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Rising atmospheric CO2 concentration (Ca) is expected to accelerate tree growth by

enhancing photosynthesis and increasing intrinsic water-use efficiency (iWUE). However,

the extent of this effect on long-term iWUE and its interactions with climate remains

unclear in trees along an elevation gradient. Therefore, we investigated the variation

in the radial growth and iWUE of mature Picea schrenkiana trees located in the upper

tree-line (A1: 2700m a.s.l.), middle elevation (A2: 2400m a.s.l.), and lower forest limit (A3:

2200m a.s.l.), in relation to the rising Ca and changing climate in the Wusun Mountains

of northwestern China, based on the basal area increment (BAI) and tree-ring 13δ C

chronologies from 1960 to 2010. We used the CRU TS3.22 dataset to analyze the

general response of tree growth to interannual variability of regional climate, and found

that BAI and 13δ C are less sensitive to climate at A1 than at A2 and A3. The temporal

trends of iWUE were calculated under three theoretical scenarios, as a baseline for

interpreting the observed gas exchange at increasing Ca. We found that iWUE increased

by 12–32% from A1 to A3 over the last 50 years, and showed an elevation-dependent

variation in physiological response. The significant negative relationship between BAI and

iWUE at A2 and A3 showed that tree growth has been decreasing despite long-term

increases in iWUE. However, BAI remained largely stable throughout the study period

despite the strongest iWUE increase [at constant intercellular CO2 concentration (Ci)

before 1980] at A1. Our results indicate a drought-induced limitation of tree growth

response to rising CO2 at lower elevations, and no apparent change in tree growth

and diminished iWUE improvement since 1980 in the upper tree-line. This study may

contradict the expectation that combined effects of elevated Ca and rising temperatures

have increased forest productivity, especially in high-elevation forests.
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Northwestern China

http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org/Plant_Science/editorialboard
http://www.frontiersin.org/Plant_Science/editorialboard
http://www.frontiersin.org/Plant_Science/editorialboard
http://www.frontiersin.org/Plant_Science/editorialboard
http://dx.doi.org/10.3389/fpls.2015.00309
http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org
http://www.frontiersin.org/Plant_Science/archive
https://creativecommons.org/licenses/by/4.0/
mailto:liuxh@lzb.ac.cn
http://dx.doi.org/10.3389/fpls.2015.00309
http://journal.frontiersin.org/article/10.3389/fpls.2015.00309/abstract
http://community.frontiersin.org/people/u/204158
http://community.frontiersin.org/people/u/204991
http://community.frontiersin.org/people/u/204992
http://community.frontiersin.org/people/u/204993
http://community.frontiersin.org/people/u/204994
http://community.frontiersin.org/people/u/204997
http://community.frontiersin.org/people/u/204998


Wu et al. Elevation-dependent tree growth and iWUE

Introduction

Atmospheric changes, and particularly the recent human-
induced increases in carbon dioxide (CO2) concentrations and
temperature, significantly affect tree growth (Martinez-Vilalta
et al., 2008; Allen et al., 2010; Koutavas, 2013). Sudden,
rapid changes in the atmospheric CO2 concentration (Ca) can
dramatically affect short-term plant physiology and growth
(Martinez-Vilalta et al., 2008), and research has shown that
plants increase their intrinsic water-use efficiency (iWUE) in
response to increasing CO2 (Morison, 1993; Morgan et al.,
2004). Compare to these short-term experimental results, the
long-term variations on the physiological responses to increased
Ca, obtained from the carbon isotope discrimination (113C)
of tree-ring series, give insight into how trees respond to
increasing atmospheric CO2 concentrations under naturally
growing conditions (Peñuelas et al., 2008, 2011). Some studies
found that trees may vary in their response to increasing Ca as a
result of interactions with other changing environmental factors,
and especially with warmer conditions (Switsur andWaterhouse,
1998; and references therein; Fischlin et al., 2007). Recently,
many studies focusing on changes in tree growth in response
to rising atmospheric CO2 concentrations and climate warming
have been carried out in natural stands (Peñuelas et al., 2008,
2011; Linares et al., 2009; Andreu-Hayles et al., 2011; Linares and
Camarero, 2012a; Granda et al., 2014; Lévesque et al., 2014; Liu
et al., 2014). Whether the increased iWUE in response to rising
Ca enhanced tree growth varied among sites and species. The
tree growth may potentially increase in response to rising Ca in
moist temperate forests (Cole et al., 2010; McMahon et al., 2010),
but often decreased in tropical, dry temperate forests and at the
lower-elevation forest limit (Peñuelas et al., 2008; Nock et al.,
2011; Lévesque et al., 2014). However, in the Mediterranean,
Juniperus thurifera showed enhanced growth at increased iWUE
despite unfavorable growing climate conditions (Granda et al.,
2014), whereas riparian Populus euphratica showed a significant
CO2-induced growth stimulation despite the negative influences
of reductions in streamflow (Liu et al., 2014). However, there
have been insufficient studies on the simultaneous elevation-
dependent effects on tree growth in response to increasingCa and
climate warming.

The growth rate of plant species at northern latitudes and high
elevations, near their range limit, correlates well with the mean
or extreme temperatures (Körner, 2012; Lenz et al., 2014). This
is an important effect, since most of the world has experienced
an unequivocal warming trend in the past half century, and
further warming is likely (IPCC, 2013). Therefore, an elevation-

dependent growth response of trees to climate is expected. At
high altitudes, global warming has potentially increased radial
growth (Körner, 2012), as in the case of studies in the European
Alps (Hartl-Meier et al., 2014b) and in North America (Salzer
et al., 2009), but growth suppression is expected to occur at
lower elevations due to the predicted increase in the frequency
and intensity of drought (Weltzin et al., 2003; Peñuelas et al.,
2008). The synergistic effect of elevated CO2 and temperature is
expected to stimulate forest productivity in temperature-limited
environments (Salzer et al., 2009), but may decrease growth

in water-limited environments (Linares and Camarero, 2012b).
Therefore, it is necessary to find ways to detect the growth
variation that occurs along an elevation gradient in response
to increased Ca and warmer temperatures, since the dominant
climatic stressor for trees may change with increasing elevation
(Hartl-Meier et al., 2014a,b). Measurement of various tree-ring
parameters allows an assessment of potential changes in tree
physiology and growth over time. The tree-ring stable carbon
isotope (δ13C) record provides evidence of climate effects on
stomatal conductance and of tree physiological responses to
increased Ca over time, whereas the basal area increment (BAI)
provides a reliable indicator of tree radial growth (Linares and
Camarero, 2012b).

It has been found that warming-induced prolonged drought
stress significantly contributed to the marked reduction of
regional BAI in recent years at mid-altitude in Tianshan
Mountains (Wu et al., 2013). However, an altitudinal survey
of radial growth variation and the tree physiological responses
to increased Ca from lower forest limit to upper tree-line
are still unclear. In the present study, we therefore combined
tree-ring δ13C and BAI to examine tree responses to rising
Ca and climate warming along an elevational gradient in the
Wusun Mountains of northwestern China. Our first goal was to
determine whether the δ13C and BAI varied between sites on
the three different elevations. Second goal was to identify the
climate factors influencing the δ13C and BAI and to detect the
pattern of increased iWUE in response to rising Ca. Finally, we
also want to detect whether the increases in iWUE could enhance
growth and whether the tree growth in response to the increase
in Ca and climate warming varied along an elevation gradient.
Specifically, we hypothesized that (1) lower radial growth and
high iWUEmay be found at lower forest limit compared to upper
tree-line, and (2) elevation-dependent growth variation may be
due to the divergence of dominant climatic stressor and iWUE
increase pattern.

Materials and Methods

Study Area and Climate
The study area is located on the northern slopes of the Wusun
Mountains in the Yili valley, which is located in the western
Tianshan Mountains of northwestern China (Figure 1). This
area is an intermontane basin that is open toward the west
and surrounded by mountains on all other sides. Under these
topographic conditions, the westerly airflow directly enters the
valley, bringing moisture that produces precipitation as the air
rises along themountain slope; in contrast, the topography blocks
dry and warm air flowing northward from the Tarim Basin and
southward from the Junggar Basin, and cold air flowing from
Siberia. The Yili Valley is dominated by a temperate semiarid
continental climate (Zhu, 1985).

No site-specific climate data were available, therefore we
used gridded climatic data from the CRU TS3.22 dataset, with
a spatial resolution of 0.5 × 0.5◦ (Mitchell and Jones, 2005;
http://www.cru.uea.ac.uk/). These data were derived from the
nearest point in the CRU grid (43.5◦N, 81.5◦E). Hence, we
only analyzed the general responses of tree growth to the
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FIGURE 1 | Locations of the study area and of the three sampling sites and the nearest CRU TS location in the Wusun Mountains of northwestern

China.

FIGURE 2 | (A) Climate diagram based on data during 1960–2010 from

the CRU TS3.22 dataset for the nearest point in the grid in the Wusun

Mountains. (B) Trends in the mean annual temperature, total annual

precipitation, and standardized precipitation evapotranspiration index

(SPEI) in August based on a 5-month time scale for the study area

from 1960 to 2010. Horizontal dashed lines represent the mean value

for this period.

inter-annual variability of regional climate in this study and
our subsequent correlation analysis depended on changes in the
values of each climate parameter (which should be similar along
the altitudinal gradient) rather than on accurate values for each
parameter. It is considered that even though the actual climate
values (e.g., temperature, precipitation) will change along the
altitudinal gradient, the patterns of change should be comparable
along the altitudinal gradient (i.e., values should increase or
decrease simultaneously at all altitudes) because they are mainly
controlled by the broad-scale regional climate system. This view
is supported by the results of two previous studies in the Tianshan
Mountains (Guo et al., 2007; Wu et al., 2014). We used the
monthly temperatures (mean, minimum, andmaximum) and the
monthly total precipitation from 1960 to 2010 in our analysis.
The mean annual precipitation averaged 254mm, with 62% of
the precipitation falling from April to August, and the mean
annual air temperature averaged 1.8◦C, with the monthly mean
ranging from -15.25◦C in January to 15.4◦C in July. The climate

was dominated by a relatively dry period from July to September

(Figure 2A).
To quantify the intensity of the water stress, we calculated

the standardized precipitation evapotranspiration index (SPEI)

using the SPEI Calculator software (http://digital.csic.es/handle/
10261/10002) based on the CRU TS3.22 precipitation and

temperature data. This index combines the ability to characterize

evaporative demand at multiple scales with the ability to account
for temperature variability (Vicente-Serrano et al., 2010). We

calculated the SPEI value with a timescale of 5 months based
on our subsequent correlation analysis, which showed that the

climatic values during the 5-month period from April to August

were most significant (based on data from 1960 to 2010) and
considered the value in August to represent the maximum

intensity of water stress during the growing season. The mean

Frontiers in Plant Science | www.frontiersin.org 3 May 2015 | Volume 6 | Article 309

http://digital.csic.es/handle/10261/10002
http://digital.csic.es/handle/10261/10002
http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org
http://www.frontiersin.org/Plant_Science/archive


Wu et al. Elevation-dependent tree growth and iWUE

temperature showed a significant long-term increasing trend
since 1960, whereas precipitation and SPEI showed no significant
long-term trend (Figure 2B).

Field Sampling and Stem Radial Growth at
Different Elevations
Schrenk spruce (Picea schrenkiana) is one of the dominant
species in the study area, and plays an important role in
preventing soil erosion and soil water loss and in regulating
climate, as well as in protecting the ecological stability of this
inland river drainage area. Zhu et al. (2004) found that there
were different relationships between the tree growth and climate
at different aspects of slope and altitude of the valley. Schrenk
spruce is an evergreen species that grows preferentially on shady
(e.g., northwest-facing) slopes (Yuan and Li, 1995). It forms
pure stands with a canopy cover ranging from 30 to 50%. The
trees at our study sites grew on a northwest-facing slope (with
an inclination of 30◦) and the well-drained soil was a chestnut
soil, which is equivalent to a Chernozems soil in the WRB soil
taxonomy. We sampled this species near the upper (A1), middle
(A2), and lower (A3) elevation limits of its distribution range
(Figure 1; Table 1).

The number of sampled dominant healthy trees for
dendroecological analysis were 20, 22, and 24 from A1 to
A3. We collected two cores per tree at breast height, with the
cores obtained at right angles to each other, from even-aged
mature trees growing at the upper tree line, at a middle-elevation
site, and at the lower limit of the forest. After air-drying and
polishing the cores, we measured the ring width using the
LINTAB 6.0 software (Rinn, 2003; http://www.rinntech.de)
to a precision of 0.01mm, and cross-dated the rings using the
COFECHA software (Holmes, 1983). To account for the decrease
in ring width that occurs with increasing tree size, we converted
the radial increment into a BAI using the following formula
(Phipps and Whiton, 1988; Biondi and Qeadan, 2008):

BAI = π ×
(

R2
n − R2

n−1

)

(1)

TABLE 1 | Site descriptions for the three sites used to obtain the three

tree-ring chronologies.

Site

A1-2700m a.s.l. A2-2400m a.s.l. A3-2200m a.s.l.

Dominant

species

Schrenk spruce Schrenk spruce Schrenk spruce

Latitude 43◦25′23.4′′N 43◦26′25.9′′N 43◦26′16.9′′N

Longitude 81◦02′36.7′′E 81◦05′02.6′′E 81◦05′32.7′′E

Slope aspect NW NW NW

Inclination (◦) 30 30 30

Stand age

(years)

123 99 95

Soil type Chernozems Chernozems Chernozems

Soil depth (cm) 40 80–100 80–100

Sample size

(no. of trees)

20 22 24

where R is the tree radius and n is the year of tree-ring
formation. The long-term variation of BAI was presented in
the Supplementary Material (Supplementary Figure S1). In this
study, we set the study period from 1960 to 2010 on account of the
valid climate data acquisition and excluding the juvenile effects in
the carbon analysis (McCarroll and Loader, 2004).

Tree-ring δ
13C and Calculation of iWUE at

Different Elevations
We selected five cores from different trees at each elevation that
had the strongest correlation with the elevation-specific tree-ring
chronology, few missing rings, and regular ring boundaries. We
pooled the annual rings from the five samples by mixing all tree
rings from a given year to produce a single composite sample,
which we used to conduct the stable carbon isotope study. We
extracted the α-cellulose using a modified version of the method
of Green (1963) and Loader et al. (1997, 2008). To obtain highly
homogenized α-cellulose, we used an ultrasound machine (JY92-
2D, Scientz Industry, Ningbo, China) to break the cellulose fibers
based on the method of Laumer et al. (2009).

The δ13C values were determined using a Flash EA1112
Elemental Analyzer coupled with a Finnigan Delta Plus
mass spectrometer (Thermo Electron Corporation, Bremen,
Germany) at the Key Laboratory of Western China’s
Environmental Systems, Lanzhou University. By convention, the
carbon isotope ratio (δ13C) is expressed in delta (δ) notation with
reference to the Vienna Pee Dee Belemnite (VPDB) standard, in
parts per thousand (h):

δ13C =
[(

Rsample

/

Rstandard

)

− 1
]

× 1000 (2)

where Rsample and Rstandard are the 13C/12C ratios in the sample
and in the VPDB standard, respectively. During the experiment,
laboratory reference standards were periodically used to calibrate
the analytical results. The analytical error (standard deviation)
of the isotope measurements was less than 0.07h for repeated
samples.

The iWUE (µmol CO2 mol−1 H2O) compares the
photosynthetic uptake of CO2 through the leaf stomata
with the simultaneous transpirational loss of water through the
stomata using the following formula (Farquhar et al., 1982):

iWUE = A
/

g
s
= Ca ×

[(

1− Ci

/

Ca

)

1.6
]

(3)

where A is the rate of CO2 assimilation by the leaves, gs is the
rate of leaf stomatal conductance, and Ci is the leaf intercellular
CO2 concentration. To determine Ci/Ca, we used the equation
proposed by Francey and Farquhar (1982):

Ci = Ca ×
[(

δ13Cplant − δ13Catm + 1
)

/
(

b− a
)]

(4)

where δ13Cplant and δ13Catm refer to the δ13C composition of α-
cellulose and of atmospheric CO2, respectively. The parameter a
(4.4h) represents the discrimination that occurs during diffusion
of CO2 from the atmosphere into the intercellular space of cells,
and b (27h) is the assumed discrimination that occurs during
carboxylation.

However, tree-ring δ13C records are widely considered to
show a prominent downward trend that can be attributed to the
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isotopically depleted CO2 in the atmosphere (δ13Catm) that has
resulted from industrialization, and should be corrected for this
effect by adding published annual values for δ13Catm derived from
ice cores as well as direct measurements during the modern era
(McCarroll and Loader, 2004). The atmospheric δ13Catm values
from 2004 to 2010 were provided by Professor Danny McCarroll
(Swansea University). Hereafter, we refer to this corrected data
as the δ13Ccor data (δ13Ccor in Supplementary Figure S2). As a
downward trend often remains even after correcting for changes
in the atmospheric CO2 concentration as a result of changes in

plant physiological responses to the increased Ca (Treydte et al.,
2001; Gagen et al., 2007, 2011), we further corrected this data
using the method proposed by McCarroll et al. (2009). Hereafter,
we refer to this corrected data as the δ13Cpin data (δ13Cpin in
Supplementary Figure S2). Due to autocorrelation in the δ13Cpin

trend, we further standardized the δ13Cpinseries (we scaled the
series to provide a mean of 0 and a variance of 1) and fitted
an autoregressive model of order 1 to each series based on the
method of Lévesque et al. (2013). The resulting δ13C residuals
chronology was used in the following analysis (Figure 3A).

FIGURE 3 | Left: the temporal trends of (A) the δ
13C residuals

chronology, (B) the intercellular CO2 concentration (Ci), (C) the

intrinsic water-use efficiency (iWUE), and (D) the basal area

increment (BAI) for the three sites from 1960 to 2010. Right: the means

and standard errors of (E) the δ13C residuals chronology, (F) Ci, (G) iWUE,

and (H) BAI for the three sites during the period from 1960 to 2010. Bars for

a parameter that are labeled with different letters differ significantly between

sites (p < 0.05, ANOVA).
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The tree-ring δ13C values reflect the plant’s physiological
response to climatic variables. Saurer et al. (2004) proposed three
kinds of plant response to rising CO2: (1) Ca − Ci remains
constant, Ci/Ca increases, and iWUE remains constant (a passive
response); (2) Ci/Ca remains constant, but iWUE increases (an
active response); and (3) Ci remains constant while iWUE
increases strongly (strongest response). In this study, we used
these three scenarios as a baseline for interpreting the observed
the iWUE trends, based on the analysis described by Linares and
Camarero (2012a) and Liu et al. (2014).

Data Treatment and Statistical Analysis
We used One-Way ANOVA to detect significant differences in
the mean value of tree growth data among the three elevations
using version 16.0 of the SPSS software (SPSS Inc., Chicago, IL,
USA). We also performed correlation analysis to examine the
relationships between the tree-ring data and the mean monthly
and seasonal climate data. We calculated Pearson’s correlation
coefficient (r) between the δ13C residuals chronology, BAI, and
the climate variables using SPSS. The relationships between
BAI and iWUE were assessed using linear regression analysis
via SPSS.

Results

Temporal and Elevational Trends
Overall, the means of the δ13C residuals chronology, Ci, iWUE,
and BAI differed significantly among the three elevations
(Figure 3; Supplementary Table S1). The δ13C residuals
chronology at the upper tree-line (A1) showed high δ13C
enrichment before 1980 compared with the two lower-elevation
sites (Figure 3A), but the chronology at the lower forest limit
(A3) showed the highest δ13C for the study period as a whole
(Supplementary Table S1). The δ13C enrichment was therefore
significantly elevation-dependent (Figure 3E).

Mean Ci decreased with decreasing elevation (Figure 3F),
with a mean value of 164.4µmol mol−1 at site A3, vs. 180.9
and 174.2µmol mol−1 at sites A1 and A2, respectively. During
the study period, iWUE increased significantly with decreasing
elevation (Figures 3C,G), and increased throughout the study
period, with increases of 12.0, 23.0, and 32.0% at sites A1, A2, and
A3, respectively (Figure 3C). iWUE remained relatively constant
at site A1 after 1980, but increased continuously at sites A2 and
A3 (Figure 3C).

BAI decreased during the past 50 years at sites A2 and A3, and
the decrease was significant (R2 = 0.47 and 0.36, respectively;
p < 0.0001), whereas BAI increased slightly but not significantly
at A1 (Figure 3D).Ci and BAI were significantly lower and iWUE
was significantly higher at the lower elevations (ANOVA, p <

0.01; Figures 3F–H).

Climate–Growth Relationships
The correlation analysis based on the δ13C residuals chronologies
(Figure 4) revealed significant correlations between the residuals
and the mean temperature (Tmean; r = 0.29, p < 0.05),
maximum temperature (Tmax, r = 0.37, p < 0.01), and
precipitation (PRE; r = −0.34, p < 0.01) from April to August

at site A1. At sites A2 and A3, the correlations with SPEI (at
A2, r = −0.71, p < 0.001; at A3, r = −0.74, p < 0.001)
in August were stronger than those with temperature during the
months fromApril to August. The strength of the correlation and
the dominant climate variables that controlled carbon isotope
discrimination therefore differed among the elevations.

The climate-response patterns of BAI were also elevation-
dependent, and the climate signal recorded in the BAI series
was much stronger (r values were much higher) at lower
elevations (sites A2 and A3) than at site A1 (Figure 5). BAI
was not significantly correlated with any climate variable at the
highest-elevation site. Thus, the temperature parameters during
the growing season had a stronger and significantly negative
relationship with BAI at the two lower elevations, and the
strength of this correlation increased with decreasing elevation.
The correlation between the temperature series from April to
August and BAI was strongest at 2200m (site A3: for Tmean,
r = −0.43, p < 0.01; for Tmin, r = −0.32, p < 0.01; and for
Tmax, r = −0.47, p < 0.01). The correlations between BAI and
precipitation were weak, with a significant correlation in April
at site A3 (r = 0.30, p < 0.01), but we found an increasing
correlation for SPEI with decreasing elevation; the correlation
reached to r = 0.34 (p < 0.01) at site A3 in August with a
timescale of 5.

The climate-growth relationship revealed significant climate
signals in the tree-ring δ13C series but not in the BAI series at the
highest-elevation site, but the impacts of temperature and SPEI
on tree growth increased with decreasing elevation in both the
δ13C analysis and the BAI analysis.

Physiological Responses of Trees to Increasing
Ca at Different Elevations
Since 1960, iWUE at the highest-elevation site increased by 12.0%
(by 0.23µmol CO2 mol−1 H2O year−1), vs. increases of 24 and
32% (0.44 and 0.60µmol CO2 mol−1 H2O year−1), respectively,
at the middle-elevation and low-elevation sites (Figure 6). The
dominant scenario that explains the iWUE trends differed among
the sites and between two subsets of the study period (Figure 6).
At the highest-elevation site, iWUE was dominated by constant
Ci until 1980 (which assumes that is the strongest response to
Ca), with a 13.0% increase during this period, after which iWUE
followed a pattern with constant Ca−Ci, with no overall increase
or decrease for iWUE from 1980 to 2010 (Figure 6A). However,
the iWUE values at the mid-elevation site and at the lower forest
limit were mainly dominated by a constant Ca − Ci scenario
during the 1960s. Then, the iWUE increase is fallen within the
range of expected iWUE values represented by the constant Ci

and the constant Ci/Ca scenarios at the mid-elevation and lower
forest limit since 1973 (Figures 6B,C). After 1980, the iWUE
trends at the mid-elevation site remained close to those in the
constant Ci/Ca scenario, but the contemporaneous iWUE values
at the lower forest limit were higher than those predicted under a
constant Ci/Ca scenario.

Relationships between Radial Growth and iWUE
We detected the effects of long-term gas exchange on tree growth
via the relationship between iWUE and BAI. BAI decreased
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FIGURE 4 | Correlation coefficients (Pearson’s r) between the δ
13C

residuals chronology and the climate variables from 1960 to 2010 at

(A) Site A1 (2700m a.s.l.), (B) Site A2 (2400m a.s.l.), and (C) Site A3

(2200m a.s.l.). Horizontal dashed lines represent the 95% confidence

interval. Tmean, mean monthly temperature; Tmin, minimum monthly

temperature; Tmax, maximum monthly temperature; PRE, total precipitation;

SPEI, standardized precipitation evapotranspiration index. AMJJA represents

the mean value from April to August.

significantly as iWUE increased at the low and middle elevation
sites (r = −0.66 and r = −0.73, p < 0.001) (Figures 7B,C). In
contrast, BAI at the upper tree-line remained stable (i.e., there
was no statistically significant trend) despite increased iWUE
(r = 0.22; Figure 7A).

Discussion

Temporal and Elevation Effects on the Climate
Constraints
The weather conditions during the growing season (April to
August) played a dominant role in determining the variation in
tree-ring δ13C. Tree-ring δ13C is expected to be strongly affected

by photosynthetic rates, which are governed both by temperature
and by the photon flux at the upper tree line (McCarroll and
Pawellek, 2001). The stronger moisture signal reflected in δ13C
(Figure 4) at the low-elevation site (A3) than that at the highest-
elevation site (A1) further indicates that trees suffered from
enhanced water stress at A3.Moisture conditions, and specifically
the vapor-pressure difference between the atmosphere and the
intercellular air spaces of the leaves, directly determine the
stomatal aperture, which in turn controls the leaf intercellular
CO2 concentration (Ci) and thereby governs δ13C (Farquhar
et al., 1982).

The low and non-significant correlation (r < 0.276,
p > 0.05) between the climate controls and BAI at site
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FIGURE 5 | Correlation coefficients (Pearson’s r) between the

response of the basal area increment (BAI) to the climatic variables

based on data from 1960 to 2010 at (A) Site A1 (2700m a.s.l.), (B) Site

A2 (2400m a.s.l.), and (C) Site A3 (2200m a.s.l.). Horizontal dashed lines

represent the 95% confidence interval. Tmean, mean monthly temperature;

Tmin, minimum monthly temperature; Tmax, maximum monthly temperature;

PRE, total precipitation; SPEI, standardized precipitation evapotranspiration

index

A1 suggests lower water stress and more adequate growth
conditions for trees at the upper tree-line. In contrast with
site A1, we found similar responses of tree growth to climate
in trees growing at the A2 and A3 sites. Trees at both sites
showed a similarly strong negative correlation with temperature
throughout the growing season, but revealed increased sensitivity
to moisture conditions (e.g., the strong negative correlations with
SPEI; Figure 4) at the lower-elevation sites. High temperatures
decrease soil water content and increase evaporation, hence
reducing stomatal conductance, photosynthesis, and growth of
trees (Peñuelas et al., 2008; Yin et al., 2008; Lévesque et al.,
2013).

Elevation-dependent Physiological Responses to
the Ca Increases
iWUE of Schrenk spruce has increased at all three sites since 1960
(by 12.0, 24.0, and 32.0% at sites A1, A2, and A3, respectively;
Figure 6). These values fall within the range of iWUE increases
(up to 36.2%) that has been reported in other forests (Bert et al.,
1997; Duquesnay et al., 1998; Feng, 1998; Peñuelas et al., 2011;
Linares and Camarero, 2012a). Nevertheless, some studies have
found that the responses of trees to increased Ca differed between
stands, even though the most pronounced changes in iWUEwere
observed during the second half of the twentieth century from
tree-ring chronologies (Waterhouse et al., 2004; Andreu-Hayles
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FIGURE 6 | The observed and theoretical changes in intrinsic

water-use efficiency (iWUE) calculated using Equation (3). The three

scenarios for the theoretical regulation of leaf gas exchange in response to an

increasing atmospheric CO2mole fraction (Ca) are: (i) a constant intercellular

CO2 mole fraction (Ci); (ii) a constant Ci/Ca ratio, and (iii) a constant Ca - Ci

value. Values are for (A) Site A1 (2700m a.s.l.), (B) Site A2 (2400m a.s.l.), and

(C) Site A3 (2200m a.s.l.).

et al., 2011; Gagen et al., 2011; Linares and Camarero, 2012a). We
also found this change at the three sites in our study.

The highest-elevation site (A1) showed a significant decrease
in Ci/Ca before 1980, resulting in a greater iWUE improvement

FIGURE 7 | Relationships between the basal area increment (BAI) and

the intrinsic water use efficiency (iWUE) at the three sites from 1960 to

2010. (A) Site A1 (2700m a.s.l.), (B) Site A2 (2400m a.s.l.), and (C) Site A3

(2200m a.s.l.). Relationships between the two variables are calculated using

Pearson’s correlation coefficient (r). Significance levels: ***, p < 0.001; ns, not

significant.

than at the other sites during this period, which agrees with the
constant-Ci scenario (Saurer et al., 2004). Under this scenario,
iWUE exceeded the expected values that would result from an
active tree response to increased Ca, suggesting that stomatal
closure of trees at the highest-elevation site may be reinforced
by other factors (Andreu-Hayles et al., 2011). The high elevation
site has a lower atmospheric pressure, which may increase the
effect of any increase in the partial pressure of CO2 on the rate
of photosynthesis more than at lower elevations (Hultine and
Marshall, 2000). In contrast, the A2 and A3 sites followed the
constant Ca − Ci scenario during the 1960s, leading to the lowest
iWUE increase during this period in response to increasing Ca.

After 1980, we found a progressively smaller response to
increasing Ca at the highest-elevation site. This lower sensitivity
to Ca indicates that trees at the highest-elevation site may have
become saturated with respect to increased Ca, as the trees
exhibited their greatest iWUE improvement from 1960 to 1980
at site A1 (Waterhouse et al., 2004; Figure 6A). However, the
responses of the trees at the two lower-elevation sites were
within the range of expected iWUE values under the constant
Ci scenario and the constant Ci/Ca scenario after 1973, a period
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when the greatest iWUE increases occurred at these sites. As the
regional climate changes toward more aridification, generated
by a significant temperature increase that was not accompanied
by increased precipitation, hence increasing evaporative demand
(Figure 2B), the greater iWUE improvement at lower elevations
appears to have been induced by drought stress. We found that
the limiting effects of drought for tree growth in lower elevation
sites were strongly enhanced (Figures 4, 5). It is reasonable to
expect a much lower water availability and enhanced drought
stress at lower elevations, since the precipitation generally
increases with altitudes in the Tianshan Mountains under the
effect of westerly system (Guo et al., 2007; Wu et al., 2014).

Tree Growth at Different Elevations
The low-elevation site had consistently higher (less negative)
δ13Cpin, higher iWUE, and lower BAI than the A1 and A2
sites during the study period. Thus, the higher iWUE values
since the 1970s that developed in response to the increased
CO2 concentrations were consistently above those predicted
under the constant Ci/Ca scenario, but this was not sufficient
to reverse the decrease in BAI at site A3 (Figure 7C), as was
the case for the active-response scenario (constant Ci/Ca) at
site A2 (Figures 6B, 7B). The significant negative relationship
between tree growth (BAI) and iWUE at the A2 and A3 sites
(Figures 7B,C), accompanied by the consistent increase in iWUE
over time (Figures 6B,C), indicated that tree growth has been
decreasing despite long-term increases in iWUE, especially at
the lower-elevation sites. A trend of decreasing BAI is a valid
indicator of a decline in tree growth (Phipps and Whiton,
1988), and does not appear to be a consequence of maturation
of the trees (Leblanc et al., 1992). The decreasing BAI found
at the lower-elevation sites is in line with recent studies that
have demonstrated a warming-induced growth decline despite
increasing iWUE for forest systems at dry sites (Peñuelas et al.,
2008; Andreu-Hayles et al., 2011; Linares and Camarero, 2012a;
Lévesque et al., 2014). Wu et al. (2013) have demonstrated that
prolonged warming-induced drought stress contributed greatly
to a marked reduction of the regional BAI in recent years for
Schrenk spruce at middle altitudes on the northern slopes of the
Tianshan Mountains. In the present study, the close relationship
between BAI and SPEI at sites A2 and A3 further indicated a link
between the growth decline and warming-induced drought at the
lower-elevation sites (Figure 5).

However, at the upper limit of the current distribution
of Schrenk spruce in the western Tianshan Mountains,
BAI remained largely stable throughout the study period.
Simultaneously, the changes in iWUE of Schrenk spruce at the
A1 site agreed with the constant Ci scenario before 1980, with
a particularly strong improvement in iWUE before 1980 (Saurer
et al., 2004; Figure 6A). However, this iWUE improvement did
not induce a significant overall increase in BAI (Figure 7A). After
1980, the lack of change in iWUE during a period with a constant
Ca − Ci scenario suggests that the trees reached a limit in their
ability to respond to the increased Ca and subsequently showed a
diminishing sensitivity to rising Ca. This diminishing sensitivity
of iWUE and growth to increasing Ca at the tree line may be due
to more adequate growth conditions at this site.

Conclusions

In this study, we found a warmth-induced drought limitation
on tree growth accompanied by increasing iWUE at the lower-
elevation sites in the spruce forest. Moreover, the continuous
increases in iWUEmay not have been sufficient to counteract the
decreases in tree growth that occurred at lower elevations, as the
negative effects of other factors on tree growth, such as drought,
may have outweighed the CO2 fertilization effect. In contrast,
the strongest iWUE increase, which occurred before 1980, did
not significantly increase tree growth at the upper tree line.
After 1980, the sensitivity of iWUE to increasing Ca diminished,
suggesting the existence of a saturation effect. Therefore, the
synergistic effect of elevated CO2 and higher temperatures may
have had different effects in temperature-limited environments
(e.g., at the upper limit of the tree’s distribution) than in
water-limited environments (e.g., at the lower limit of the tree’s
distribution). However, this study showed no apparent change of
tree growth and a diminishing of iWUE improvement since 1980
onward at upper tree-line, which may contradict expectations
that combined effects of elevated Ca and rising temperatures have
increased forest productivity, especially for the high elevation
forest (Linares et al., 2009; Salzer et al., 2009). Our results may
provide insights into the tradeoffs between the responses to
increased Ca and climate change, which were revealed by changes
in tree physiology (δ13C) and growth (BAI) along an elevation
gradient in this semi-arid region of northwestern China.
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