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High relative air humidity (RH ≥ 85%) during growth leads to stomata malfunctioning,
resulting in water stress when plants are transferred to conditions of high evaporative
demand. In this study, we hypothesized that an elevated air movement (MOV) 24 h
per day, during the whole period of leaf development would increase abscisic acid
concentration ([ABA]) enhancing stomatal functioning. Pot rose ‘Toril’ was grown at
moderate (61%) or high (92%) RH combined with a continuous low (0.08 m s−1)
or high (0.92 m s−1) MOV. High MOV reduced stomatal pore length and aperture in
plants developed at high RH. Moreover, stomatal function improved when high MOV-
treated plants were subjected to leaflet desiccation and ABA feeding. Endogenous
concentration of ABA and its metabolites in the leaves was reduced by 35% in high
RH, but contrary to our hypothesis this concentration was not significantly affected by
high MOV. Interestingly, in detached leaflets grown at high RH, high MOV increased
stomatal sensitivity to ABA since the amount of exogenous ABA required to decrease
the transpiration rate was significantly reduced. This is the first study to show that high
MOV increases stomatal functionality in leaves developed at high RH by reducing the
stomatal pore length and aperture and enhancing stomatal sensitivity to ABA rather than
increasing leaf [ABA].

Keywords: abscisic acid, relative air humidity, Rosa × hybrida, stomatal anatomy, stomatal function, vapor
pressure deficit, wind speed

Introduction

Stomatal opening and closing are influenced by environmental factors such as light, temperature,
CO2 concentration, drought, RH and their interactions (Tallman, 2004; Reynolds-Henne et al.

Abbreviations: [ABA], abscisic acid concentration; ABA, abscisic acid; ABA-GE, ABA-glucosyl ester; DPA, dihydrophaseic
acid; FLE, full leaflet expansion; MOV, air movement; PA, phaseic acid; RH, relative air humidity; RWC, relative water
content; VPD, vapor pressure deficit.
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2010; Feller and Vaseva, 2014). Long-term high RH (i.e.,
RH ≥ 85% throughout leaf ontogeny) is regarded as the
environmental factor that mostly disturbs the capacity of stomata
to close in response to water stress and darkness, leading to
uncontrolled water loss (Torre et al., 2003; Rezaei Nejad and
van Meeteren, 2005; In et al., 2006; Fanourakis et al., 2012).
Recent studies have shown that although stomatal anatomy and
density do contribute per se to the increased water loss in leaves
developed at high RH, stomatal physiology is the major cause for
this negative water balance (Fanourakis et al., 2013; Aliniaeifard
et al., 2014). However, the reasons why stomata fail to close fully
during water stress periods in plants grown under long-term high
RH remain unclear.

Stomatal movement is to a large extent regulated by [ABA].
Lower [ABA], associated with higher stomatal aperture during
growth, has been measured in leaves of Tradescantia virginiana
(Rezaei Nejad and van Meeteren, 2007), Vicia faba (Aliniaeifard
et al., 2014), and Rosa × hybrida (Arve et al., 2013; Giday et al.,
2013) developed at high RH (90%) compared to those developed
at moderate RH (60%). The active hormone concentration in the
tissue depends on its biosynthetic and catabolic rates (Nambara
and Marion-Poll, 2005). The major cause of inactivation of
free ABA is oxidation. Free ABA is firstly hydroxylated to
PA, which is reduced to DPA (Cutler and Krochko, 1999;
Nambara and Marion-Poll, 2005). Free ABA is also inactivated
by covalent conjugation with monosaccharides, e.g., ABA-GE,
which is hypothesized to be a storage form of ABA (Cutler
and Krochko, 1999). It has been shown in roses that ABA-GE
is converted to free ABA during the night inducing stomatal
closure (Arve et al., 2013). High RH has been found to
reduce the ABA availability by inactivating the ABA to PA
in Arabidopsis thaliana (Okamoto et al., 2009). Moreover, at
high RH the ABA-GE levels remain high during the night
indicating that the conversion to free ABA does not occur
(Arve et al., 2013).

In higher plants, a thigmomorphogenic response (i.e., touch-
induced morphological change; e.g., wind and rain) is a slow,
intensity-dependent, and saturating systemic response, that
translocates from the stimulated plant regions to the non-
disturbed distal regions (Jaffe, 1976; Beryl and Mitchell, 1977;
Erner et al., 1980). Wind is an environmental factor having
several effects on plants (Grace, 1977; Ennos, 1997), depending
on leaf characteristics and on its speed (Schuepp, 1993; Lambers
et al., 2008). These effects include a reduction of the boundary
layer thickness enhancing gas diffusion (CO2 and H2O; Schuepp,
1993; Lambers et al., 2008). Moreover, wind flow exerts drag
forces causing mechanical stress on plants (Anten et al., 2010)
and high wind speed has been suggested to have a positive
effect on the endogenous [ABA] reducing stomatal aperture
(Whitehead, 1962; Weyers and Hillman, 1979), although this
effect has not yet been quantified. To the best of our knowledge,
the combined effects of high MOV and high RH on plant growth
and development as well as on stomatal functioning have not yet
been properly explored. One of the few studies that investigated
the effect ofMOV (0.08, 0.21, and 0.35m s−1) combined with RH
(70 and 90%) found that increasing wind speed at high RH had
little effect on water loss of detached leaves of cut rose (Mortensen

and Gislerød, 1997). However, the air speed levels used in that
study were relatively low.

Several studies have suggested that stomatal malfunctioning
in high RH-grown plants is strongly related to a long-term low
[ABA] during leaf development as a short-term exogenous ABA
application did not increase stomatal functionality (Rezaei Nejad
and Van Meeteren, 2008; Fanourakis et al., 2011). However, in
those studies exogenous ABAwas applied only on fully developed
leaves. In rose plants it was shown that after full leaf expansion
stomatal function is no longer affected either by RH (when
plants were moved from high to moderate RH) or ABA levels
(Fanourakis et al., 2011). Thus, it remains unclear whether the
lack of stomatal responsiveness to short-term ABA feeding is
due to leaf developmental stage or due to the duration of this
stimulus.

In this study we aimed at understanding the physiological
effect of MOV on stomatal functioning in plants developed under
high RH and whether the stage of leaflet development has an
influence on stomatal sensitivity to ABA. It is our hypothesis that:
(1) high MOV applied 24 h per day during the whole period
of leaf development increases [ABA] improving stomatal closure
in high RH-grown plants; and (2) non-fully developed leaflets
close better their stomata than fully developed ones in response to
exogenous ABA application. Additionally, we aimed at studying
the combined effect of high MOV and high RH on plant growth
and visual quality parameters.

Materials and Methods

Plant Material and Growth Conditions
Rooted cuttings of pot rose cultivar ‘Toril’ (Rosa × hybrida)
were planted in 12 cm (0.66 l) pots containing a standard
fertilized Sphagnum peat (Floralux, Nittedal, Norway). When
the broken buds were 1–1.5 cm long, 56 plants were randomly
distributed over four climate controlled growth cabinets
(length × width × height = 1.5 m × 1.0 m × 2.2 m). Plants
were grown as single shoot, one plant per pot. During the
cultivation period, the RH was 61 ± 3% (moderate RH) in two
growth cabinets and 92 ± 2% (high RH) in the other two. In
two growth cabinets (one per RH level), two fans (HT – 112
E, Honeywell, Lausanne, Switzerland) were located equidistant
(70 cm) from the 14 plants that were placed in a semi-circle
side by side, and were on during 24 h per day. Plants were
rotated 90◦ daily in the horizontal plane to ensure that exposure
to high MOV was similar in all directions (Anten et al., 2010).
In the cabinets without fans (i.e., with no additional MOV)
the plants were distributed similarly and were also rotated. An
ultrasonic anemometer (Ultrasonic anemometer, Model 81000,
Young, Traverse City, MI, USA) registered automatically the
three dimensional air velocity and turbulence intensity (i.e., the
percentage value calculated as the standard deviation of the
fluctuations of the air velocity divided by the mean wind velocity)
at plant level. Although traditionally the air speed is measured as
the air flow in a specified direction (Downs and Krizek, 1997),
in a closed environment, such as the one used in this study,
the deflections of a high MOV on the cabinet’s wall amplify the
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MOV making the flow regime more turbulent than in the open
field. Thus, under such environment, turbulence intensity should
also be quantified. In our study, we guaranteed that plants were
subjected to a strong mechanical stimuli because in addition to
their visible continuous strong waving, the measured turbulence
intensity ranged between 92 and 240% with an average of 142%,
which is 5.7-fold higher compared to that registered in standard
growth cabinets (Downs and Krizek, 1997). The air velocity in
the high MOV-treated plants was 0.92 ± 0.03 m s−1, being
2.6-fold higher as compared to the maximum level applied by
Mortensen and Gislerød (1997). In the absence of additional
MOV the measured air velocity at plant level was 0.08 m s−1.
Temperature was 21 ± 0.5◦C (day and night), resulting in VPD
of 0.97 ± 0.03 kPa (moderate RH) and 0.20 ± 0.01 kPa (high
RH). The CO2 concentration was 400 ± 50 µmol mol−1 and
high pressure sodium lamps (Plantastar 400W, Osram, Münich,
Germany) provided 20 h photoperiod of 160± 10µmol m−2 s−1

photosynthetic active radiation (Li-250 Light Meter, LI-COR,
Lincoln, NE, USA). Climate data were recorded automatically
every 5 min (Priva, De Lier, The Netherlands). Plants were
watered daily until draining with a nutrient solution (Arve et al.,
2013). The pH and EC levels of the nutrient solution were 5.7 and
1.75 dS m−1, respectively.

Plant Growth and Plant Transpiration Rate
The effects of MOV and RH on plant growth and visual
quality parameters were evaluated in fully developed plants
(i.e., flower bud with cylindrical shape and pointed tip). Total
plant dry weight (stem, leaves, and flower), leaf area, plant
height, number of internodes, average internode length, peduncle
length and diameter, flower dry weight and time to flowering
(number of days from planting till full developed plant) were
assessed in fourteen plants per treatment. Moreover, plant
transpiration rate during the light and the dark periods were
measured gravimetrically during three consecutive days using
fully developed plants. Plants were watered until container
capacity and pots were wrapped into impermeable plastic bags
to avoid evaporation from the substrate. During this period
the weight of seven plants per treatment was recorded at the
beginning of the light and dark periods (Model PG503DR Delta
Range, Mettler-Toledo, Greifensee, Switzerland). At the end
of the 3-days period total leaf area per plant was measured
using a leaf area meter (Model 3100 Area Meter, LI-COR,
Lincoln, NE, USA) to calculate transpiration rate per unit leaf
area.

Stomatal Characteristics and Leaf Surface
Morphology
Stomatal density, index, length, width, pore length and pore
aperture were analyzed in one of the two uppermost lateral
leaflets from the first fully expanded penta-foliated leaf.
Epidermal impressions were made by Suzuki’s Universal Micro-
Printing (SUMP) method using SUMP liquid 1 and SUMP plate
B (SUMP Laboratory, Tokyo, Japan) as described by Tanaka et al.
(2005). Samples were taken from the abaxial side of intact leaflets,
midway between the tip and the base, away from the edge and
avoiding veins, 4 h after the light period started. The imprints

were observed under a light microscope (Eclipse 55i, Nikon,
Tokyo, Japan) and stomatal images were obtained with a 5.24
megapixel camera (DS-Fi1, Nikon, Tokyo, Japan). To quantify
stomatal density and index a magnification of 100×was used and
70 images per treatment were analyzed. The stomatal index was
calculated according to Eq. 1 (Salisbury, 1927).

Stomatal index = stomatal density
stomatal density + epidermal cell density

× 100 (1)

To measure stomatal and pore size, a magnification of 400×
was used and 140 stomata per treatment were evaluated. Image
analysis was performed using the UTHSCSA ImageTool for
windows version 3.00 (The University of Texas Health Science
Center at San Antonio, San Antonio, TX, USA).

To study leaf surface morphology (namely stomatal deepness,
i.e., the deepness of stomatal insertion in the leaf epidermis,
and leaf epidermal cells shape/undulation) 0.5 cm × 0.5 cm
leaf sections excised close to the midrib, midway between the
tip and the base, away from the edge and avoiding veins were
observed under a scanning electron microscope (Zeiss EVO –
50 – EP, Carl Zeiss SMT Ltd., Cambridge, UK). Samples were
fixed in 1.25% glutaraldehyde and 2% paraformaldehyde in
0.05 M PIPES buffer, pH 7.2, and kept in PIPES buffer (0.1 M,
pH 7). After fixation, samples were dried by the use of a critical
point dryer (Bal-Tec CPD 030, Bal-Tec AG, Balzers, Germany)
with dehydration series of 70, 90, 96, and 100% ethanol. Samples
were mounted on aluminum stubs and coated in a sputter
coater (Polaron SC 7640, Quorum Technologies Ltd., Ringmer,
East Sussex, UK). Four biological replicates per treatment were
analyzed.

Stomatal Responsiveness to Leaflet
Desiccation
Stomatal responsiveness to leaflet desiccation (i.e., stomatal
closing stimulus) was evaluated by determining the transpiration
rate and RWC in detached terminal leaflets. Determination of
the transpiration rate by gravimetry is an adequate quantitative
description of the stomatal functionality as demonstrated by
Rezaei Nejad and van Meeteren (2005). This simple procedure
has been thoroughly used in this type of studies (Rezaei
Nejad and van Meeteren, 2005; Giday et al., 2013; Fanourakis
et al., 2015) due to its effectiveness under conditions of low
stomatal conductance, e.g., excessively desiccated leaflets (i.e.,
RWC < 20%), which fall below the detection limit of the
porometer. Fully developed leaflets (first penta-foliated, counting
from the apex) were detached from the plants and their petioles
were recut under MilliQ-water to avoid cavitation-induced
embolism. To establish leaflet saturated fresh weight, leaflets
were placed with their petioles in a vial with MilliQ-water and
were incubated in light (11.2 ± 0.2 µmol m−2 s−1; Philips
TL 58W, color 84) for 1 h at about 100% RH (23.7 ± 1.3◦C;
VPD close to 0; Fanourakis et al., 2011). Because leaflets were
detached from the plants at the beginning of the light period,
the rehydration was also conducted in light, since following
darkness the light-induced stomatal opening might require up
to 1 h (Blom-Zandstra et al., 1995; Drake et al., 2013). After
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rehydration, petioles were removed from the water and leaflets
were allowed to desiccate under constant conditions [abaxial
surface down; 1.68 kPa VPD (42.7 ± 7.3% RH, 23.7 ± 1.3◦C) and
11.2 ± 0.2 µmol m−2 s−1 light intensity]. Leaflets were weighted
every 5–30 min for 4 h. Leaflet area, dry weight (24 h at 70◦C)
and transpiration rate were determined, and RWCwas calculated
using Eq. 2 (Slavík, 1974). One leaflet per plant was evaluated (14
plants per treatment).

RWC = fresh weight − dry weight
saturated freshweight − dryweight

× 100 (2)

Endogenous ABA Quantification
Fully developed tri-foliated leaves (just above the first penta-
foliated) were sampled 5 h after the beginning of the light period,
immediately frozen in liquid nitrogen and stored at −80◦C till
analysis. Two composite samples (each with seven biological
replicates) per treatment were evaluated.

Chemicals and Calibration Curves
Standard ABA-catabolites (PA, DPA, ABA-GE, 7′-OH-ABA,
neoPA, and trans-ABA), deuterated forms of ABA-catabolites
used as internal standards (i.e., d3-DPA, d5-ABA-GE, d3-
PA, d4-7′-OH-ABA, d3-neoPA, d4-ABA, and d4-trans-ABA)
according to Abrams et al. (2003) and Zaharia et al. (2005)
and the deuterated forms of the selected compounds used
as recovery standards (i.e., d6-ABA and d2-ABA-GE), were
synthesized and prepared at the National Research Council
of Canada (NRCC, Saskatoon, SK, Canada). Cis-ABA was
purchased from Sigma-Aldrich (Sigma Chemicals, St. Louis,
MO, USA).

Extraction and Purification
Samples were freeze dried and homogenized before analysis.
A 100 µL aliquot containing the deuterated internal standards,
each at a concentration of 0.2 pg µL−1, was added to ∼50 mg
of homogenized plant tissue; 3 mL of isopropanol:water:glacial
acetic acid (80:19:1, v/v/v) was added and the samples were
agitated in the dark for 24 h at 4◦C. Samples were then
centrifuged and the supernatant was isolated and dried on a
Büchi Syncore Polyvap (Büchi, Flawil, Switzerland). Samples
were reconstituted in 100µL acidifiedmethanol, adjusted to 1mL
with acidified water, and then partitioned against 2 mL hexane.
After 30 min, the aqueous layer was isolated and dried as above.
Dry samples were reconstituted in 100 µL acidified methanol
and adjusted to 1 mL with acidified water. The reconstituted
samples were loaded onto equilibrated Oasis HLB cartridges
(Waters, Mississauga, ON, Canada), washed with acidified water
and eluted with acetonitrile:water:glacial acetic acid (30:69:1,
v/v/v). The eluate was then dried on a LABCONCO centrivap
concentrator (Labconco Corporation, Kansas City, MO, USA).
An internal standard blank was prepared with 100 µL of the
deuterated internal standards mixture. Quality control (QC)
standards were prepared by adding 100 and 30 µL (separately)
of a mixture containing the analytes of interest, each at a
concentration of 0.2 pg µL−1 to 100 µL of the internal standard
mix. Finally, samples, blanks, and QCs were reconstituted

in an aqueous solution of 40% methanol (v/v), containing
0.5% acetic acid and 0.1 pg µL−1 of each of the recovery
standards.

Hormone Quantification by HPLC-ESI-MS/MS
The samples were subjected to HPLC-ESI-MS/MS analysis and
quantification (Ross et al., 2004). Samples were injected onto
an ACQUITY UPLC HSS C18 column (2.1 mm × 100 mm,
1.8 µm) with an ACQUITY HSS C18 VanGuard Pre-
column (2.1 mm × 5 mm, 1.8 µm) and separated by
a gradient elution of water containing 0.025% acetic acid
against an increasing percentage of acetonitrile containing
0.025% acetic acid. Briefly, the analysis utilizes the multiple
reaction monitoring (MRM) function of the MassLynx v4.1
(Waters, Inc.) control software. The resulting chromatographic
traces are quantified off-line by the QuanLynx v4.1 software
(Waters, Inc.) wherein each trace is integrated and the
resulting ratio of signals (non-deuterated/internal standard)
is compared with a previously constructed calibration curve
to yield the amount of analyte present (ng per sample).
Calibration curves were generated from the MRM signals
obtained from standard solutions based on the ratio of the
chromatographic peak area for each analyte to that of the
corresponding internal standard, as described by Ross et al.
(2004). The QC samples, internal standard blanks and solvent
blanks were also prepared and analyzed along each batch of tissue
samples.

Stomatal Responsiveness to ABA Feeding
through the Transpiration Stream
Stomatal responsiveness to exogenous ABA feeding (i.e., stomatal
closing stimulus) through the transpiration stream was evaluated
in detached terminal leaflets in two stages of expansion: 100%
FLE and 70–80% FLE. The percentage of FLE was defined
as the proportion of leaflet length at harvest relative to its
final length (i.e., when the midrib stopped elongating for three
consecutive days; Fanourakis et al., 2011). Terminal leaflets
from the second penta-foliated leaves were used as 100% FLE
samples. The developmental stage of the terminal leaflet from
the third penta-foliated leaf (intended to be 70–80% of the FLE)
was estimated based on its length and the elongation curve
of the terminal leaflet from the fourth penta-foliated leaf, of
which its length was recorded daily from unfolding till 100%
FLE. Leaflet detachment and rehydration were conducted as
described above for evaluation of the stomatal responsiveness to
desiccation. After 30 min of rehydration in vials with MilliQ-
water, leaflets were transferred to a vial with 0 or 100 µM
(±) ABA solution (Sigma, St. Louis, MO, USA) and were
weighted every 5–10 min during 150 min. At the end, leaflet
area was measured and transpiration rate was calculated. ABA
intake was calculated as the product of leaflet transpiration
rate and the concentration of the feeding solution (Fanourakis
et al., 2013). The changes in transpiration rate in response
to ABA showed the features of a dose-response curve (ABA
intake was considered as the dose), and was fitted with a four
parameter logistic model as described by Giday et al. (2013).
The model fitting (Eq. 3) was performed using GraphPad Prism
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(version 6.00 for Windows, GraphPad Software, San Diego,
CA, USA).

Transpiration rate = minimum value +
(maximum value − minimum value)

(1 + 10∧((LogEC50 − ABA intake) × hill slope)

(3)

In Eq. 3, the coefficients maximum and minimum values
correspond to the transpiration rate before (t = 0) and after
(t = 2.5 h) ABA feeding, respectively. EC50 describes the amount
of ABA required to reduce the transpiration half-way between
its maximum and minimum values. Hill slope represents the
steepness of the curve. One leaflet per plant was evaluated from
five or six plants per treatment.

Statistical Design and Analysis
The experimental set-up was a 2 by 2 factorial design and
the experiment was repeated once. Analysis of variance was
conducted, considering individual plants as experimental units.
Main effects and interactions were tested at P = 0.05. When
relevant, Fisher’s least significant difference (LSD) at P= 0.05 was
calculated to separate interaction means. The Genstat software
(15th Edition; VSN International Ltd., Herts, UK) was used for
the analysis.

Results

Plant Growth, Visual Quality, and Plant
Transpiration Rate
The only significant effect of MOV on plant growth and visual
quality parameters was a 6% increase on peduncle diameter
(P= 0.022;Table 1). High RH during growth did not significantly
affect total dry weight (P = 0.174), total leaf area (P = 0.446),
number of internodes (P = 0.250), or time to flowering
(P = 0.480). However, it significantly increased plant height
(P < 0.001), resulting in 9% taller plants, longer peduncle
length (12%; P < 0.001) and higher average internode length
(6%; P = 0.010; Table 1). Additionally, flower dry weight and
peduncle diameter were significantly reduced in high RH-grown
plants: 13% (P = 0.002) and 12% (P < 0.001), respectively
(Table 1).

The effect of MOV on plant transpiration rate at growth
conditions depended on the RH level (Figure 1). At growth
conditions during the light period, high MOV increased the
transpiration rate by 12% in intact plants grown at moderate
RH, while it was decreased by 17% in high RH-grown plants
(P < 0.001; Figure 1A). The same trend was observed in the dark
period where high MOV increased the transpiration rate by 57%
in moderate RH-grown plants, whereas the transpiration rate was
19% lower in high RH-grown plants (P < 0.001; Figure 1B).
In all treatments, darkness led to a lower transpiration rate, but
this reduction was stronger in plants grown at moderate (84%)
than at high RH (56%). Moreover, there was no MOV effect on
the transpiration rate reduction in response to darkness. These
results indicate that stomatal response to darkness is lower in

TABLE 1 | Plant growth and visual quality parameters in fully developed
plants (i.e., flower bud with cylindrical shape and pointed tip) of pot rose
cv. Toril grown at moderate (61%) or high (92%) RH without (−MOV) or
with (+MOV) additional MOV.

RH −MOV +MOV Mean

Total dry weight (g) 61% 6.4 6.5 6.5

92% 6.9 7.0 6.9

Mean 6.6 6.8

Total leaf area (cm2 ) 61% 545.9 572.5 559.2

92% 538.6 535.8 537.2

Mean 542.2 554.1

Plant height (cm) 61% 34.3 35.2 34.8a

92% 37.3 38.2 37.8b

Mean 35.8 36.7

Number of internodes 61% 11.7 11.9 11.8

92% 11.9 12.6 12.3

Mean 11.8 12.3

Average internode length (cm) 61% 2.2 2.2 2.2a

92% 2.4 2.3 2.3b

Mean 2.3 2.3

Peduncle length (cm) 61% 5.4 5.4 5.4a

92% 6.0 6.1 6.1b

Mean 5.7 5.8

Peduncle diameter (mm) 61% 4.1 4.5 4.3b

92% 3.7 3.8 3.8a

Mean 3.9a 4.2b

Flower dry weight (g) 61% 1.8 2.0 1.9b

92% 1.7 1.7 1.7a

Mean 1.8 1.9

Time to flowering (days) 61% 31.4 31.3 31.4

92% 30.5 31.6 31.1

Mean 31.0 31.5

Different letters indicate significant differences according to Fisher’s LSD test
(P = 0.05).

high RH-grown plants compared to moderate RH-grown plants
and that high MOV did not improve the dark-induced stomatal
closure.

Stomatal Physiology and Morphology
Desiccated leaves from moderate RH-grown plants showed
lower transpiration rates, irrespective of MOV, when compared
to leaflets from plants developed at high RH (Figure 2A).
Leaflets grown under high RH with or without additional
MOV had a similar initial transpiration rate, but stomata from
high MOV leaflets closed faster in response to leaf desiccation
(Figure 2B). This resulted in a RWC after 4 h of desiccation
twofold higher in high RH-grown plants with high MOV as
compared to high RH-grown plants without additional MOV
(Figure 2C).

High MOV reduced the pore aperture by 16% (P = 0.002)
and the pore length by 6% (P = 0.022) in stomata developed
at high RH, while there was no significant effect on stomata
developed at moderate RH (Table 2). Moreover, MOV had
no significant effect on stomatal density (P = 0.060), index
(P = 0.719), length (P = 0.189) and width (P = 0.970),
but increasing the RH significantly increased these
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FIGURE 1 | Transpiration rate in intact plants during light (A) and dark (B)
period in pot rose cv. ‘Toril’ grown at moderate (61%) or high (92%) RH,
without (open columns) and with (solid columns) additional MOV.
Measurements were conducted throughout three consecutive days in fully

grown plants, starting when the flower bud had cylindrical shape and pointed
tip. Values are the mean of 14 intact plants and bars represent the SEM.
Different letters indicate significant differences according to Fisher’s LSD test
(P = 0.05).

TABLE 2 | Stomatal characteristics of pot rose cv. ‘Toril’ grown at moderate (61%) or high (92%) RH, without (−MOV) or with (+MOV) additional MOV in
intact fully expanded leaves, 4 h after the beginning of the light period.

Moderate RH High RH

−MOV +MOV Mean −MOV +MOV Mean

Stomatal density (no mm−2) 57.2 55.8 56.5a 59.8 57.8 58.8b

Stomatal index (%) 12.4 12.4 12.4a 13.9 14.0 14.0b

Stomatal length (µm) 27.4 26.8 27.1a 32.6 32.4 32.5b

Stomatal width (µm) 15.4 15.5 15.4a 19.6 19.5 19.5b

Pore length (µm) 17.3a 17.2a 17.2 24.5c 23.1b 23.8

Pore aperture (µm) 3.4a 3.2a 3.3 6.8c 5.7b 6.2

Values are the mean of 70 field views (stomatal density and index) and 140 stomata (stomatal length and width, pore length and aperture). Different letters represent
significant differences according to Fisher’s LSD test (P = 0.05; comparison in rows).

features by 4, 13, 20, and 26% (P < 0.001), respectively
(Table 2).

Exposure to high MOV did not induce visual morphological
changes on the leaf epidermal cells (e.g., shape or undulations)
neither on the adaxial (data not shown) nor on the abaxial
surfaces (Figure 3). Additionally, high MOV did not visually
affect stomatal deepness i.e., how deep the stomata are
inserted in the leaf epidermis. However, a clear increase in
stomatal size at high RH, already described above, was also
apparent when analyzing leaf surface using the scanning electron
microscope.

Stomatal Responsiveness to ABA
Abscisic acid and its metabolites (PA, DPA, ABA-GE, 7′OH-
ABA, neoPA, trans-ABA, and cis-ABA) were quantified in fully
developed leaves. In all treatments, the levels of 7′OH-ABA,
neoPA, trans-ABA, and cis-ABA were very low (data not
shown), hence, they have only been included in the combined
amount of ABA and its metabolites when quantification
was possible. High RH reduced the concentrations of ABA
by 52% (P = 0.005; Figure 4A), PA by 46% (P = 0.008;
Figure 4B), DPA by 48% (P = 0.004; Figure 4C), ABA-GE
by 23% (P = 0.184; Figure 4D) and the combination of

ABA and its metabolites by 35% (P = 0.013; Figure 4E).
High MOV did not significantly affect the concentration of
ABA (P = 0.764, Figure 4F), PA (P = 0.224, Figure 4G),
DPA (P = 0.234, Figure 4H), ABA-GE (P = 0.488,
Figure 4I), or combined ABA and its metabolites (P = 0.671,
Figure 4J).

In fully developed leaflets (100% FLE) there was a significant
interaction between RH and MOV (P = 0.028; Table 3). When
these leaves were grown at high RH, high MOV reduced by
48% the EC50, while it was not significantly affected in moderate
RH-grown plants. In non-fully developed leaflets (70–80% FLE)
grown at high RH without MOV stomatal response to ABA
feeding was practically absent (i.e., the stomatal remained open
with no reduction in the transpiration rate), making it impossible
to determine the EC50 (Table 3). However, high RH-grown plants
with high MOV showed an EC50 of 0.431, which was about
2.3 times higher than the one observed in moderate RH-grown
plants (Table 3). In moderate RH-grown plants, MOV did not
affect EC50 (Table 3). EC50 was not significantly different when
comparing non-fully developed leaflets with fully developed
leaflets (moderate RH without MOV, P = 0.060; moderate RH
with high MOV, P = 0.064; high RH with MOV, P = 0.592;
Table 3).
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FIGURE 2 | Transpiration rate as a function of time of desiccation (A)
and as a function of RWC (B) during 4 h of leaflet desiccation. RWC
after 4 h of leaflet desiccation (C). All measurements were conducted in pot
rose cv. ‘Toril’ grown at moderate (61%; circles) or high (92%; squares) RH,
without (open symbols) or with (solid symbols) additional MOV. Values are the
mean of 28 detached leaflets and bars represent SEM. Different letters
indicate significant differences according to Fisher’s LSD test (P = 0.05).

Discussion

Effects of MOV and RH on Plant Transpiration
Rate
It is well-known that high wind-speed reduces leaf boundary
layer, which results in enhanced transpiration rate (Schuepp,
1993; Lambers et al., 2008). Thus, the increased transpiration
rate found in intact plants grown under moderate RH and
subjected to high MOV can possibly be explained by the
reduction of the leaf boundary layer (Mortensen and Gislerød,
1997; Anten et al., 2010). Nevertheless, at high RH the saturated
air present on the leaf boundary layer (nearly 100% RH) was
replaced also by very moist air existing in the growth cabinets
(92 ± 2%), which explains why high MOV did not increase the
transpiration rate also under high RH levels (Mortensen and
Gislerød, 1997). Actually, in these plants, the lower stomatal pore
dimensions (Table 2) might have contributed to their reduced
plants transpiration rate (Figure 1), via a reduction in the total
transpiration area.

Effects of MOV and RH on the Stomatal
Responsiveness to Closing Stimuli
In Arabidopsis the cuticle wax deposition contributes to enhance
the water loss tolerance (Seo et al., 2011; Yang et al., 2011;
Zhu et al., 2014). However, in R. hybrida, the cuticle has a
minor contribution to the total leaf water loss while an increase
in the leaf transpiration rate seems to largely reflect a higher
stomatal pore area per leaf area (Fanourakis et al., 2013). Long-
term high RH is known to decrease stomatal responsiveness
to closing stimuli leading to high transpiration rate and lower
RWC upon desiccation (Torre et al., 2003; Rezaei Nejad and van
Meeteren, 2005) and darkness (Arve et al., 2013; Fanourakis et al.,
2013). Our results confirm those findings (Figures 1 and 2) and
demonstrated for the first time thatMOV is effective in increasing
stomatal responsiveness to desiccation in high RH-grown leaflets,
resulting in a twofold higher RWC as compared to leaflets
without additional MOV (Figure 2C). In spite of the improved
stomatal functioning in high RH-grown leaflets subjected to
MOV compared to still air, the RWC of the former was still far
below the one of moderate RH-grown plants (Figures 2A,B).
This can be partly explained by their initial higher transpiration
rate contributing to a large water loss in the first phase of leaflet
desiccation, before the stomata trigger the closure response.

Abscisic acid is a very important hormone inducing stomatal
closure under different abiotic stress conditions (Xiong et al.,
2002; Davies et al., 2005; Schachtman and Goodger, 2008). Unlike
our hypothesis, it was found that despite the increased stomatal
responsiveness to desiccation in high RH-grown plants subjected
to high MOV (Figure 2), this did not significantly increase
the endogenous [ABA] and its metabolites in the bulk leaves
(Figures 4F–J). Other reasons such as (1) perception and/or
sensitivity of ABA receptors (Anderson et al., 1994; Schwartz
et al., 1994) which may differ in fully expanded and in expanding
leaves and (2) [ABA] in the guard cells (Harris and Outlaw,
1991) might also be involved in stomatal closure. High MOV
decreased the required amount of exogenous ABA to reduce in
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FIGURE 3 | Morphology of the abaxial leaf surface in pot rose cv. ‘Toril’ grown at moderate (61%; A,B) or high (92%; C,D) RH combined with no
additional MOV (A,C) or with additional MOV (+MOV; B,D). Images were obtained by scanning electron microscope.

FIGURE 4 | Effect of moderate (61%; open columns) and high (92%;
solid columns) RH (A–E), combined with no additional MOV (light gray
columns) or with additional MOV (gray columns; F–J) on the levels
(µg g-1 DW) of ABA (A,F), PA (B,G), DPA (C,H), ABA-GE (D,I) and total
concentration of ABA and its metabolites (E,J) in leaves of rose plants
cv. ‘Toril.’ Sampling occurred 5 h after the beginning of the light period. Each
sample consisted of a composite of seven leaflets from seven biological
replicates. Values are the mean of two biological repeats and bars represent
the SEM. Different letters indicate significant differences according to Fisher’s
LSD test (P = 0.05).

50% the half-maximal effective concentration (EC50) in detached
fully expanded leaflets grown at high RH (Table 3). Although
in Arabidopsis, Aliniaeifard and van Meeteren (2014) did not
find a correlation between stomatal responsiveness to desiccation
and stomatal sensitivity to ABA, our results suggest that in
high RH-grown plants, high MOV increased stomatal tolerance
to desiccation due to increased stomatal sensitivity to ABA,
rather than an increase in the leaf [ABA]. Pantin et al. (2013)
suggested that stomatal sensitivity to ABA is related to the leaf
developmental stage in A. thaliana. Here we found no difference
in the stomatal responsiveness to ABA feeding between leaf
developmental stages (Table 3) indicating that even non-fully
mature stomata grown at high RH do not respond to a short-term
ABA application.

TABLE 3 | Abscisic acid intake required to reduce the transpiration rate to
half-way (50%) between the maximum and minimum values (EC50) in fully
developed leaflets (100% FLE) and non-fully developed leaflets (70–80%
FLE) of pot rose cv. Toril grown at moderate (61%) or high (92%) RH,
without (−MOV) or with (+MOV) additional MOV.

Leaf developmental
stage (% FLE)

Moderate RH High RH

100% −MOV 0.121a 0.758c

+MOV 0.106a 0.395b

70–80% −MOV 0.212a ∗

+MOV 0.169a 0.431b

Abscisic acid feeding (100 µM) through the leaflet petiole lasted for 150 min.
Values are the mean of five detached leaflets. Different letters indicate significant
differences according to Fisher’s LSD test (P = 0.05; comparison within leaf
developmental stage).
*In high RH (92%) without additional MOV the stomatal response to ABA was
practically absent, making it impossible to determine the EC50.
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Concerning the effect of high RH on the free [ABA], ‘Toril’
reduced by 35% the concentration of ABA and its metabolites
(Figure 4E). These findings are in agreement with Giday et al.
(2013) who found a 25–35% decrease in the [ABA] in the sensitive
cultivars. Similarly, the concentrations of the metabolites PA
(Figure 4B) and DPA (Figure 4C) followed the pattern of ABA
(Figure 4A). Arve et al. (2013) described the same tendency and
suggested that low PA and DPA levels seem to be a result of low
ABA levels at high RH and a constant inactivation rate of ABA to
PA and consequently to DPA.

Effects of MOV and RH on Stomatal Anatomy
and Plant Morphology
The absence of high MOV effect in most of the stomatal
anatomical features and in the leaf ultrastructure (Table 2 and
Figure 3) is in contrast with a previous study in Picea sitchensis
and Pinus sylvestris (van Gardingen et al., 1991) which described
modifications on the leaf surface in plants grown under high
MOV (11 m s−1). This might indicate that different species,
with contrasting leaf morphology, respond differently to MOV
but it can also be due to the extremely high MOV intensity
applied to those trees as compared to the MOV used in this study.
Stomatal density and index were significantly increased at high
RH, but according to Fanourakis et al. (2013) this effect seems
to be cultivar dependent. Moreover, our study confirmed that a
sensitive cultivar (‘Toril’) responds to high RH enhancing their
stomatal and pore dimensions (Table 2), as previously reported
for other sensitive rose cultivars (Torre et al., 2003; Arve et al.,
2013; Fanourakis et al., 2013; Giday et al., 2013). In contrast,
high RH did not affect the leaf ultrastructure (Figure 3) and
it had only a minor effect on plant growth and visual quality
parameters (Table 1), which is in agreement with previous studies
(Mortensen and Gislerød, 1997; Torre and Fjeld, 2001; Torre
et al., 2003). The thinner peduncles observed in high-RH grown
plants can partly contribute to the higher incidence of bent-
neck symptoms during post-harvest, which is typically found
in plants developed at high RH (Fanourakis et al., 2012). Here,
we show that this positive effect of MOV on peduncle diameter
(Table 1) might partly reduce the bent-neck incidence in high
RH-grown plants. Mortensen and Gislerød (1997) also reported
little effect of MOV on plant height, no effect on total dry

weight but an increased time to flowering. It is concluded that
unlike MOV, high RH has a strong effect on stomatal anatomy
in R. hybrida, whereas leaf surface morphology as well as plant
growth and visual quality parameters are not affected by either
RH of MOV, evidencing that rose plants seem to be well-adapted
to high MOV.

Conclusion

The current work shows for the first time that high MOV
during leaf development improves stomatal functioning of leaves
developed at high RH. Unlike our hypothesis, we have shown
that this is due to an increased sensitivity to ABA (evidenced
by a lower transpiration rate in leaflets fed with exogenous
ABA) and reduced stomatal pore length and aperture rather
than an increase in the leaf [ABA] or in the concentration
of its metabolites. Finally, in this study we showed that leaf
developmental stage had no effect in the stomatal responsiveness
to ABA feeding demonstrating that even non-fully mature
stomata grown at high RH do not respond to a short-term ABA
application.
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