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In higher plants, microtubule (MT)-based, and actin filament (AF)-based structures play
important roles in mitosis and cytokinesis. Besides the mitotic spindle, the evolution of a
band comprising cortical MTs and AFs, namely, the preprophase band (PPB), is evident
in plant cells. This band forecasts a specific division plane before the initiation of mitosis.
During cytokinesis, another plant-specific cytoskeletal structure called the phragmoplast
guides vesicles in the creation of a new cell wall. In addition, a number of cytoskeleton-
associated proteins are reportedly involved in the formation and function of the PPB,
mitotic spindle, and phragmoplast. This review summarizes current knowledge on the
cytoskeleton-associated proteins that mediate the cytoskeletal arrays during mitosis and
cytokinesis in plant cells and discusses the interaction between MTs and AFs involved
in mitosis and cytokinesis.
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Introduction

In plants, microtubules (MTs) and actin filaments (AFs) are essential components of the basic
machineries required for cell division and expansion. Unlike animal cells, plant cells are enfolded
in pecto-cellulosic cell walls and do not migrate. Therefore, orientation of the cell division plane is
crucial for the cellular organization of plant tissues. The MTs and AFs are involved in the selection
of the division plane in preprophase cells and in the formation of the cell plate during cytokinesis
(Muller et al., 2009; Liu et al., 2011b; Rasmussen et al., 2013).

The preprophase band (PPB) is a transient ring of cortical MTs and AFs specific to plant cells;
PPB delineates the plane of cell division at the onset of mitosis and plays an essential role in divi-
sion plane specification (Mineyuki, 1999). The PPB appears in the cell cortex in late G2 phase and
persists throughout prophase, but disassembles with the breakdown of the nuclear envelope when
the mitotic spindle forms (Dixit and Cyr, 2002). Mitotic spindle is a bipolar array of MTs that seg-
regates chromosomes between daughter cells during mitosis. Moreover, an AF cage surrounds the
spindle and maintains spindle position during mitosis (Lloyd and Traas, 1988; Katsuta et al., 1990).
During cytokinesis, the formation of a new cell plate is accomplished by a dynamic AF- and MT-
based structure known as the phragmoplast. The phragmoplast assembles at the center of the cell
and grows centrifugally toward the parental cell wall. When the phragmoplast reaches the cortical
site formerly marked by the PPB, the cell plate, and parental membranes fuse, thereby completing
cytokinesis (Smith, 2001; Van Damme et al., 2007).

Both MT and AF structures play essential roles in cell division because the cell plate does not
form in the absence of MTs (Clayton and Lloyd, 1985; Kakimoto and Shibaoka, 1987), and the
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treatment with actin polymerization inhibitors results in oblique
cell plate formation (Hoshino et al., 2003; Sano et al., 2005).
Moreover, interactions and cross-talk between MTs and AFs
are involved in plant cell division (Wasteneys and Galway,
2003). In this review, we summarize the current findings on
the cytoskeleton-associated proteins that mediate the cytoskele-
tal arrays during mitosis and cytokinesis in plant cells and
focus on the MT and AF interactions involved in mitosis and
cytokinesis.

PPB Formation

The PPB is a temporal structure that forms before mitosis.
Although some plant species and cell types can divide in the
absence of PPBs, e.g., starchy endosperm, meiocytes, and some
cultured suspension cells (Otegui and Staehelin, 2000; Chan et al.,
2005; Sabelli and Larkins, 2009), pharmacological or genetic dis-
ruption of PPBs can cause divisions in aberrant orientations
in plant cells that can form PPBs normally (Vanstraelen et al.,
2006). These observations suggest that PPB plays a key role in
determination of the division plane.

A variety of MT-associated proteins (MAPs) have been iden-
tified to participate in PPB formation. Arabidopsis MT organi-
zation 1 (MOR1), a plant homolog of animal XMAP215, can
accelerate both the growth and shrinkage rates of MTs in vitro
and in vivo (Brouhard et al., 2008; Kawamura and Wasteneys,
2008). The MOR1 localizes to PPBs and other MT arrays
(Kawamura et al., 2006). In the case of Arabidopsis thaliana mor1
mutant, nearly one-half of the dividing cells failed to form PPB
before spindle formation and those that formed PPB were often
disrupted (Kawamura et al., 2006). Tobacco MT-binding pro-
tein 200 (TMBP200), a homolog of MOR1, is also found on
PPB (Hamada et al., 2004). Arabidopsis CLIP-associated protein
(CLASP), which shares structural similarity with the XMAP215
family of proteins in animals, is implicated in PPB formation
(Mimori-Kiyosue et al., 2005). In clasp mutants, PPB tends to
be disoriented, and PPB narrowing is retarded compared with
wild-type plants (Ambrose et al., 2007). The SABRE protein,
which shares similarity with proteins of unknown function in
eukaryotes, plays important roles in orientation of cell division
and planar polarity. Moreover, Arabidopsis SABRE has recently
been reported to stabilize the orientation of CLASP-labeled MT
in the PPB, which is essential for cell division plane orientation
(Pietra et al., 2013). MAP65 is an MT-binding protein fam-
ily that is involved in PPB formation. MAP65s bundle MTs by
forming cross bridges between overlapping MTs, thereby poten-
tially contributing to the stability of PPB MTs via bundling
(Smertenko et al., 2004). Katanin is an evolutionarily conserved
protein complex for severing MT. In certain root cells of the
lue1 mutant, early PPBs are disorganized and are sustained
longer in the prophase stage than wild-type PPBs (Panteris et al.,
2011).

Although plant cells lack centrosomes, plant proteins with
similarity to the human centrosomal proteins are required for
PPB formation. In A. thaliana, the TONNEAU1 (TON1) pro-
teins related to the human centrosomal proteins FOP co-localize

with PPBs. The ton1 mutants are unable to form a PPB in A.
thaliana (Azimzadeh et al., 2008). TON1 Recruiting Motif pro-
teins (TRMs) have been recently shown to interact with TON1 in
Arabidopsis. One of TRMs (TRM1) is found to bind and recruit
TON1 to the cortical MTs (Drevensek et al., 2012). Recently, it
has been reported that the activity of a regulatory complex com-
posed of TON1, TRM, and a putative protein phosphatase 2A
(PP2A) holoenzyme (TTP) is required for PPB formation and
spatial control of cell division. All members of the TTP complex
share similarity with animal centrosomal proteins, revealing an
evolutionary link between MT organizing mechanisms in plant
and other eukaryotes (Spinner et al., 2013).

The actin PPB is considered to be wider than the MT PPB
(Palevitz, 1987). The formation of actin PPB depends on MTs
because application of MT-depolymerizing drugs prevents for-
mation of both the MT and actin components of the PPB
(Palevitz, 1987; Vanstraelen et al., 2006). The actin PPB can also
affect the MT PPB because actin depolymerization results in
dramatic broadening of the MT PPB and shifting of division
planes in dividing cells during the preprophase and prophase
stages (Mineyuki and Palevitz, 1990). Thus, AFs and MTs may
play indispensable roles in PPB in a coordinated manner. Until
recently, some proteins were reported to regulate the coopera-
tion or interaction between AFs and MTs in PPB. Arabidopsis
formin 14 (AFH14), a type II formin, is found on the PPB and
directly binds and bundles AFs and MTs in vitro (Li et al., 2010).
Moreover, in the presence of both MTs and AFs, AFH14 has
higher affinity to MT and preferentially binds to MTs; however,
the presence of excessive AFH14 promotes cross-linkages of MTs
and AFs (Li et al., 2010). AtKinG, a kinesin 14-type molecular
motor fromArabidopsis, localizes toMTs andAFs by fluorescence
double-labeling; AtKinG strongly labels the PPB in time-lapse
cell division studies (Buschmann et al., 2011). NtKCH, a KCH
homolog from tobacco BY-2 cells, is suspected to act as an MT–
AF cross-linker. In dividing cells, NtKCH accumulates in the PPB
(Klotz and Nick, 2012). These results show that different kinds
of proteins mediate MTs, AFs, or both MTs and AFs in the PPB,
thereby indicating a variety of interactions between AFs andMTs,
which participate in PPB formation.

Spindle Formation and Position

Unlike in animal cells, the mitotic spindle in plant cells origi-
nates from the nuclear envelope in prophase (DeMey et al., 1982;
Ambrose and Cyr, 2008). Spindle assembly starts prior to PPB
breakdown at prometaphase, with the spindle axis perpendicular
to the plane of the PPB (Chan et al., 2005; Yoneda et al., 2005).
Previous studies have demonstrated that PPB plays a role in the
timely formation of a normal bipolar spindle (Ambrose and Cyr,
2008).

Similar to PPB, a number of MAPs have also been
shown to participate in spindle formation. Apart from PPB,
MOR1/TMBP200, CLASP, and MAP65 are implicated in spin-
dle formation (Kawamura et al., 2006; Ambrose et al., 2007;
Fache et al., 2010; Yasuhara and Oe, 2011). Kinesins have been
implicated in spindle organization. A. thaliana kinesin-related
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protein 125c (AtKRP125c), a member of the plus end kinesin-
5 group, plays a role in establishing the spindle structure and
cross-linking antiparallel MTs at the midzone (Wiedemeier et al.,
2002; Bannigan et al., 2007). γ-Tubulin is distributed through-
out the mitotic spindle and plays an indispensable role in the
assembly of the bipolar spindle (Binarova et al., 2006; Pastuglia
et al., 2006). A. thaliana NEDD1, which acts as an anchoring
factor of γ-tubulin complex, decorates spindle MTs preferen-
tially toward theirs minus ends. In nedd1 mutants, nearly half
of the dividing microspores show aberrant MT organization and
abnormal spindles, thereby demonstrating the important role of
NEDD1 in spindle formation (Zeng et al., 2009). Additionally,
repressed γ-tubulin Complex Protein 4 (GCP4) expression by an
artificial microRNA results in abnormal spindles in A. thaliana
(Kong et al., 2010). GCP3-Interacting Protein 1 (GIP1) and GIP2
have been shown to co-localize with γ-tubulin, GCP3, and/or
GCP4. In A. thaliana, reduced spindle robustness associated with
lower amounts of γ-tubulin, GCP3, and GCP4 appears in the gip1
gip2 double mutants (Janski et al., 2012), implying that all these
proteins may function together.

Many studies have shown that the AF cage surrounds the
spindle and connects it to the cell periphery, thereby maintain-
ing the spindle’s position during mitosis (Lloyd and Traas, 1988;
Katsuta et al., 1990). Recent work shows that disruption of the
actin network results in misoriented spindle and oblique cell
plates (Kojo et al., 2013). A number of proteins reportedly reg-
ulate the interaction between AFs and MTs involved in spindle
formation and position. MAP190 from tobacco BY-2 cells co-
sediments with both AFs andMTs in vitro. Immunocytochemical
studies revealed that MAP190 is localized in the spindle (Igarashi
et al., 2000). AFH14 is also localized to spindles. T-DNA insertion
mutants of AFH14 show MT abnormalities during pollen game-
togenesis (Li et al., 2010). Cells overexpressing AFH14 under
the control of an inducible promoter increases the resistance to
both MT- and AF-depolymerizing drugs, whereas AFH14 loss-
of-function causes alterations inMT structures and AF instability
(Li et al., 2010). In Arabidopsis and BY-2 cells, AFs form a cage
around spindle. Interestingly, in AFH14-overexpressing cells, the
AFs andMTs co-localize in spindles (Li et al., 2010). These results
suggest that proteins that interact with MTs and AFs link spin-
dle MTs to the surrounding actin cage to regulate the spindle
formation and position during mitosis.

The Phragmoplast Establishment and
Configuration

Phragmoplast consists of MTs and AFs with their plus ends
pointing toward the phragmoplast midzone. The phragmoplast
is highly dynamic and expands toward the cell cortex to allow the
cell plate growing within it to expand centrifugally. The expan-
sion is a result of continuous MT and AF assembly at the leading
edge of phragmoplast while the MTs and AFs toward the center
of the phragmoplast are disassembled (Liu et al., 2011a).

A growing number of MAPs and other MT-interacting fac-
tors are associated with the phragmoplast are required for the
operation of the phragmoplast (Hamada, 2007; Guo et al., 2009).

In addition to their involvement in the formation and function
of the PPB and/or spindle, MOR1, CLASP, MAP65, AtKRP125c,
NEDD1, and GCPs also contribute to phragmoplast establish-
ment and configuration (Muller et al., 2004; Kawamura et al.,
2006; Ambrose et al., 2007; Bannigan et al., 2007; Zeng et al.,
2009; Kong et al., 2010). PAKRP1 and PAKRP1L in the kinesin-
12 family show high homology, and both of which localize to the
midzone of the phragmoplast. Mutations at either PAKRP1 or
PAKRP1L do not cause a noticeable defect. However, the phrag-
moplast fails to assemble normally and causes defective cell plate
formation in the absence of both kinesins, thereby indicating
their redundant function in the phragmoplast (Lee et al., 2007).
These two kinesins are assumed to play roles in phragmoplast
formation by precluding the plus ends of the opposing MT sets
from crossing the midzone (Zhu and Dixit, 2012). Moreover, in
the moss Physcomitrella patens, MT interdigitation in the phrag-
moplast depends on the kinesin KINID1, which may function as a
motor for vesicle transport in the phragmoplast (Hiwatashi et al.,
2008). Recently, KINID1 kinesins have also been shown to play
an essential role in organizing MTs during tip growth (Hiwatashi
et al., 2014). Consequently, these proteins likely contribute to
the maintenance of the bipolar figure of MTs in phragmoplasts
by promoting MT polymerization and/or stability. Further stud-
ies are needed to clarify the spatio-temporal and functional
relationships among these proteins, which are involved in the
phragmoplast.

In plant cells, γ-tubulin ring complexes (γ-TuRCs) are capable
of initiating MT nucleation at the sides of extant MTs (Murata
et al., 2005). However, γ-TuRC fails to interact with the MT
array directly. Consequently, protein(s) that directly interact with
MTs must mediate the association of γ-TuRC with phragmoplast
MTs. Plant augmin complex subunits are required for γ-tubulin
recruitment, MT organization in phragmoplast, and cell plate
formation (Zeng et al., 2009; Nakamura et al., 2010; Ho et al.,
2011; Hotta et al., 2012). The presence of γ-tubulin in the phrag-
moplast MTs mainly depends on augmin because the mutation
causes delocalization of γ-tubulin in the phragmoplast in aug-
min mutant cells of A. thaliana (Hotta et al., 2012). In addition,
the augmin mutant phragmoplast MT array often fails to expand
centrifugally, and MT bundles become disorganized (Hotta et al.,
2012). In the moss P. patens, MT formation in phragmoplasts
is severely compromised after knockdown of an augmin sub-
unit, thereby leading to incomplete expansion of phragmoplasts
(Nakaoka et al., 2012). Thus, MT-dependent MT nucleation
mediated by augmin and γ-TuRC may play an important role in
the organization of phragmoplast MTs.

Compared with MTs, the role of actin in the phragmoplast
is less clear. Tobacco BY-2 cells treated with AF-depolymerizing
drugs show disorganized phragmoplasts and wrinkled cell plates
(Hoshino et al., 2003; Yoneda et al., 2004; Sano et al., 2005; Higaki
et al., 2008; Kojo et al., 2013). Because arrays of AFs and MTs
closely co-exist and play important roles in the phragmoplast
(Smith, 1999; Yokota et al., 2009), cooperation or interaction
between AFs and MTs is assumed, and several proteins have been
proposed to mediate the cooperation or interaction between AFs
and MTs in the cytoskeletal structure. Cotton kinesin GhKCH2,
which decorates the midzone of the phragmoplast in dividing
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root tip cells, binds to AFs and MTs (Xu et al., 2009). AFH14
has been shown to localize to the phragmoplast (Li et al., 2010).
Experiments in both Arabidopsis and BY-2 cells show that the
length of phragmoplast MTs is longer than that of AFs. However,
in AFH14-overexpressing cells, the MTs and AFs appear to be
similar in length and are aligned evenly with one another (Li
et al., 2010). In addition to localizing toMTs and toAFs,MAP190,
AtKinG, and NtKCH also localize to the phragmoplast (Igarashi
et al., 2000; Buschmann et al., 2011; Klotz and Nick, 2012).
Recently, in moss and tobacco, myosin VIII links phragmoplast
MTs to the cortical division site via AFs during phragmoplast

expansion; AFsmay interact with theMTs bridging the cell cortex
and the phragmoplast (Wu and Bezanilla, 2014).

Conclusion and Perspectives

Plant mitosis and cytokinesis depend on cytoskeletal dynamics.
Numerous cytoskeleton-associated proteins involved in mitosis
and cytokinesis have already been identified (Table 1). Based
on the data in Table 1, more MAPs than actin-binding proteins
have been found during the process of cell division. This may

TABLE 1 | Cytoskeleton-associated proteins involved in plant mitosis and/or cytokinesis.

Cytoskeleton-
associated
proteins

Proteins Location Function Reference

MT-associated
proteins (MAPs)

MOR1/TMBP200 PPB; spindle and phragmoplast Organize/stabilize
MTs

Hamada et al. (2004), Kawamura et al. (2006),
Kawamura and Wasteneys (2008)

CLASP PPB; spindle and phragmoplast Bind to MT plus end Ambrose et al. (2007)

SABRE Plasma membrane,
endomembranes, spindle, and
cell plate

Stabilize
CLASP-labeled PPB
MTs

Pietra et al. (2013)

MAP65 PPB and phragmoplast Bundle MTs Muller et al. (2004), Smertenko et al. (2004)

Lue1 Cortical MTs Sever MT Panteris et al. (2011)

TON1 PPB MTs Organize/stabilize
PPB MTs

Azimzadeh et al. (2008), Spinner et al. (2013)

TRM1 Cortical MTs Target TON1 to cortical MT Drevensek et al. (2012), Spinner et al. (2013)

AFH14 PPB; spindle and phragmoplast Bundle MTs and actin filaments
(AFs) and cross-link them

Li et al. (2010)

AtKinG PPB and phragmoplast Minus-end directed kinesin Buschmann et al. (2011)

NtKCH PPB and phragmoplast Associate with both MTs and AFs Klotz and Nick (2012)

AtKRP125c PPB; spindle and phragmoplast Plus-end directed kinesin Bannigan et al. (2007)

γ-tubulin Spindle and phragmoplast Nucleate/organize
MTs

Binarova et al. (2006), Pastuglia et al. (2006)

NEDD1 Spindle and phragmoplast Nucleate/organize
MTs

Zeng et al. (2009)

GCP3 Nuclear envelope Required for nuclear
envelope-based
MT nucleation

Nakamura and Hashimoto (2009)

GCP4 Spindle and phragmoplast Nucleate/organize
MTs and facilitate interaction
between γ-tubulin and MTs

Kong et al. (2010)

GIP1, GIP2 PPB; spindle and phragmoplast Organize MTs Janski et al. (2012)

MAP190 Spindle and phragmoplast Bind to and bundle MTs and AFs Igarashi et al. (2000)

PAKRP1, PAKRP1L Phragmoplast Plus-end directed kinesin Lee et al. (2007)

KINID1 Phragmoplast Kinesin for interdigitated MTs Hiwatashi et al. (2008)

γ-TuRC Spindle and phragmoplast Nucleate/organize MTs Murata et al. (2005), Zeng et al. (2009)

Augmin Spindle and phragmoplast Activate γ-TuRC Nakaoka et al. (2012)

GhKCH2 Phragmoplast and cell plate Bundle MTs and AFs and cross-link
them

Xu et al. (2009)

Actin-associated
proteins

AFH14 PPB; spindle and phragmoplast Bundle MTs and AFs and cross-link
them

Li et al. (2010)

AtKinG PPB and phragmoplast Minus-end directed kinesin Buschmann et al. (2011)

NtKCH PPB and phragmoplast Associate with both MTS and AFs Klotz and Nick (2012)

MAP190 Spindle and phragmoplast Bind to and bundle MTs and AFs Igarashi et al. (2000)

GhKCH2 Phragmoplast and cell plate Bundle MTs and AFs and cross-link
them

Xu et al. (2009)

Myosin VIII Spindle and phragmoplast Actin-based molecular motors Wu and Bezanilla (2014)
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not imply that the role of AFs is less important than that
of MTs in cell division. Because of the differences in tech-
niques used for visualization, the sensitivity of AF to fixa-
tion, and preservation difficulty, AF observation and imaging
seem to be more difficult compared with MT observation and
imaging (Lloyd, 1988; Liu and Palevitz, 1992). Technological
advances in microscopy imaging will facilitate the observa-
tion of AFs involved in cell division. Recent studies using
confocal scanning microscopy have shown that cortical AFs
are strongly correlated with mitotic spindle and phragmoplast
orientations (Kojo et al., 2013, 2014). In addition, MTs and
AFs are often co-distributed in the apparatus of cell divi-
sion, thereby indicating that MTs and AFs may cooperate in
a spatially and temporally coordinated manner through spe-
cific bifunctional proteins or multiprotein complexes. Over the
past years, a growing number of proteins or protein com-
plexes that bridge these cytoskeletal systems have been iden-
tified, including the following: MAP190, MAP18, GhKCH1,

GhKCH2, OsKCH1, NtKCH, SB401, EB1, and AFH14. The
mechanism underlying MT and AF cooperation or interaction
remains ambiguous. To elucidate the mechanisms of MT and
AF interaction and the regulation of these interactions, the pre-
cise function of these cross-linking proteins found and other
new proteins involved in the interactions needs to be clarified
and identified via proteomics and creative genetic strategies.
Furthermore, technological advances in real-time imaging, such
as the application of spinning disk confocal microscopy and TIRF
microscopy, will potentially push forward the investigation of this
issue.
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