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The ubiquitin/26S proteasome system (UPS) has been implicated in the regulation of
many physiological processes including hormone signaling. The plant hormone abscisic
acid (ABA) employs the UPS to control its own synthesis and signaling and to regulate
stress response and tolerance. Among the known effectors of ABA signaling, the ABI1
(abscisic acid-insensitive 1) protein phosphatase, which belongs to group A of the type
2C protein phosphatases, is recognized as a key component of the pathway. Molecular
and genetic evidence implicates this protein phosphatase in numerous plant responses.
This mini-review discusses recent progress in understanding the role of ABI1 in ABA
signaling, with particular emphasis on recent data that link ABI1 to protein degradation
via the UPS.
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Reversible protein phosphorylation is a key protein modification involved in the regulation of
numerous physiological processes. Phosphorylation and dephosphorylation are catalyzed by protein
kinases and protein phosphatases, respectively. In Arabidopsis there are over 1000 genes that
encode protein kinases and protein phosphatases (Fuchs et al., 2013). These enzymes have critical
functions in plant growth, development and stress responses, and ongoing research in Arabidopsis
highlights the importance of protein phosphatases type 2C (PP2Cs) from group A as regulatory
components of the ABA signaling pathway (Miyazono et al., 2009; Nishimura et al., 2009). Genetic
screening experiments indicate nine group A PP2Cs (ABI1, ABI2, HAB1, HAB2, HAI1, HAI2,
HAI3, PP2CA/AHG3, and AHG1) as negative regulators of ABA signal (Gosti et al., 1999; Merlot
et al., 2001; Saez et al., 2004, 2006; Kuhn et al., 2006; Nishimura et al., 2007; Rubio et al., 2009;
Fuchs et al., 2013). Clade A PP2Cs by interaction with multiple proteins enable a wide range of
ABA responses in plants. Members of clade A PP2Cs interact with RCAR/PYR/PYLs (Nishimura
et al., 2010; Hao et al., 2011; Antoni et al., 2012), SnRK1 (SnRK1.1-2; Rodrigues et al., 2013),
SnRK2 (SnRK2.2-3, SnRK2.6; Umezawa et al., 2009), CBL-interacting protein kinases (CIPK8,
CIPK14-15, CIPK20; Guo et al., 2002; Ohta et al., 2003; CIPK26, Lyzenga et al., 2013), the b-ZIP
transcriptional factor (ATHB6; Himmelbach et al., 2002), and glutathione peroxidase (GPX3;
Miao et al., 2006) to regulate ABA signaling or response. Apart from ABA signaling, group A of
Arabidopsis PP2Cs have been involved in other pathways to regulate plant growth, development,
ion transport and stress acclimation (Chérel et al., 2002; Himmelbach et al., 2002; Yang et al.,
2006; Yoshida et al., 2006; Saez et al., 2008; Geiger et al., 2010; Ludwików et al., 2009, 2013,
2014).
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Because ABI1 and ABI2 are best known for their key roles in
ABA signaling, understanding how these phosphatase activities
are regulated in response to ABA is one of the most important
goals in plant research. In early studies, H2O2 was proposed to
be a reversible inhibitor of ABI1 because of its inhibitory effects
on ABI1-dependent phosphatase activity in vitro (Meinhard and
Grill, 2001). However, more recent study does not support these
findings, showing that in plantaABI1maintains high phosphatase
activity in response to oxidative stress conditions (Ludwików
et al., 2014). Moreover, ABI1 is regulated by additional factors
that increase or maintain its activity during stress conditions,
such as the Rho-like small GTPases, which also protect ABI1
from ABA–PYL/PYR inhibition. Similarly, glutathione peroxi-
dase (GPX3) and FERONIA receptor kinase play an important
role in regulating the activity of ABI2 (Miao et al., 2006; Li et al.,
2012; Yu et al., 2012; Ludwików et al., 2014).

In addition to the above regulators, the last years have seen
notable progress in ABA receptor research. For example, the
Arabidopsis PYR/PYL/RCAR family of START proteins have been
identified as ABA receptors. PYLs comprise 14 members that
fall into two distinct classes, dimeric and monomeric (Melcher
et al., 2009; Miyazono et al., 2009; Nishimura et al., 2009; Santiago
et al., 2009; Yin et al., 2009; Dupeux et al., 2011), with different
affinities for ABA (Miyazono et al., 2009; Santiago et al., 2009;
Yin et al., 2009; Szostkiewicz et al., 2010). The current model of
the core ABA pathway assumes that ABA receptors in complex
with ABA recognize and bind to PP2Cs, releasing SnRK2s from
PP2C-dependent regulation (Melcher et al., 2009;Miyazono et al.,
2009; Dupeux et al., 2011). Importantly, the above studies clearly
demonstrated that PYR/PYL/RCAR receptors showpreferences in
substrate specificity and selectively inhibit specific PP2Cs in the
presence of ABA, although one particular PP2C (AHG1) has been
identified as insensitive to ABA-PYL inhibition (Antoni et al.,
2012). On the other hand, PYL proteins differ in their ability to
inhibit the phosphatase activity of group A PP2Cs even in the
absence of the ABA ligand. PYR1 and PYLs 1–3 show only weak
inhibitory effects on HAB1, while PYL4 shows clear inhibition
of HAB2. PYL5–9 and PYL10 constitutively inhibit particular
PP2Cs to a certain degree (Hao et al., 2011). Importantly, low-
affinity complexes with PP2Cs generated in the absence of ABA
are insufficient to activate ABA signaling (Antoni et al., 2012;
Dupeux et al., 2011).

As well as the group A PP2Cs, an additional, underrated
but essential component of ABA signaling has emerged in the
last decade—the ubiquitin-proteasome system (UPS). The UPS
requires the action of three types of enzymes: ubiquitin-activating
enzymes (E1), a ubiquitin-conjugating enzyme (E2), and ubiqui-
tin (Ub) ligases (E3). E3 Ub ligases determine the substrate speci-
ficity of the ubiquitination reaction and are classified into four
groups: HECT, RING, U-box, and cullin-RING ligases (CRLs).
Ub ligases function as eithermonomeric enzymes ormultisubunit
complexes. The largest and most diverse class of E3s are CRLs
comprising the SCF (S-phase kinase-associated protein1-cullin1-
F-box), the BTB (bric-a-brac-tramtrak-broad complex), the DDB
(DNA damage-binding), and the APC (the anaphase-promoting
complex/cyclosome) E3 Ub ligases (Vierstra, 2009; Chen et al.,
2013; Stone, 2014).

Abscisic acid employs E3 Ub ligases in the management of its
own synthesis and signaling to improve plant growth and devel-
opment, as well as stress response and tolerance (Ko et al., 2006;
Zhang et al., 2008; Raab et al., 2009; Salt et al., 2011; Chen et al.,
2013; Lyzenga et al., 2013; Stone, 2014). Several ABA-responsive
transcription factors, both positive and negative regulators of
ABA signaling, including ABI3, ABI4, ABI5, ATHB6, ABF1, and
ABF3, were found to be regulated by the UPS. The ABI3 tran-
scription factor is polyubiquitinated by ABI3-interacting protein
(AIP2), a RING-type E3Ub ligase. ABAup-regulatesAIP2 protein
abundance, which in turn decreases ABI3 level. In addition, the
aip2-1 mutant is hypersensitive to ABA in root growth and seed
germination assays. Thus AIP2 ligase is also regarded as a negative
regulator of ABA signaling (Zhang et al., 2005). The opposite
regulation is observed for the ABI5 transcription factor. ABA
increases ABI5 abundance by supervision of KEG (KEEP ON
GOING), a RING3-type E3 ligase that targets ABI5 for ubiquiti-
nation and subsequent degradation (Liu and Stone, 2010). In this
case, ABA controls ABI5 levels by causing KEG to ubiquitinate
itself and thereby promote its own destruction (Liu and Stone,
2010). Another regulator of ABI5 stability has been identified
recently: ABA-hypersensitive DCAF1 (ABD1), which is a sub-
strate receptor protein, modulates ABI5 turnover in the nucleus
(Seo et al., 2014).

Similar mechanisms can be observed in the turnover of the
ABF1, ABF3, and ATHB6 transcription factors (Himmelbach
et al., 2002; Lechner et al., 2011). ABF1 and ABF3 are ABI5-
related transcription factors and positive effectors of multiple
ABA responses. Importantly, ABI5, ABF1, and ABF3 interact
with ABI3, a transcription factor involved in seed maturation and
dormancy, and ABF3 and ABI5 exhibit redundancy (Finkelstein
et al., 2005; Chen et al., 2013). ABA probably affects ABF1 and
ABF3 accumulation by preventing their degradation. Interest-
ingly, proteolysis of ABF1 and ABF3 is affected by KEG—the
same E3 Ub ligase that is involved in ubiquitination of ABI5.
The mechanism of ABF1 and ABF3 function is complicated. The
conserved C-terminal region (RRTLTGPW motif) required for
interaction with 14-3-3 protein is also necessary for ABF1 and
ABF3 stabilization. Although degradation of ABF1 and ABF3
is delayed in a keg mutant, KEG ubiquitinates both full-length
ABF1/3 proteins and their C-terminal deletion forms. Authors
postulate that ABF1 and ABF3 are stabilized by phosphorylation,
probably driven by SnRK2 kinases. In addition, interaction with
14-3-3 proteins increases ABF1 and ABF3 stability (Chen et al.,
2013).

As already mentioned, ABA prevents the turnover of ATHB6, a
homeobox-leucine zipper transcription factor, which is another
negative regulator of the ABA response and a target of ABI1
PP2C (Himmelbach et al., 2002; Lechner et al., 2011). ATHB6
directly interacts with, and is a target for degradation by, MATH-
BTB proteins. The interaction between MATH-BTB proteins and
ATHB6 occurs within the leucine zipper domain of ATHB6, sug-
gesting that this interaction may interfere with the dimerization
of ATHB6 with other HD-Zip proteins (Lechner et al., 2011).
Furthermore, MYB30 transcription factor, a negative regulator of
ABA signaling, is targeted for degradation by MIEL1, the RING-
type MYB30-Interacting E3 Ligase 1 (Marino et al., 2013). MIEL1
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attenuates cell death and pathogen resistance by promoting the
destruction of MYB30.

The UPS is responsible for the rapid breakdown of ABA-
regulated protein kinases (Fujii et al., 2009; Lyzenga et al., 2013;
Rodrigues et al., 2013). Thus, KEG triggers the degradation
of CIPK26, a sucrose non-fermenting-1 (SNF1)-related protein
kinase 3 (SnRK3; Lyzenga et al., 2013). Although it has been
demonstrated that CIPK26 is a component of ABA signaling
downstream of ABI1, it is not clear whether ABI1 affects its kinase
activity. Other ABA-regulated SnRKs have also emerged as targets
for polyubiquitination (Lee et al., 2008; Fragoso et al., 2009).
Importantly, regulation of the kinase activity of SnRK1 and SnRK2
by ABI1 and ABI1-like phosphatases has been clearly demon-
strated (Yoshida et al., 2006; Rodrigues et al., 2013). The chloro-
plast localized SnRK1.2 is specifically degraded in response to
phosphate starvation (Fragoso et al., 2009). SnRK1.1 and SnRK1.2
interact with PRL1 (Pleiotropic Regulatory Locus 1), a subunit of
a CUL4-based E3 ligase (Bhalerao et al., 1999). In addition, both
SnRK1 isoforms interact with SKP1 (S-phase Kinase-associated
Protein1), a component of the CUL1-based E3 complex. Nev-
ertheless, only SnRK1.1 has been shown to be degraded by the
proteasome, with its breakdown orchestrated by a CUL4-based
E3 ligase that uses PRL1 as a substrate receptor (Lee et al., 2008).
Other members of the SnRK family, SnRK2.4 and SnRK2.6 (Kulik
et al., 2011; Stone, 2014), aswell other kinases involved inABA sig-
naling, including CDPK2, CDPK6, MPK3, and MPK4 (Ichimura
et al., 2000; Lu et al., 2002; Mori et al., 2006; Danquah et al.,
2014), are also known to be targets for ubiquitination (Kim et al.,
2013).

Last but not least, the PYR/PYL/RCAR ABA receptors are
directed to the UPS by the proteins De-etiolated1 (DET1) and
DDB1-associated1 (DDA1), both of which assemble with CUL4-
based E3 Ub ligase (CRL4; Chen et al., 2013; Irigoyen et al.,
2014; Figure 1A). DET1 is known as a central regulator of pho-
tomorphogenesis and thermomorphogenesis (Delker et al., 2014;
Dong et al., 2014; Li et al., 2015; Ly et al., 2015). Very recently,
DET1 was identified as a central repressor of light-induced seed
germination that controls the stability of phytochrome interacting
factor 1 (PIF1) and long hypocotyl in far-red 1 (HFR1) proteins
(Shi et al., 2015). Although it is unclear how DET1 controls the
stability of ABA receptors, DDA1 binds PYL4 and PYL8-9, and
mediates recognition by CRL4. ABA inhibits the degradation of
ABA receptor PYL8 by limiting its polyubiquitination. Neverthe-
less, the exact mechanism of this regulation is unknown (Irigoyen
et al., 2014).

In the context of ABA regulators that are degraded by UPS,
two common factors can be seen. Firstly, some UPS targets
(like protein kinases and transcription factors) require phos-
phorylation for functional activation. In general, this is in line
with the notion that phosphorylation and proteolysis cross-talks
and are essential for ABA signal processing (Liu and Stone,
2010; Stone, 2014). Secondly, some ABA regulators (like ATHB6,
SnRKs, and PYR/PYL/RCAR) are indeed the targets of ABI1
protein phosphatase (Himmelbach et al., 2002; Yoshida et al.,
2006; Lyzenga et al., 2013; Rodrigues et al., 2013; Irigoyen et al.,
2014; Figure 1B). So we might ask: does ABI1 contribute to the
regulatory mechanism?

FIGURE 1 | ABI1 interacts with proteins that are subjected to
UPS-mediated proteolysis. (A) ABI1 interacts with ABA-bound PYL/PYRs,
which inhibits its phosphatase activity. ABI1 downstream targets are therefore
not subjected to degradation. (B) ABI1 interacts with SnRK1.1 and ATHB6,
thereby modifying downstream signaling. SnRK1.1 and ATHB6 are degraded
by CRL4- and CRL3- E3 Ub ligases, respectively. The role of ABI1 in the
regulation of SnRK1.1 and ATHB6 is unknown. CIPK26, which is degraded by
KEG, also interacts with ABI1. It is largely unclear how ABI1 regulates
CIPK26-dependent signaling. (C) ABI1 interacts with ACS6. ABI1-mediated
dephosphorylation targets both proteins for degradation by an unknown E3
Ub ligase. ABI1 also regulates the stability of ACS6 by affecting MPK6 kinase
activity.

Following the recent report on the role of ABI1 in protein
turnover, the answer to this question is positive (Figure 1C).
Ludwików et al. (2014) show that under ozone stress conditions,
type I ACC synthase (ACS) turnover is controlled by ABI1 at
two levels: (i) ABI1 dephosphorylates ACS6 at the C-terminally
located MPK6 target-site, thereby promoting ACS6 degradation;
(ii) ABI1 inhibitsMPK6 activity directly in this waymodifying the
phosphorylation rate of the ACS6 protein. Based on this report we
might hypothesize that ABI1, and possibly more group A PP2Cs,
target and control the turnover of other downstream regulators of
the ABA signaling pathway.

In conclusion, UPS-mediated proteolysis seems to be a promi-
nent mechanism for removing certain dephosphorylated ABA-
signaling elements from the cell. In the context of recent studies on
ABI1 (Figure 1), the negative regulation of ABA signaling byABI1
takes on new meaning: ABI1 resets various signaling pathways
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to pre-stimulatory status by targeting downstream regulators for
degradation by UPS. The future challenge in this research area
undoubtedly lies in the identification of ABA-pathway regulators
that are controlled by the UPS. Finally, another significant task
will be to understand how ABI1 recognizes the protein targets
that must be degraded. We might assume that ABI1 binds a par-
ticular protein motif, whose dephosphorylation leads to destruc-
tion of the target protein; however, currently no such motif is
known. Nevertheless, the interplay between ubiquitination and
phosphorylation has emerged as a key mechanism regulating
protein stability (Yoo et al., 2008; Spoel et al., 2009; He and
Kermode, 2010; Wang et al., 2012; Nguyen et al., 2013; Zhai

et al., 2013). Whether ABI1 recognizes signals that are encoded
in patterns of posttranslational modifications—we are about to
learn.
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