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The application of westerns or immunoblotting techniques for assessing the composition,
dynamics, and purity of protein extracts from plant material has become common
practice. While the approach is reproducible, can be readily applied and is generally
considered robust, the field of plant science suffers from a lack of antibody variety against
plant proteins. The development of approaches that employ mass spectrometry to enable
both relative and absolute quantification of many hundreds of proteins in a single sample
from a single analysis provides a mechanism to overcome the expensive impediment in
having to develop antibodies in plant science. We consider it an opportune moment to
consider and better develop the adoption of multiple reaction monitoring (MRM)-based
analyses in plant biochemistry.

Keywords: multiple reaction monitoring (MRM), organelle abundance, immunoblotting, Arabidopsis, quantitative
proteomics, proteomics

Higher eukaryotic genomes encode tens of thousands of genes and after considering splice variants
and post-translational modifications, likely produce hundreds of thousands of distinct protein
products. In eukaryotic cells, proteins are found distributed amongst membrane bound organelles
that undertake a multitude of specialized functions and often partition metabolic pathways. Under-
standing the functional roles of these organelles has given us a comprehensive overview of plant
physiology, on to which the complex details of the dynamic regulation of plant-environment
interactions can be mapped.

Subcellular fractionation and enrichment by density centrifugation has played a central role
in elucidating the functional roles of subcellular compartments. The main biochemical processes
were described years before the advent of electrophoretic transfer of proteins on to membranes
or the use of antibodies to probe homogenates (Packer et al., 1970; Towbin et al., 1979; Burnette,
1981). Purity was typically assessed by a combination of electron microscopy and enzyme assays
(Stocking, 1959; Douce et al., 1977; Mettler and Leonard, 1979) or, in some cases, radiolabeling
(Galbraith and Northcote, 1977). Above a certain threshold of purity, maintenance of structural
integrity and enzyme activity was the most important prerequisite during the fractionation process.
However, for compartments that were less easily enriched than discrete organelles like the plastid or
mitochondrion, assessment of contamination levels became more pressing and researchers turned
toward immunoblotting, as well as enzyme assays and microscopy (Norman et al., 1986; Hahn et al.,
1987; Meyer et al., 1988).

The advent of modern mass spectrometry and proteomics meant that not only could the main
biochemical reactions or constituents of a compartment be investigated but many potentially
functionally associated proteins could be identified, making organelle proteomics a valuable tool for
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reducing the complexity of the eukaryotic cell. The likelihood that
a protein is correctly assigned to a location is either a function of
the purity of the subcellular isolate (for review, see Millar and Tay-
lor, 2014) or of the migration profile of an organelle on a continu-
ous gradient, relative to other subcellular compartments (Dunkley
et al., 2006; Nikolovski et al., 2012; Groen et al., 2014).This meant
that accurate estimation of the organelle composition of samples
became a critical question in this field as well as for biochemical
analyses (Aronsson and Jarvis, 2002; Eubel et al., 2007; Parsons
etal.,2012; Millar and Taylor, 2014). Although enzyme assays have
proven useful in some contexts, as a general method for assessing
organelle purity they are not suitable; maintenance of enzyme
activity cannot always be assumed and, as reliable assays do not
exists for all compartments, not all contaminants can be excluded.
Purity is assayed most directly by electron microscopy, although
as membranous vesicles can be difficult to distinguish, it cannot
always provide a reliable answer. Furthermore, it is dependent
on a considerable technical investment and knowledge that is not
always possible for many research groups.

Immunoblotting provides a better means by which to address
this question, but the qualitative nature of the signal detection
makes it a poor choice for accurately assessing the proportional
enrichment of a compartment. The availability of antibodies is not
evenly distributed across the subcellular compartments in plants
with some only being represented by one or two antibodies. Using
multiple antibodies as representative markers for an organelle is
an important control in situations where purity is paramount to
the confidence placed in newly assigned proteins. Using publically
available Arabidopsis proteomics data and spectral counting, it has
been possible to estimate these confidence levels (Reumann et al.,
2009; Parsons et al., 2012). However, quantification during frac-
tionation nevertheless remains a limiting factor in this process.

The recent development of protein quantification methods by
targeted mass spectrometry has revived discussions regarding the
most efficient methods for the quantification of a protein in a
sample (Lehmann et al., 2008; Aebersold et al., 2013). Targeted
proteomics techniques aim to detect and determine the quantity
of a limited set of predefined peptides in a complex mixture of
peptides following enzymatic digestion of a protein samples by,
e.g., trypsin. This is in contrast to data-dependent acquisition
(commonly referred to as “shotgun proteomics”) where the aim is
to identify as many peptides, and therefore proteins, in a sample
as possible. This, however, introduces a certain element of ran-
domness into peptide detection, particularly for lower-abundance
peptides and so makes for poor protein quantitation. In multi-
ple reaction monitoring (MRM), or selected reaction monitoring
(SRM), a triple quadrupole mass spectrometer is used to select a
precursor ion and its resultant product ion(s) after fragmentation
(Kondrat et al., 1978). Selection of the parent ion occurs in the
first mass analyzing quadrupole (Q1), which is set to a narrow
mass window according to the masses of the ion(s) of interest.
Collision induced disassociation in the second quadrupole (q2)
results in fragmentation of the parent ion in to product ions which
are detected in the third quadrupole (Q3) which, again, is set
to an appropriately narrow mass window. By focussing machine
time on a defined number of peptides, and by requiring both the
parent and product ion to be detected, this technique is sufficiently

sensitive and the background signal sufficiently low, that quan-
titation is possible for both high and moderately low-abundance
peptides within the same complex starting mixture in a way that
cannot be achieved using shotgun proteomics. The approach has
been developed for proteomic studies, as demand for quantitative
workflows has increased (Barnidge et al., 2003; Picotti et al., 2010;
Maiolica et al., 2012). In recent years advocates have posited the
technique as a superior alternative to immunoblotting (Maiolica
et al., 2012; Aebersold et al., 2013; Picotti et al., 2013). Indeed,
the application of MRM at the individual protein and protein
isoform level has proved its ability to detect and quantify pro-
teins against which raising antibodies would have been difficult
(Zulak et al., 2009; Taylor et al., 2014). In Arabidopsis (Lehmann
et al., 2008) and Chlamydomonas (Recuenco-Munoz et al., 2015),
spiking samples with stable isotope-labeled versions of peptide
targets has allowed absolute quantitation of proteins, referred to
as a mass western as the results resemble the theoretical output of
quantitative immunoblot but done using mass spectrometry.

Given the history of using approaches like westerns and enzyme
assays to assess organelle contributions in a sample, the MRM
technique could be extended from the individual protein to the
compartment level by designing suites of peptide transitions cov-
ering marker proteins for multiple subcellular compartments.
This would be akin to undertaking multiple immunoblots with
suites of antibodies against major plant cellular compartments,
like those currently available commercially (e.g., Agrisera AB)
and would quickly and easily enable the estimation of the sub-
cellular composition of a given sample. This perspective seeks to
explore MRM as an alternative to immunoblotting for assessing
the relative abundance of organelles in plant homogenates.

Unlike many targeted approaches using mass spectrometry
where protein abundance is assayed in the context of a response,
this survey describes the relative abundance of marker proteins
between compartments in the same sample, without reference to
their function. Several marker proteins and representative pep-
tides per compartment were selected to ensure the overall signal
would be representative of the compartment as a whole. Once
adequately developed with a collection of reliable transitions that
had been assessed for parameters such as limits of detection, limits
of quantitation, matrix effects, ion suppression and linearity, the
adoption of this technique could greatly benefit the plant com-
munity. The ability to assess both the contamination levels of
an organelle preparation and track organelle migration during
centrifugation would be incredibly useful, but it is imagined that
it could also provide means for the rapid monitoring of changes in
organelle populations (Yan et al., 2005; Castillo et al., 2008). Con-
sequently, we sought to highlight the potential of the approach
by developing an initial set of transitions for specific organelle
marker proteins to assess the potential of this approach.

An organelle abundance profile was generated for the ref-
erence plant Arabidopsis by selecting and analyzing candidate
MRM peptide transitions for a number of organelle marker
proteins (Figure 1). Only proteins repeatedly localizing to a sub-
cellular compartment (Tanz et al., 2013) and generating non-
redundant peptides were selected as markers. As far as was
possible, selected proteins were functionally unrelated, not co-
expressed and within the top 40 most expressed transcripts for
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FIGURE 1 | Arabidopsis organelle profiling by MRM and shotgun
proteomics. Estimation of relative abundance of cellular compartments from
total protein extracts of 7-day old cell suspension cultures (A,C) or 4-week
rosettes (B,D). MRM assays (A,B) were performed using two to five marker
proteins per compartment, except the plastid where six marker proteins were
used, including both the light-harvesting complex candidates (three proteins)
and non-light harvesting complex candidates (three proteins). Error bars show
standard error for n = 3 biological replicates. Spectral counts (C,D) were
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obtained from data-dependent LC-MS/MS analysis of total protein extracts with
around 1,500 proteins identified for each tissue using Mascot (p < 0.05 lons
score). Organelle marker proteins lists were generated from the SUBcellular
Arabidopsis database (Tanz et al., 2013). Spectra for all proteins matching each
organelle/subcompartment were summed and expressed as a percentage of
the total number of identified proteins. Cyt, cytosol; ER, endoplasmic reticulum;
ExC, extracellular; Mt, mitochondria; Ncl, nucleus; Prx, peroxisome; PId, plastid;
PM, plasma membrane; RP, ribosomal proteins; Vac, vacuole.

TABLE 1 | Summary of representative marker proteins and peptides used
for detection of subcellular compartments by MRM.

Subcellular category Marker Marker Peptides
proteins peptides verified
Cytosol 4 7 2
ER 4 6 1
Extracellular 3 5 1
Golgi 3 6 2
Mitochondria 4 5 1
Nucleus 3 5 2
Peroxisome 3 5 2
Plastid (LHC") 3 5 2
Plastid (non-LHC") 4 8 4
PM 5 9 3
Ribosomes 3 7 2
Vacuole 2 2 1

TLHC, light harvesting complex.

an organelle or compartment. This last point was important for
comparisons between compartments. For this proof-of-concept
study a minimum of three marker proteins per compartment was
applied (with the exception of the vacuole); in some instances up
to five were employed (e.g., for the PM) when available MRM
transitions were readily identified (Table 1). A ribosomal category

was included with the 10 major subcellular categories (Table 1)
as these can be an appreciable source of sample contamination
in subcellular proteomics. Using in vitro synthesis techniques
(Brownridge et al., 2011), we have thus far validated the identity
(retention time and fragment ions) of at least one peptide per
subcellular compartment, i.e., 25 of the 72 peptides.

Typical differences in organelle abundance detected using
this MRM method are demonstrated in two very different but
popular experimental systems; heterotrophic Arabidopsis cell-
suspension culture (Figure 1A) and 4-week old Arabidopsis
rosettes (Figure 1B). As growth conditions varied dramatically
between systems, particularly with respect to light and carbon
source, both light-harvesting complex and non-light harvest-
ing complex plastid markers were included. These MRM pro-
files of subcellular compartments were then compared to pro-
files generated by spectral counts of several 100 compartment
marker proteins from data-dependent analyses of total protein
extracts (Figure 1; Table 1). Although data-dependent acquisi-
tion approaches are known to favor medium/high abundance
proteins (Wienkoop and Weckwerth, 2006; Ahn et al., 2007),
since relatively abundant proteins had been selected as organelle
markers for MRM such a comparison was considered meaning-
ful. Both MRM and data-dependent analyses produced similar
organelle profiles for each system (Figure 1), showing that using
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MRM to estimate the relative abundance of subcellular com-
partments is conceptually valid. Changes in relative abundance
were detected in all subcellular categories, demonstrating the
quantitative capacity and sensitivity of MRM. As expected given
the physiological differences between the two systems, plastids
were much less abundant, and mitochondria more so, in cell
cultures compared to rosettes (Figures 1A,B). Ribosomal proteins
and lower-abundance organelles such as the Golgi and peroxi-
some appeared more abundant in cell cultures (Figure 1A), as
expected for cytoplasmic-dense, rapidly-dividing, undifferenti-
ated cells grown in a relatively high-oxygen environment.

Some differences between spectral counting and MRM were
observed. Lower-abundance organelles such as the Golgi, per-
oxisome and ER appeared lower when estimated by spectral
counting (compare Figures 1A,C). The ratio of plastidic pro-
teins to proteins from other compartments also appears lower
in the MRM results compared to standard spectral counting
approaches (Figures 1B,D). Detection is biased against very small,
low abundance, or hydrophobic proteins using data-dependent
acquisitions, particularly in complex samples, whilst heavily
post-translationally modified proteins may never be detected.
Undoubtedly, this will affect compartments disproportionately,
potentially leading to misrepresentation using techniques such
as spectral counting, which could explain these discrepancies
between results such as over-representation of the plastid in pho-
tosynthetic tissues. This analysis demonstrates a proof of concept
for this application of MRM in determining relative organelle
abundance, and shows how it could potentially lead to a more
accurate estimation of organelle abundance when compared to
immunoblotting, enzyme assays, and other mass spectrometry
techniques such as spectral counting. However, these results do
also point to some potential drawbacks of this technique in its
current format.

This technique relies on the assumption that changes in abun-
dance of an entire subcellular compartment can be represented by
a small number of proteins. Therefore, this makes the appropriate
selection of proteins a critical consideration when designing suites
of transitions for detecting subcellular compartments. Tissue- or
environment specific changes in gene expression can be largely
avoided by consulting publically available microarray data; how-
ever how this compares to proteins levels is harder to predict. The
disproportionate decrease in light-harvesting complex proteins
(Figures 1A,B) may reflect environmental influence on protein
expression. However, the similarities between Figures 1A,C and
Figures 1B,D suggest that by applying stringent criteria during
MRM marker selection, such effects may be minimized. For
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