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Plants are exposed to many different microbes in their habitats. These microbes may
be benign or pathogenic, but in some cases they are beneficial for the host. The
rhizosphere provides an especially rich palette for colonization by beneficial (associative
and symbiotic) microorganisms, which raises the question as to how roots can
distinguish such ‘friends’ from possible ‘foes’ (i.e., pathogens). Plants possess an innate
immune system that can recognize pathogens, through an arsenal of protein receptors,
including receptor-like kinases (RLKs) and receptor-like proteins (RLPs) located at the
plasma membrane. In addition, the plant host has intracellular receptors (so called
NBS-LRR proteins or R proteins) that directly or indirectly recognize molecules released
by microbes into the plant cell. A successful cooperation between legume plants and
rhizobia leads to beneficial symbiotic interaction. The key rhizobial, symbiotic signaling
molecules [lipo-chitooligosaccharide Nod factors (NF)] are perceived by the host legume
plant using lysin motif-domain containing RLKs. Perception of the symbiotic NFs trigger
signaling cascades leading to bacterial infection and accommodation of the symbiont
in a newly formed root organ, the nodule, resulting in a nitrogen-fixing root nodule
symbiosis. The net result of this symbiosis is the intracellular colonization of the plant
with thousands of bacteria; a process that seems to occur in spite of the immune ability
of plants to prevent pathogen infection. In this review, we discuss the potential of the
invading rhizobial symbiont to actively avoid this innate immune response, as well as
specific examples of where the plant immune response may modulate rhizobial infection
and host range.
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Introduction

The root nodule symbiosis (RNS) is one of the most fascinating, yet not completely
understood beneficial host–microbe interactions. RNS is limited to the FaFaCuRo (Fabales,
Fagales, Cucurbitales, and Rosales) clade that belongs to Eurosid I plants (Kistner and
Parniske, 2002). Under nitrogen limiting conditions, many legume plants are infected by
nitrogen-fixing soil bacteria, termed rhizobia. Subsequent to an initial signal exchange
between host and symbiont, the bacteria enter the host root usually through epidermal
root hair cells. An infection thread (IT) of plant origin is formed that extends and
eventually delivers the rhizobia into newly dividing cortical cells. These cells give rise
to a nodule primordium that develops into the nodule, a new root organ. In the
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nodule, bacteria differentiate into bacteroids, the nitrogen-fixing
form of rhizobia, which reduces atmospheric dinitrogen into
ammonia that is used by the host plant. In exchange, the bacteria
receive a steady carbon source provided by plant photosynthesis.

Although the first observation of legume nodulation was
reported a few 100 years ago, we still do not fully understand
the underlying mechanisms that maintain a perfect balance
between host and symbiont to allow such an intimate symbiosis
to develop. Among the exciting new findings is a growing
recognition that the plant immune system is active during RNS.
In this review, we will point out recent observations to indicate
when and how the host plant immune system acts to control
nodule formation and host range.

Rhizobia are Part of a Diverse and Active
Rhizosphere Microbiota
In the soil, there is an extremely large population of
microorganisms that keep the soil ecosystem functioning.
For instance, a metagenomics study of the Arabidopsis thaliana
rhizosphere revealed 43 bacterial phyla and divisions (Bulgarelli
et al., 2012). Microorganisms of the rhizosphere (part of the
soil directly surrounding and impacted by the root) interact
with the roots, providing nutrients and protection against biotic
and abiotic stress. Specific rhizosphere microbes also have the
ability to enter the root and become inter- or intracellular
inhabitants, sometimes contributing to plant growth and
development (Bulgarelli et al., 2012; Lundberg et al., 2012). Given
the diversity of rhizosphere microbes and the potential threat
for the plant, it is not surprising that plants have the ability to
distinguish threatening intruders (i.e., pathogens) from beneficial
microbiota.

Hundreds of different microorganisms are attached to the
surface of a root. Leguminous plants under nitrogen limiting
conditions secrete secondary metabolites (e.g., flavonoids) that
can signal to and recruit compatible, symbiotic rhizobia (Oldroyd
et al., 2011). Specific flavonoids act as inducers of the rhizobial
nodulation genes, which encode the enzymes needed for
synthesis of the lipo-chitooligosaccharide (LCO) nodulation
factor [Nod factors (NF)], the key rhizobial signaling molecule
that elicits the first plant responses in establishing RNS (Fisher
and Long, 1992).

Parallels between Symbiont- and
Pathogen-Triggered Responses
The term ‘microbe-associated molecular pattern’ (MAMP) is
used for specific recognition signatures found in conserved
molecules [e.g., bacterial flagellin, cell wall components like
lipopolysaccharide, chitin and peptidoglycan (PGN)] derived
from microbes, usually pathogens that infect both plants and
animals (Ausubel, 2005). MAMPs are characterized by their
ability to induce an innate immune response in the host.
Therefore, NF is usually not considered a MAMP since it induces
nodule formation on the host, as opposed to inducing immunity.
However, NF can induce some responses that are normally
associated with plant innate immunity (Day et al., 2001; Ramu
et al., 2002; Pauly et al., 2006). This is perhaps not surprising since
longer chain chitin oligomers (degree of polymerization > 6) are

strong inducers of plant innate immunity (Liang et al., 2014).
Unlike simple chitin, NF is a LCO molecule comprised of an
N-acetylglucosamine backbone with site-specific decorations and
an N-acyl chain (D’Haeze and Holsters, 2002). The addition of
very low concentrations of NF (<10 nM) was shown to induce
a variety of responses on the compatible legume hosts. These
include plasma membrane depolarization, perinuclear calcium
spiking, cytoskeletal changes, root hair deformation, induction
and repression of gene expression and, in a few plant species,
induction of nodule primordia (D’Haeze and Holsters, 2002;
Oldroyd and Downie, 2008).

Responses elicited by MAMP perception have been well-
studied in many plants (De Coninck et al., 2015). These
include generation of reactive oxygen species (ROS), cytosolic
Ca2+ elevations, activation of mitogen-activated protein kinase
(MAPK) and calcium-dependent kinases, callose deposition
and defense-related gene expression (Boller and Felix, 2009;
Greeff et al., 2012). However, in comparison with leaves,
less attention has been paid to MAMP responses in roots
even though many pathogens do invade via roots. MAMP-
triggered immune signaling in Arabidopsis roots occurs in
a similar fashion to leaves (Millet et al., 2010; De Coninck
et al., 2015). Roots of seedlings responded by callose deposition
to MAMPs like flg22 (a peptide molecule originating from
bacterial flagellin), PGN and chitin. Callose deposition was
observed in the root elongation zone in response to flg22
and PGN, while chitin elicited callose deposition in the root
maturation zone (Millet et al., 2010), indicating the ability
of different root tissues to distinguish between these MAMPs
(De Coninck et al., 2015).

Receptor-Like Kinases Involved in Symbiotic
and/or Immune Signaling
Microbe-associated molecular patterns are recognized by pattern
recognition receptors (PRRs) localized at the cell surface,
including receptor-like kinases (RLK) and receptor-like proteins
(Zipfel, 2014). The extracellular region of RLKs can be composed
of lysin motif (LysM)-domains (LysM-RLK) and/or leucine-
rich repeats (LRR-RLK), both of which are involved in microbe
detection (Greeff et al., 2012).

NF is perceived by RLKs with an extracellular domain of 2–
3 LysM domains, a single membrane-spanning region and an
active or inactive intracellular kinase domain. These LysM-RLKs
were identified in model legume species such as LjNFR1/LjNFR5
(NF Receptor 1 and 5) in Lotus japonicus, GmNFR1/GmNFR5
in soybean (Glycine max), and LYK3/NFP [Lysin motif receptor-
like kinase 3 and NF Perception (NFP)] in Medicago truncatula
(Amor et al., 2003; Limpens et al., 2003; Madsen et al., 2003;
Radutoiu et al., 2003; Indrasumunar et al., 2010, 2011). Mutations
in these genes significantly alter nodulation capability of the
legume host.

The data suggest that the NF receptor is composed of a
heterodimer or, perhaps, heterotetramer. LjNFR5 binds NF with
higher affinity than LjNFR1 (Broghammer et al., 2012). However,
LjNFR5 or MtNFP lack kinase activity (Arrighi et al., 2006;
Madsen et al., 2011) and, therefore, likely signal by activation of
the NFR1 or LYK3, respectively, kinase domain. Co-expression
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of LjNFR1 and LjNFR5, as well as MtNFP and MtLYK3,
in a heterologous in planta tobacco system induced strong
defense responses in the absence of NF (Madsen et al., 2011;
Pietraszewska-Bogiel et al., 2013). These responses were similar
to those elicited by over-expression of CERK1 in Arabidopsis,
another LysM-RLK. AtCERK1 has an active intracellular kinase
domain and functions as a heterotetramer with AtLYK5, which
lacks a functional kinase domain, to recognize long-chain
chitooligosaccharides (dp> 6) to induce plant immune responses
(Cao et al., 2014; Liang et al., 2014).

Recently, it was shown that the rice MAMP receptor
OsCERK1, is also required for establishment of symbiosis
with mycorrhizal fungi (Miyata et al., 2014; Zhang et al.,
2015). Similar to rhizobia, establishment of this symbiosis also
involves a LCO signal, called Myc factor, as well as short-
chain chitooligosaccharides (dp < 6; Maillet et al., 2011; Genre
et al., 2013). OsCERK1 displays the highest homology with
LjNFR1. Therefore, a possible role of LjNFR1 and MtLYK3 in
mycorrhization was tested with the results implicating both in
the establishment of this symbiosis (Zhang et al., 2015). In
M. truncatula, MtNFP was shown to be involved in the response
to root oomycete pathogen Aphanomyces euteiches, nfp mutant
plants were more susceptible to the oomycete than wild type
plants (Rey et al., 2013). Indeed, recently, mutations in a number
of M. truncatula symbiotic genes were shown to affect the ability
of Phytophtora palmivora to infect roots; again emphasizing the
overlap between symbiont and pathogen response (Rey et al.,
2015).

Taken together, the data support the hypothesis that chitin
and LCO reception are functionally related with the latter
likely evolving from the more wide-spread and ancient chitin
recognition system (Liang et al., 2014). The fact that, in some
species, CERK1 and its orthologs function both in pathogen and
symbiont recognition argue that this step may not be involved
in discerning the beneficial or detrimental nature of the infecting
microbe. This is a rather heretical view given the dogma from
earlier studies that argued that LCO reception plays a key role in
host range determination (Oldroyd et al., 2011).

Do Rhizobia Suppress the Plant Immune
System?
The question whether the plant immune system might be
involved in RNS is an obvious one considering the intimacy of
the RNS (Fisher and Long, 1992). Unfortunately, this question
has not received a great deal of direct, experimental examination.
However, there are a number of observations that are consistent
with a rapid, defense-like response occurring in legumes when
infected by rhizobia (Figure 1). For instance, strong production
of ROS was observed on alfalfa roots in response to the
compatible symbiont Sinorhizobium meliloti (Santos et al., 2001).
Transient and rapidly elevated ROS levels were observed on
common bean Phaseolus vulgaris root hairs upon NF addition
at physiological concentration (10−9M; Cardenas et al., 2008).
Silencing of NADPH oxidase, required for ROS production,
resulted in aborted IT formation and reduced nodule numbers
on common bean roots (Montiel et al., 2012). The results suggest

that ROS production is necessary for infection initiation but
prolonged, elevated levels could be detrimental to nodulation.

A hypersensitive, cell death response was also reported on
alfalfa roots in response to S. meliloti (Vasse et al., 1993).
These results are consistent with recent large-scale transcriptomic
and phosphoproteomic studies, performed on soybean and
M. truncatula in response to their symbiotic rhizobia or purified
NF, that revealed rapid induction of defense-related gene
expression, as well as phosphorylation of proteins known to be
involved in plant immune responses (Libault et al., 2010; Nguyen
et al., 2012; Rose et al., 2012).

The levels of salicylic acid (SA), a key secondary signal
involved in plant innate immunity (An and Mou, 2011), were
found to increase in alfalfa roots upon inoculation with NF-
defective (nodC mutant) rhizobia (Martínez-Abarca et al., 1998).
Indeed, transgenic roots in which SA levels were reduced by
expression of NahG, showed increased rhizobial infection (Stacey
et al., 2006). Similarly, a number of other phytohormones, also
involved in plant innate immunity, can affect the RNS (e.g.,
jasmonic acid; Ding and Oldroyd, 2009).

If the plant does mount a defense response to invading
rhizobia, then, by analogy to bacterial pathogens, it is possible
that rhizobia also have the ability to actively suppress this
response. Indeed, suppression of immune responses, such as
ROS production and SA accumulation, was demonstrated
in M. truncatula and M. sativa roots upon addition of
NF (Martínez-Abarca et al., 1998; Shaw and Long, 2003).
In addition, down-regulation of a PR2 (pathogenesis-related
protein) homolog in M. truncatula was reported in response
to S. meliloti inoculation, while a S. meliloti mutant defective
in NF synthesis failed to induce the same response (Mitra
and Long, 2004). Surprisingly, NF application can suppress
defense responses not only in legumes but also non-legumes,
such as Arabidopsis, tomato, and corn. For example, Arabidopsis
leaves pre-treated with flg22 elicit a strong innate immune
response that was suppressed by addition of NF (Liang et al.,
2013). These findings suggest that LCO/NF might have a
dual role in actively inducing RNS development while also
actively suppressing plant immunity, which could inhibit RNS
(Figure 1).

Nodulation without Nod Factor Signaling
Reveals a Key Role for Plant Innate Immunity
in RNS
The dogma that existed for many years in the field of RNS
research is that nodulation cannot occur in the absence of NF
signaling. Thus, it was quite surprising when some rhizobia were
found to nodulate specific Aeschynomene species in the complete
absence of the nodulation genes, required for NF synthesis
(Giraud et al., 2007). More recently, Okazaki et al. (2013) showed
that a nodulation defective, nfr1 mutant of the soybean cultivar
Enrei could be nodulated by a Bradyrhizobium elkanii mutant
unable to produce NF. Even more surprising was the finding
that nodulation by this mutant was dependent on an active
type III secretion system (T3SS). Microarray analysis revealed
that symbiosis marker genes such as ENOD40 and NIN were
induced in the nfr1 mutant suggesting T3SS-induced signaling
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FIGURE 1 | Schematic illustration of elicitation and suppression of
immune responses by Rhizobia during root nodule symbiosis (RNS)
formation. As discussed in the manuscript, during the early events of
initiation of the legume-rhizobia symbiosis, a plant immune response is
induced (illustrated by orange). In addition to acting as a signal to induce
RNS development the Nod factor signal also acts to suppress this

immune response. Bacterial effector proteins (e.g., delivered through a
T3SS) can act to either negatively or positively modulate RNS. Strictly for
the purposes of illustration, these events are shown as acting on a single
root hair. However, clearly the situation is much more complex and it is
likely that the plant immune response can impact RNS at various steps
during its development.

(Okazaki et al., 2013). In plant pathogens, the T3SS secretes
effector proteins directly into the plant cell that can enhance
infection or, when the appropriate R protein is present, induce
effector-triggered immunity (ETI; Boller and Felix, 2009).

Effectors are directly or indirectly perceived by nucleotide-
binding site-LRR (NBS-LRR) receptors encoded by R
(resistance)-genes (Boller and Felix, 2009). In soybean, Rj2
and Rfg1 alleles were found to restrict nodulation in a strain-
specific manner; that is, while Rj2 prevents nodulation with
certain B. japonicum strains, Rfg1 restricts the symbiosis with at
least one S. fredii strain (i.e., USDA257; Yang et al., 2010). Tsukui
et al. (2013) showed that the incompatibility of B. japonicum
(USDA122) with Rj2 soybean genotypes is mediated by the T3SS.
This type of strain-specificity seems very analogous to the race-
specificity of plant pathogens that is known to be determined by
ETI. Kimbrel et al. (2013) examined Type III effector genes in
S. fredii and B. japonicum and found that these genes exhibit a
high degree of conservation in comparison to those secreted by
pathogens.

The results of Okazaki et al. (2013) stand out since, for the first
time, they suggest that the T3SS and associated effector proteins
play a central role in RNS establishment. However, it remains
to be determined which of the various B. elkanii effectors are
required for nodule formation on soybean cv. Enrei. There is

a wealth of earlier literature that supports a role for rhizobial
effectors in modulating host range. Much of this work was done
usingRhizobium sp. NGR234, which exhibits a very extended host
range providing a variety of host species on which to examine
nodulation (Perret et al., 2000). For example, the effector NopL
from Rhizobium sp NGR234, when expressed in tobacco and
L. japonicus was shown to suppress pathogen induction of PR
protein expression and to interfere withMAPK signaling (Bartsev
et al., 2004; Zhang et al., 2011). The dominant Rj4 allele in
soybean encodes a PR protein that was found to restrict soybean
nodulation with certain B. elkanii and B. japonicum strains. These
strains were restricted in infection of the epidermal cell layers of
wild soybean (G. soja) roots (Hayashi et al., 2014; Tang et al.,
2014). Perhaps relevant to the work on soybean, the S. fredii
effector NopP and the B. japonicum effectors NopE1 and NopE2
were shown to be directly transported into the host plant cells
of Vigna roots (Schechter et al., 2010; Wenzel et al., 2010). Both
NopE and NopT exhibit protease activity. B. japonicum effector
NopT1 triggered cell death response when expressed in tobacco,
while the NopT2 did not induce the same response (Dai et al.,
2008; Kambara et al., 2009; Fotiadis et al., 2012). As mentioned
earlier, strong ROS production was observed in response to
NF application (Cardenas et al., 2008). NGR234 NopM (an E3
ubiquitin ligase) effector expressed in tobacco inhibited ROS

Frontiers in Plant Science | www.frontiersin.org 4 June 2015 | Volume 6 | Article 401

http://www.frontiersin.org/Plant_Science/
http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Science/archive


Tóth and Stacey Plant immunity in legume symbiosis

production, while inducing defense-related gene expression (Xin
et al., 2012).

Published data suggest that the need for an active effector
secretion system (e.g., T3SS) is widespread in legumes. For
example, wild type M. loti (MAFF303099) is not able to infect
Leucaena leucocephala (a mimosoid tree), while the T3SS mutant
was able to efficiently nodulate this same species (Hubber et al.,
2004; Sánchez et al., 2009). Not all rhizobia possess a T3SS but in
these cases other systems may operate. For example,M. loti strain
R7A, S. meliloti and R. etli possess a type IV secretion system
(T4SS; Soto et al., 2006). Deletion of T4SS in M. loti strain R7A
extended the nodulation host range to include L. leucocephala,
which is not nodulated by the wild type strain (Hubber et al.,
2004). On the other hand, mutation of the T4SS in S. meliloti did
not seem to impact formation of a functional symbiosis on alfalfa
roots (Jones et al., 2007).

Conclusion and Future Perspectives
Some 29 years ago, our laboratory published a review that sought
to compare and contrast rhizobium, agrobacterium and pathogen
infection of plants (Halverson and Stacey, 1986). Therefore, it is
satisfying to now see how many interesting parallels have been
documented between rhizobial–plant, mycorrhizal–plant, and
pathogen–plant interactions. For example, MAMP signaling and
the associated receptors are clearly relevant to these associations.
It is nowwell accepted that LCOand chitin signaling share similar
receptors, reflecting an evolutionary connection. Indeed, in some
cases, the chitin receptor plays a dual role in recognizing plant
fungal pathogens, while also promoting symbiotic development.

When well established dogma in any field gets overturned, it
means that research progress is being made. An example in the
rhizobial field is the realization that nodulation does not sensu
stricto require NF production. In the case of soybean, nodulation

can occur without NF but this requires an active T3SS. Although
unidentified, the assumption is that rhizobial effector proteins are
exported to the soybean host that is allowing nodulation to occur
(Figure 1). The parallels to plant–pathogen interactions are clear,
where effectors can either promote virulence or resistance. R
proteins are clearly important in the rhizobial symbiosis, at least
in modulating host range. At this point, the role of effectors and
R proteins in RNS cannot be refuted. However, perhaps the more
interesting question is whether these components are necessary,
perhaps essential, for nodule formation either mediated by NF or
not. The case in soybean cv. Enrei clearly argues for an essential
role but could the research focus on NF signaling be hiding a
general, essential role in RNS in other plant species?

Regardless of what form it may take, the available data clearly
point to the need for more research that directly addresses the
possibility of an important role for plant innate immunity in
RNS. This aspect has been understudied for some time and
sufficient evidence has now accumulated to strongly suggest
that important information would come from such research.
Using plant pathogen–host research as an example, one would
expect that knowledge would emerge that could enhance the use
of RNS in agriculture. For example: efforts to avoid inoculant
competition with indigenous soil rhizobia that currently limits
effectiveness or information that would increase nodulation
under stressful environments or allow greater levels of biological
nitrogen fixation.
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