same in all
species. Han et al. (2014) found that Osmanthus fragrans yel-
low petals contained small amounts of β-carotene, golden yellow
petals had high levels of lutein, as well as low levels of α-carotene
and β-carotene, and orange–red petals accumulated considerable
concentrations of α-carotene and β-carotene. Previous studies
have shown that the petals of marigold ‘Lady’ and chrysanthe-
mum ‘Yellow Paragon’ contain only lutein (Moehs et al., 2001;
Ohmiya et al., 2006). Large amounts of violaxanthin and zeaxan-
thin, as well as small amounts of neoxanthin, lutein, zeaxanthin
and β-carotene, are the carotenoid components that make lotus
root yellow (Suzuki et al., 2007). The major carotenoid compo-
nents in yellow oncidium petals are trans-violaxanthin and 9-cis-
violaxanthin (Hieber et al., 2006), whereas zeaxanthin, β-carotene
and ζ-carotene are mainly found in saffron petals (Castillo et al.,
2005). Other zeaxanthins, 9-Z-violaxanthin and cis-lutein are the
main components of the yellow lily ‘Connecticut King’ petals
(Zhu et al., 2010).

Flavonoids are a large class of secondary metabolites, which
are widely distributed in plants. Chemically, flavonoids are
a collection of substances based on the structure of the 2-
phenylchromone nucleus. Flavonoids are the most important
pigment group and produce the widest spectrum of colors, rang-
ing from pale yellow to blue-purple. They are one of the most
important pigments in a variety of ornamental plant petals,
such as chrysanthemum (Chen, 2012), dahlia (Thill et al., 2012),
groundcover rose (Schmitzer et al., 2010), violet (Fumi et al.,
2012), and herbaceous peony (Zhao et al., 2012a,b, 2013, 2014).
The composition of flavonoids may vary greatly among differ-
ent color petals of the same species. Chen et al. (2012) analyzed
the pigment composition of chrysanthemum in two different
color flowers and found that the white flower contained only
flavones and flavonols, whereas the pink flowers mainly con-
tained anthocyanins, flavones and flavonols. He et al. (2011)
analyzed the pigments of purple, red, orange, yellow, and white
Lycoris longituba and found that only one of the four identified
anthocyanins was present in all purple, red, and orange sam-
ples; no anthocyanins were detected within white and yellow
samples. This result occurs mainly because among flavonoids,
anthocyanin belongs to the red series and controls pink to blue-
violet flower colors. Other flavonoids belong to the pure yellow
series, among which chalcone and aurone are deep yellow, and
flavones, flavonols and flavanones are light yellow or nearly
colorless.

Alkaloids are a class of cyclic organic substances that contain
negative oxidized nitrogen atoms, including betalain, papaverine

and berberine. Among them, betalain is a water-soluble nitrogen
compound present in red beets (also known as purple beet-
roots) and some flowers, fruits, roots and leaves. Betacyanin
and betaxanthin are present in these plants, with betacyanin
being the main component, accounting for ∼75–95% of the
total betalain (Strack et al., 2003). To date, betalain has been
found only in Caryophyllales plants (except Caryophyllaceae and
Molluginaceae whose colors are produced by anthocyanin). The
two types of pigments, betalains and anthocyanins, have never
been found in the same plant (Gandía-Herrero and García-
Carmona, 2013). Betalains are very important for flower color
development. The difference between a flower being red or yel-
low depends on the presence of betacyanin or betaxanthin in
the petals. Orange to red or variegated colors may be produced
if both pigments co-exist in a flower (Gandía-Herrero et al.,
2005; Felker et al., 2008). Kugler et al. (2007) researched ama-
ranth and bougainvillea in three different colors, and found that
the orange petals contained mostly betaxanthin and a minor
amount of betacyanin; the red petals contained essentially equal
amounts of the two pigments. A large amount of betacyanin was
accompanied by a trace amount of betaxanthin in the purple
petals.

Anthocyanins and Color Development

Among of the aforementioned pigments, water soluble flavonoids
containing anthocyanins and anthoxanthins can produce the
full spectrum of colors from pale yellow to blue–purple.
Anthoxanthins mainly produce the colors from white to dark yel-
low in flowers. And anthocyanins are the main flavonoid group,
they play an irreplaceable role in the color development of plants,
exhibiting a wide range of colors, from pink to blue–purple.
Therefore, this section will review the role of anthocyanins in
flower color development.

As flavonoids, anthocyanidins have a highly characteristic
C6-C3-C6 carbon skeleton and the same biosynthetic origins.
Due to the instability of anthocyanidins, they exist mainly
as anthocyanins (i.e., sugar-containing counterparts) in plants.
Approximately 100 anthocyanins have been reported (Veitch
and Grayer, 2008), primarily derived from six common types
of anthocyanidins, namely, pelargonidin, cyanidin, delphinidin,
peonidin, petunidin, andmalvidin (Figure 3). In terms of biosyn-
thesis, peonidin is derived from cyanidin, and petunidin andmal-
vidin are derived from delphinidin; thus, pelargonidin, cyanidin,
and delphinidin are the three main anthocyanidins (Tanaka et al.,
2009). The anthocyanin sugar groups mainly include glucose,
rhamnose, xylose, galactose and arabinose, and the monosac-
charaides compose uniform or non-uniform disaccharides and
trisaccharides; 3-monoglucoside, 5-diglucoside, 3,5-diglycoside
and 3,7-diglycoside are the most common (Liu, 1998). The col-
ors of the different anthocyanins are related to the environment
and the substituents linked to the parental C6-C3-C6 carbon
backbone.

Anthocyanins are a class of pigments that are soluble in
water, methanol, ethanol, and acetone; they are insoluble in ether
and chloroform. They can be precipitated by lead acetate and
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FIGURE 3 | Most important natural anthocyanidins in plants.

absorbed by activated carbon. Anthocyanin extract is distin-
guished from other flavonoids by strong visible light absorption.
It exhibits a significant characteristic absorption peak at 500–
550 nm in the visible region (Zhao et al., 2012b). Anthocyanins
are very unstable. Light, temperature, pH, oxidants and reduc-
ing agents can significantly affect their stability (Bordignon-Luiz
et al., 2007; Zhao et al., 2011). For example, the color of antho-
cyanins is red in acidic pH, colorless in neutral or nearly neutral
pH and blue in alkaline pH. This effect is due to the existence
of four anthocyanin tautomers in different pH values: alkali blue
quinone A, red–yellow molten cation AH+, colorless false base B
and colorless chalcone C. The three balance conversions between
them are readily affected by pH (Pina, 2014).

Anthocyanins are glycosides, which are naturally formed by
anthocyanidins and various sugars. They are stably localized in
plant organs, such as petals, and are red, purple, blue, and black
(Li et al., 2003). Previous studies have shown that the color differ-
ences are related to the anthocyanin content. Kazuma et al. (2003)
measured the amount of anthocyanins in a series of butterfly pea
petals from white to blue and found that the anthocyanin con-
tent was significantly higher in the blue petals than in the other
petals; there were no anthocyanins in the white petals. The dif-
ferences in anthocyanins are one of the important reasons for
the development of a variety of colors. In cineraria, the blue and
red flower colors are mainly determined by delphinidin aglycone
and cyanidin aglycone, respectively. The pink flowers contain
cyanidin aglycone and pelargonidin aglycone as the core antho-
cyanins, and purple flowers contain mainly delphinidin aglycone
and cyanidin aglycone as the core anthocyanins (Sun et al., 2009).
The red pigments, pelargonidin and cyanidin, appear differently
in lagenaria. Cyanidin appears in red, while pelargonidin leans
toward scarlet (Zhang et al., 2011). Moreover, the glycoside types
of the same anthocyanidins are also closely linked to flower
color development. In tropical water lily, the cultivars which are
detected delphinidin 3-galactoside (Dp3Ga) present amaranth,
and detected delphinidin 3′-galactoside (Dp3′Ga) present blue
(Zhu et al., 2012). In addition, the co-coloring effect, the pH in

the vacuole and chelation are all important in affecting the color
of anthocyanins, which have been described in detail by Tanaka
et al. (2009).

Anthocyanin Biosynthetic Pathway and
Key Genes

Anthocyanin biosynthesis has been a research hotspot in the
field of plant secondary metabolism, and its biosynthetic path-
way and key genes in plants have been clarified (Cheynier
et al., 2013). Anthocyanin biosynthesis, beginning with the
direct precursor of phenylalanine, can be divided into three
stages (Figure 4). The first stage is the conversion of phenylala-
nine to coumarate-CoA by phenylalanine ammonia lyase (PAL),
cinnamate-4-hydroxylase (C4H) and 4-coumarate: CoA ligase
(4CL), which is a common step in many secondary metabolic
pathways. The second stage is the formation of dihydroflavonol
by one molecule of coumarate-CoA and three molecules of
malonyl-CoA catalyzed by chalcone synthase (CHS), chalcone
isomerase (CHI), flavanone-3-hydroxylase (F3H), flavonoid 3′-
hydroxylase (F3′H) and flavonoid 3′,5′-hydroxylase (F3′5′H),
which is a key reaction in the metabolism of flavonoids. The
third stage is the formation of various anthocyanidins by dihy-
droflavonols catalyzed by dihydroflavonol 4-reductase (DFR)
and anthocyanidin synthase (ANS). The synthesized anthocyani-
dins are then modified through a series of glycosylation and
methylation steps to form stable anthocyanins catalyzed by UDP-
glucose: flavonoid glucosyltransferase (UFGT) and methyl trans-
ferase (MT).

CHS encodes the first key enzyme gene in anthocyanin biosyn-
thesis in plants, which combines one molecule of coumarate-
CoA and three molecules of malonyl CoA to form chalcone.
Molecular evolution analysis of CHS has shown that it is
ubiquitous in plants including early land plants and algae of
the charophyceae (Schroder, 1997). In ornamental plants, CHS
has largely been isolated, including petunia (Morgret et al.,
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FIGURE 4 | Anthocyanin biosynthesis pathway in plants. PAL,
phenylalanine ammonia lyase gene; C4H, cinnamate-4-hydroxylase gene;
4CL, 4-coumarate: CoA ligase gene; CHS, chalcone synthase gene; CHI,
chalcone isomerase gene; F3H, flavanone 3-hydroxylase gene; F3′H,
flavonoid 3′-hydroxylase gene; F3′ ,5′H. flavonoid 3′ ,5′-hydroxylase gene;
DFR, dihydroflavonol 4-reductase gene; ANS, anthocyanidin synthase gene;
UFGT, UDP-glucose: flavonoid glucosyltransferase gene; MT, methyl
transferase gene.

2005), phalaenopsis (Han et al., 2006) and herbaceous peony
(Zhao et al., 2012b), since it was first reported in parsley
by Reimold et al. (1983). And their protein sequences are
highly conserved among different plants with ∼80–90% homolo-
gies (Beerhues and Wiermann, 1988). CHS plays an important
role in the synthesis and accumulation of anthocyanins, which
induce the results of altering flower color. Transgenic petunia
expressing CHS1 of Freesia hybrid shows flower color alter-
ation from white to pink (Sun et al., 2015), and transgenic
tobacco expressing CHS of Malus crabapple displays a higher
anthocyanin accumulation and a deeper red petal color com-
pared with control untransformed lines (Tai et al., 2014). In
addition, CHS expression is often regulated by tissue specificity
and different developmental stages, and it has varied sensitiv-
ity to environmental stimuli. For example, CHS of safflower
is responsive to wounding, salicylic acid treatment and salin-
ity stress (Dehghan et al., 2014), temperature and UV can
induce the expression of CHS in Dryopteris fragrans (Sun et al.,
2014).

CHI encodes the second key enzyme gene in plant antho-
cyanin biosynthesis, which catalyzes the isomerization of chal-
cone. Chalcone is modified by CHI to form flavanone. This
product is required in the metabolic branch pathways of
flavone, flavonol, proanthocyanidin, and anthocyanin synthe-
sis. Currently, CHI has been occurred from Bryophytes through

to Angiosperms (Ngaki et al., 2011), and it in plants can be
divided into two types according to their catalytic substrates,
one type uses 6′-hydroxy chalcone as a substrate, as well as
the other can catalyze the isomerization of 6′-hydroxy chal-
cone and 6′-deoxy chalcone (Chmiel et al., 1983). Regardless
of type, whether CHI is expressed and its expression level
affect flavonoid metabolism in plants, thus affecting flower
color development. For example, a decrease in CHI expres-
sion in carnations, asters, cyclamen and tobacco can result in a
greater accumulation of chalcone in petals, turning them yellow
(Nishihara et al., 2005).

F3H encodes the enzyme gene that catalyzes the hydroxyla-
tion of flavanones at C3 to form dihydroflavonol. It is considered
a key enzyme at the branch point of the flavonoid biosynthetic
pathway. The enzyme can independently regulate metabolism,
but often collaborates with the upstream CHS and CHI prod-
ucts to catalyze the formation of downstream products (Owens
et al., 2008). It was shown that the expression patterns and lev-
els of the F3H were similar in white, red and blue cineraria
petals (Hu et al., 2009). Therefore, the gene was not used in color
breeding until 2001 when Zuker et al. (2002) reported that the
inhibition of F3H expression in an F3′H and F3′5′H null carna-
tion mutant made orange flowers colorless. To date, the gene has
been isolated from ornamental plants, including cineraria (Hu
et al., 2009), saussurea (Jin et al., 2005), and herbaceous peony
(Zhao et al., 2012b).

DFR is another gene encoding a key enzyme in the plant
anthocyanin biosynthetic pathway that plays an important role in
flower color development.DFR belongs to the reduced coenzyme
II (nicotinamide adenine dinucleotide phosphate, NADPH)-
dependent short-chain reductase family and is encoded by
single or multiple gene(s). This enzyme can reduce three
types of dihydroflavonols, dihydromyricetin flavonoids, dihy-
droquercetins, and dihydrokaempferols, to their correspond-
ing colorless anthocyanidins with NADPH. These molecules
are further modified to various anthocyanins by downstream
gene products (Petit et al., 2007). Because the differences in
DFR expression and its substrate specificity create color vari-
ation in flowers, studies of the mechanisms of its regula-
tion of flower color development have become an impor-
tant research direction. Currently, DFR has been reported
to exist in ornamental plants, including Asia lily (Nakatsuka
et al., 2003), gentian (Nakatsuka et al., 2005), herbaceous
peony (Zhao et al., 2012b), and saussurea (Li et al., 2012).
In the study of gene function, Zhao et al. (2012b) studied
the expression of DFR in different herbaceous peony organs
and found that it had the highest expression in the petals
that accumulated large amounts of anthocyanins. Similar results
have been reported in Asian lily (Nakatsuka et al., 2003)
and gentian (Nakatsuka et al., 2005), suggesting that DFR
may regulate flower color development at the transcriptional
level.

ANS encodes one of the key enzyme genes in the late stage
of anthocyanin biosynthesis. This gene catalyzes the conversion
of leucoanthocyanidin to colored anthocyanidin using Fe2+ and
2-oxoglutarate (Heller et al., 1985). Studies have shown that
ANS is encoded by a small gene family in many plants, and
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these genes have been cloned from ornamental plants, includ-
ing Forsythia supensa (Rosati et al., 1999), gerbera (Wellmann
et al., 2006) and herbaceous peony (Zhao et al., 2012b). Rosati
et al. (1999) studied the ANS gene expression pattern in Forsythia
supensa and found that null expression of the ANS gene resulted
in little accumulation of anthocyanins in petals; similarly, the
absence of the ANS gene sequence was the underlying rea-
son for the color change of lisianthus flowers (Shimizu et al.,
2011), suggesting its importance in the regulation of plant
colors.

In addition to the structural genes in the anthocyanin
biosynthetic pathway, transcription factors also play important
roles in flower color development through regulating the tem-
poral and spatial expression of structural genes (Xie et al.,
2006). Transcription regulatory genes, also known as tran-
scription factors, are DNA-binding proteins located in the
nucleus. They can bind to cis-acting elements in promoter
regions and regulate the expression of target genes. Currently,
there are three main types of transcription factors that affect
flower color, MYB, bHLH and WD40 (Ramsay and Glover,
2005). These transcription factors activate or suppress the tran-
scription and expression of target genes through binding to
specific DNA sequences and affect protein–protein interac-
tions. Therefore, they regulate anthocyanin synthesis (Zhang
et al., 2003). Among the three types of transcription fac-
tors that regulate the synthesis of plant anthocyanins, MYB
transcription factors have been the most intensively studied.
MYB genes have been widely found to regulate the syner-
gistic expression of the structural genes in the plant antho-
cyanin synthetic pathway at the transcriptional level (Allan
et al., 2008; Feng et al., 2010; Pattanalk et al., 2010). Among
the three subtypes of MYB transcription factors, R2R3-MYB
has commonly been considered closely related to antho-
cyanin metabolism and regulation (Petroni and Tonelli, 2011;
Davies et al., 2012). At present, in-depth studies on this sub-
type of transcription factor have been reported in vegetables
and fruit trees (Kobayashi et al., 2004; Takos et al., 2006;
Ballester et al., 2010; Niu et al., 2010). Studies on orna-
mental plants, in addition to some model plants that were
studied in some early reports, such as petunia and snap-
dragon (Sablowski et al., 1994; Quattrocchio et al., 1999), have
been recently reported. For example, in gerbera, GhMYB10
is closely related to anthocyanin synthesis in leaves, scapes
and flowers, and it specifically promotes anthocyanin syn-
thesis in undifferentiated callus tissues and asexual reproduc-
tive organs (Roosa et al., 2008). Other examples include the
bleaching of gentian flowers due to mutations in GtMYB3
(Nakatsuka et al., 2008) and the positive regulation of antho-
cyanin biosynthesis and its effects on organ and tissue-
specific anthocyanin accumulation in lily via LhMYB6 and
LhMYB12 (Yamagishi et al., 2010). Further studies discovered
that sequence variations and methylation levels in MYB tran-
scription factor genes also affected anthocyanin accumulation,
but this observation was only reported in studies with fruit
trees (Espley et al., 2009; Xu et al., 2012) and maize (Das
and Messing, 1994; Cocciolone et al., 2001; Robbins et al.,
2009).

Regulation of Flower Color

As one of the major flavonoid pigments, anthocyanins are dis-
cussed as above. The flower color development predominantly
mediated by anthocyanins can also be regulated by physical and
chemical factors and genetic engineering. Therefore, the regula-
tory factors in flower color development are discussed below.

Physical Factors

Temperature is a major physical factor which affects flower color.
Extreme temperatures will have an impact on flower color devel-
opment in plants, primarily due to the effect of temperature on
anthocyanin accumulation (Lai et al., 2011). In general, high
temperatures lead to lighter flower colors due to reduced antho-
cyanin content in plants such as oriental lily (Lai et al., 2011),
rose (Dela et al., 2003), chrysanthemum (Nozaki et al., 2006),
and tuberose (Huang et al., 2000). Conversely, low tempera-
tures result in darker flowers because of increased anthocyanin
content in plants, such as plantain (Stiles et al., 2007). These
phenomena are the result of the suppressed expression of genes
involved in anthocyanin biosynthesis, such CHS, F3H and DFR,
and thus, the anthocyanin biosynthesis rate is reduced at high
temperatures affecting the concentrations of anthocyanins (Lai
et al., 2011). In addition, Chen et al. (2000) believed that tem-
perature altered flower color by affecting the cellular structures
of petal epidermal cells. At 30◦C, the epidermal cells in petals
are arranged in arrays of flat cells, whereas the thickness of the
upper epidermis of petals increases at 10–20◦C, which changes
the distribution of anthocyanins in these cells, leading to darker
petals.

Light is another major factor that affects flower color, par-
ticularly light intensity, light quality and photoperiod. Based
on their requirements for light intensity, plants are classified
into heliophytes and sciophytes, and they can only grow well
under appropriate light intensities. For example, as a helio-
phyte, flowers of tuberose are purplish red under strong light
intensities, but their color fades under weak light intensities
(Huang et al., 2000). This effect also occurs in boronia (KangMo
et al., 2007). Shade is a commonly used gardening method
for the modification of light exposure. Huang et al. (2000)
found that the tuberose flowers cultivated at 25◦C were almost
white by 45% shading, but pale reddish-purple under 25 or
0% shade treatment, which was related to the enzyme activ-
ity participating the biosynthesis of anthocyanins. Meanwhile,
in herbaceous peony, 60% shade caused significantly reduced
anthocyanin content and lighter flower color (Figure 5), medi-
ated by the synergistic action of structural genes involved
in anthocyanin biosynthesis and especially the downregulated
expression of PlPAL, PlCHS, PlF3H, and PlF3′H (Zhao et al.,
2012a).

Additionally, light quality has an impact on flower color. High
red light could result in darker flower color of Hibiscus syria-
cus by decreasing Hunter L value but increasing Hunter a value
(Young et al., 1997). Moreover, ultraviolet light can also enhance
anthocyanin accumulation, UV-B radiation induced an increase
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FIGURE 5 | Herbaceous peony flowers in the bloom stage under sun
exposure and shade treatments (Zhao et al., 2012a).

in F3H enzyme activity of Reaumuria soongorica and the accu-
mulation of the products in the flavonoid biosynthetic pathway
(total flavonoid and anthocyanin; Liu et al., 2013). And the rich
and bright colors of alpine and tropical flowers are all related
to the strong ultraviolet light in these regions. In addition, pho-
toperiod also has an impact on flower color. When insolation
duration reached more than 12 h, the leaf colors of colored-leaf
trees, such as purple-leaf plum, became more vivid and bright
(Li and Liu, 1998). The bract color of poinsettia deteriorated
when the short-day treatment was ended before bolting (Sun
et al., 2006). A prolonged photoperiod led to gradually increased
anthocyanin contents in the petals of lisianthus (Uddin et al.,
2001).

Water controls the chromaticity of plant organs through its
effect on the accumulation of anthocyanins in vacuoles (Zhi et al.,
2012). Appropriate water content allows plants to maintain their
inherent flower colors for a longer period of time, while water

deficiency causes flowers to turn darker (Lai et al., 2011). For
example, drought stress induced an increase in F3H enzyme
activity of Reaumuria soongorica and the accumulation of the
products in the flavonoid biosynthetic pathway (total flavonoid
and anthocyanin; Liu et al., 2013). However, prolonged stress can
also cause reductions in anthocyanin content (Li et al., 2009). All
these alterations in anthocyanin content led to changes in the
colors of plant organs.

In addition to the three physical factors discussed above, polli-
nators (Adriana et al., 2011), ion beam irradiation (Figure 6; Hase
et al., 2010; Masayoshi et al., 2012) and gamma rays (Dwivedi
et al., 2000; Bala and Singh, 2013) also affect the flower color of
ornamental plants.

Chemical Factors

Environmental pH plays an important role in plant color. When
Acer pseudosieboldianum was planted in acidic soil, autumn
leaf coloration occurred early, with a prolonged period of full-
color and more splendid leaf color (Han and Gong, 2010).
Acidification of the soil was found to affect anthocyanin syn-
thesis in the leaves and enhance leaf color (Sun et al., 2008).
Moreover, Liu et al. (2011) found that soil pH did not affect
the types of anthocyanins in the petals of lupine. In addition
to soil pH, we also examined the effects of pH in irrigation
water on flower color (Zhao et al., 2013). When irrigation water
pH was at 4.0, herbaceous peony exhibited a lighter flower
color (Figure 7) with significantly reduced anthocyanin con-
tent and markedly increased petal pH. The large decline in
the expression level of the anthocyanin biosynthesis structural
gene PlDFR and the increased expression level of the pH-
regulating gene vacuolar Na+/H+ antiporter1 (NHX1) in the
petals played vital roles in flower color fading in herbaceous
peony.

FIGURE 6 | Parental line of petunia and flower-color mutants by ion beam irradiation (Hase et al., 2010). (A) Parental line with violet flower color; (B–H)
Flower-color mutants; (B) Magenta; (C) purple; (D) purple vein; (E) light pink; (F) white; (G) blue picotee; (H) burgundy.
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Mineral nutrients have been widely employed in the regula-
tion of plant color. In the study by Yang et al. (2012), the foliar
application of urea, monopotassium phosphate, diammonium
phosphate or a combination in climbing rose ‘Angela’ resulted
in copious flowers and brighter flower colors. Liu et al. (2009)
found that the foliar application of Fe2+ improved flower color to
different extents. Previous studies reported that Impatiens hawk-
erii exhibited darker flowers under sand culture conditions with
7.41 × 10−6 mol/L of aluminum or 3.2 × 10−7 mol/L of copper
(Li et al., 2005; Li and Fang, 2006), which was due to an increase
in soluble sugars and anthocyanins. The effect of the same ele-
ments is different in different color varieties. Flower color was
significantly improved in the red and orange varieties of lily after
the application of a potassium spray, but no effect was observed
in yellow lily. The specific mechanism underlying the increased
pigment concentrations is still unclear (Burchi et al., 2010).

Plant hormones are closely related to flower color, and their
effects on color have been examined in a number of studies.
Generally, plant growth retardants can effectively improve the
color of plants. Currently, this effect has been confirmed for
prohexadione-calcium (Pro-Ca; Schmitzer et al., 2012). The petal

FIGURE 7 | Herbaceous peony flowers in the blooming stage at pH 7.0
and 4.0 (Zhao et al., 2013).

color of China rose changed from red to light pink and even-
tually to white after the application of Pro-Ca (Figure 8). In
addition to anthocyanin content, this phenomenon was found
to be directly related to the induction of 3-deoxyflavonoids syn-
thesis (Schmitzer et al., 2012). Furthermore, a study reported
that the inhibition of anthocyanidin synthase resulted in red
color loss in the ray florets of bronze chrysanthemum after
daminozide application which was a well-known chemical
inhibitor of the gibberellin biosynthesis (Roepke et al., 2013).

FIGURE 8 | Flower color changes of two China rose cultivars due to
Pro-Ca application (Schmitzer et al., 2012). (A) Flowers prior to the
application of Pro-Ca; (B) Flowers 9 days after Pro-Ca application turned light
pink; (C) Flowers 15 days after Pro-Ca application turned white.

FIGURE 9 | Flower phenotypes of transgenic gentian plants (Takashi et al., 2010). (A) The typical flowers of wild-type gentian; (B) 5/3′AT-suppressed
transgenic gentian; (C) 5/3′AT and F3′5′H double-suppressed transgenic gentian.
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In addition, Weiss et al. (1995) found that gibberellin produced in
anthers was transported to petals to take effect, where it directly
induced the expression of genes, including CHS, CHI, DFR and
UF3GT.

As a moiety in anthocyanins, carbohydrates provide a precur-
sor substance and energy for anthocyanin synthesis. Therefore,
their content directly affects the accumulation of anthocyanins.
At present, sucrose, glucose and fructose have been demonstrated
to be the main carbohydrates that are effective in promoting
anthocyanin accumulation (Neta et al., 2000; Hara et al., 2003;
Solfanelli et al., 2006; Zheng et al., 2009; Zhang et al., 2015).
In addition, carbohydrates can serve as signaling molecules in
the regulation of anthocyanin synthesis-related gene expres-
sion and the induction of anthocyanin synthesis via specific
signal transduction pathways. A study by Zhang et al. (2015)
showed that glucose treatment was found to greatly enhance
anthocyanin content and induced the expression of WD40-2,
MYB2, CHS1, CHI1 and F3′H1 through glucose signaling in
tree peony. Neta et al. (2000) found that carbohydrates also
regulated anthocyanin synthesis and the expression of genes
encoding related enzymes in the corollas of petunia through sig-
naling transduction pathways associated with phosphorylation by
hexokinase.

From the perspective of biochemistry and genetics, flower
color development is an extremely complex process. Thus, breed-
ing for varieties of different flower colors seems to be out-
side the scope of traditional breeding techniques. The bloom-
ing genetic engineering field brings new ideas and approaches
to basic research and variety breeding for flower color in
ornamental plants. The identification and characterization of
genes encoding key enzymes involved in plant anthocyanin
biosynthesis and other genes that influence petal color makes
the regulation of plant flower color possible through genetic
engineering.

Currently, there are two main strategies for the regulation
of flower color through transgenic methods. One strategy is
to regulate the intrinsic pigment composition and content in
petals, while the other is to introduce new pigments into petals.
The effects of these two strategies have been confirmed in
recent studies (Nishihara and Nakatsuka, 2011). Boase et al.
(2010) suppressed the F3′5′H gene in cyclamen via antisense
inhibition, which led to reduced delphinidin content and ele-
vated cyanidin content, resulting in the petal color changing
from purple to red to pink. Takashi et al. (2010) regulated
flower color in blue gentian using RNA interference technol-
ogy. When the anthocyanin 5,3′-aromatic acyltransferase gene
(5/3′AT) was inhibited, the petals became lilac. However, when
5/3′AT and F3′5′H were co-suppressed, the petals were pale
blue (Figure 9). Meanwhile, the anthocyanin of the petals con-
tents were changed in all transgenic plants. Katsumoto et al.
(2007) generated transgenic roses by introducing F3′5′H from
violet and DFR from iris into rose for overexpression. The
resulting flowers showed the accumulation of a large amount
of delphinidin and a novel blue color in the petals. Zhou et al.
(2014) overexpressed CHI1 from tree peony in tobacco, and
the transgenic tobacco petals produced up to three-fold the
flavonols and flavones compared to the wild-type. They showed

a remarkable reduction in anthocyanin content and flower color
intensity.

In addition, Momonoi et al. (2009) identified the vacuole
ion transporter Vit1 in tulips, which made petal cells blue
through regulating the accumulation of ions. Verweij et al.
(2008) discovered that the PH5 gene of the petunia gen-
erated the blue color by reducing the acidification in vac-
uoles. In addition, the MYB transcription factor affects flower
color through regulating petal cell morphology (Noda et al.,
1994; Baumann et al., 2007; Di et al., 2009). All these genes
can be used to improve flower color via genetic engineer-
ing.

Concluding Remarks

Flower color in ornamental plants is the result of the joint
actions of many factors. To date, a certain understanding of
the mechanisms underlying flower color development have been
achieved, with in-depth studies on the anthocyanin compo-
nents, contents, biosynthetic pathways and key genes. In addi-
tion, a basic understanding of the types of anthocyanins and
their biosynthetic pathways in different ornamental plants has
been reached, the regulatory of physical and chemical factors
has been explored and their regulative mechanisms are clari-
fied preliminarily. Along with the deepening of research on the
functional genomics, proteomics, metabolomics and epigenetics
in model plants and the rapid development of high through-
put sequencing technology, new opportunities and challenges
are brought for researches on the development and regula-
tion of flower color in ornamental plants. And some difficult
questions could be solved by drawing on research results in
model plants as well as making full use of high-throughput
sequencing technology. For example, the complete regulatory
mechanisms of flower colors affecting by physical and chemi-
cal factors, the interactions among the regulatory factors that
can be used for the regulation of flower color and the mecha-
nisms of rare flower color development and directed breeding.
However, the huge amounts of data produced in the researches
of the development and regulation of flower color in ornamen-
tal plants by high-throughput sequencing technology also poses
a challenge for our analysis. In order to make great progress
in the researches of the development and regulation of flower
color in ornamental plants, we must be skilled in bioinformat-
ics, as well as need the infiltration and mergence of multiple
subjects.
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