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regulation of microspore
embryogenesis
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Plant growth regulator (PGR) crosstalk and interaction with the plant’s genotype and
environmental factors play a crucial role in microspore embryogenesis (ME), controlling
microspore-derived embryo differentiation and development as well as haploid/doubled
haploid plant regeneration. The complexity of the PGR network which could exist at the
level of biosynthesis, distribution, gene expression or signaling pathways, renders the
creation of an integrated model of ME-control crosstalk impossible at present. However,
the analysis of the published data together with the results received recently with the
use of modern analytical techniques brings new insights into hormonal regulation of
this process. This review presents a short historical overview of the most important
milestones in the recognition of hormonal requirements for effective ME in the most
important crop plant species and complements it with new concepts that evolved over
the last decade of ME studies.

Keywords: crop species, hormonal regulation, microspore embryogenesis, plant growth regulators,
phytohormone crosstalk

Introduction

Plant growth regulators are known as key signaling molecules controlling plant growth and
development, and initiating signal transduction pathways in response to environmental stimuli
(Kohli et al., 2013). The role played by PGRs in ME has been examined widely but usually using
the traditional ‘one-factor-at-a-time’ and ‘trial-and-error’ techniques. Hormonal requirements
determined through such empirical methods were usually optimized for particular cultivars or
genotypes. Once identified, positively acting combinations of PGRs were usually used standardly
for years with small modifications introduced in the case of less responsive genotypes. Only in
a few cases endogenous levels of PGRs were analyzed and taken into consideration in studies
examining their influence on ME effectiveness (Dollmantel and Reinert, 1980; Delalonde and
Coumans, 1998; Gorbunova et al., 2001; Lulsdorf et al., 2012). Moreover, usually only one or two

Abbreviations: ABA, abscisic acid; ACC, 1-aminocyclopropane-l-carboxylic acid; AVG, aminoethoxyvinylglycine; AZI,
7-azaindole; BAP, 6-benzylaminopurine; BL, brassinolide; BR, brassinosteroid; CPIBA, chlorophenoxyisobutyric acid;
DIC, 3,6-dichloro-2-methoxybenzoic acid (dicamba); 2,4-D, 2,4-dichlorophenoxyacetic acid; EBr, 4-epibrassinolide; ETP,
Ethephon; GAs, gibberellins; GA3, gibberellic acid; IAA, indole-3-acetic acid; IBA, indole-3-butyric acid; 2iP, N6-(2-
isopentenyl)-adenine; JA, jasmonic acid; ME, microspore embryogenesis; NAA, naphthalene-1-acetic acid; 1-NOA, 1-
naphthoxyacetic acid; NPA, N-1-naphthylphthalamic acid; OCPIB, o-chlorophenoxy-isobutyric acid; PAA, phenylacetic
acid; PCIB, p-chlorophenoxyisobutyric acid; PGR(s), plant growth regulator(s); PIC, 4-amino-3,5,6-trichloropicolinic
acid (picloram); TDZ, N-phenyl-N′-1,2,3-thiadiazol-5-ylurea (thidiazuron); mT, 6-3-hydroxybenzylaminopurine (meta-
topoline); KN, N6-furfuryladenine (kinetin); SA, salicylic acid; TIBA, 2,3,5-triiodobenzoic acid; Z, zeatin; ZR, zeatin
riboside.
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groups of phytohormones were analyzed whereas there is
growing evidence indicating that – as could be expected –
it is the complex PGR crosstalk and its interaction with the
plant’s genotype and environmental factors which controls the
initiation and the course of the process. The complexity of the
PGR network which could exist at the level of biosynthesis,
distribution, gene expression, or signaling pathways, renders
the creation of an integrated model of ME-control crosstalk
impossible at present. However, the analysis of the published
data together with the results received recently with the use of
modern analytical techniques bring new insights into hormonal
regulation of this process. New concepts that evolved over the
last decade of ME studies together with a short historical review
showing the most important milestones in the recognition of
hormonal requirements for effective ME are presented below.
The review concerns the most important crop plants, both model
species, and species well-known for their recalcitrance to most
in vitro approaches like oat, rye, grain legumes, and cassava
(Supplementary Table S1).

Auxins and Cytokinins

Particularly important for in vitro cultures is the concerted
action of auxins and cytokinins which control cell division
and morphogenesis. These two hormone groups usually act
antagonistically but their effects are modulated by plant
genome and tissue specificity (Moubayidin et al., 2009). Various
combinations of auxins and cytokinins have been used in media
designated for in vitro anther culture, whereas in the majority of
isolated microspore cultures exogenous PGRs were not required
for ME initiation (for details see Supplementary Table S1). For
several plant species instead of exogenous PGRs, co-culture
with so-called immature ‘ovaries’ (accurately, pistils) is critical
to sustain microspore-derived embryo development (Hul and
Kasha, 1997; Li and Devaux, 2001; Zheng et al., 2002; Lantos
et al., 2009). Similar or even better results could be received
through the use of conditioned medium, prepared by culturing
isolated ‘ovaries’ or microspores of responsive plant genotypes. In
isolated microspore culture of recalcitrant wheat cultivars (Zheng
et al., 2002) live ‘ovary’ co-culture alone was not effective, while
the addition of medium preconditioned by ‘ovaries’ increased
the yield of microspore-derived embryos more than 100-fold.
Similarly, conditioned medium extracted from actively growing
microspores of barley broke the recalcitrancy of isolated oat
microspores and resulted in regeneration of fertile green plants
(Sidhu and Davies, 2009). Despite many attempts, the effect of
‘ovary’ co-culture could not be successfully substituted by any
treatment or any exogenously applied substance. It is supposed
that the ‘ovaries’ are a sources of active signaling molecules that
increase microspore-derived embryo yield and improve green
plant regeneration. The involvement of auxin-like substances
and/or arabinogalactans (Baldwin et al., 1993; Borderies et al.,
2004; Letarte et al., 2006) has been postulated, but the mechanism
of their influence remains unexplained.

Among auxins, the first and most widely used for ME
initiation was IAA (Guha and Maheshwari, 1964). It is

an essential phytohormone ubiquitous throughout the plant
kingdom and involved in the regulation of a wide spectrum
of physiological processes (Davies, 2010). Later on it was
frequently replaced by more stable synthetic auxin analogs:
2,4-D, NAA, DIC or PIC and its combinations (for details
see Supplementary Table S1; Table 1). 2,4-D is one of the
most often used culture media supplements, applicable for both
dicotyledonous and monocotyledonous plants (Raghavan, 2004).
Its high effectiveness in the induction and maintenance of
callus and suspension cultures from somatic tissues resulted in
its application as ME stimulus. Other synthetic auxin analogs
were also first tested in somatic tissue cultures as inducers of
embryogenesis (PIC, DIC) or organogenesis (NAA; Gaspar et al.,
1996). Natural auxins: IBA and PAA are used less frequently (for
details see Supplementary Table S1). For decades, IBA has been
used commercially for plant propagation, being more effective
than IAA in stimulation of adventitious root formation. Its
effectiveness can be at least partially explained by its higher
stability and lower predisposition to the formation of inactive
conjugates. Its possible direct involvement in ME initiation has
been postulated recently (Dubas et al., 2013a). Similarly, PAAwas
applied mainly for stimulation of plant regeneration, its beneficial
effects on androgenic plant production having been reported for
wheat and barley (Ziauddin et al., 1992). In addition to acting as
an active auxin, PAA may inhibit polar auxin transport (Morris
and Johnson, 1987), regulating the level of free IAA. In plants,
it is present at levels 10- to 100-fold lower in comparison with
IAA. Due to its low activity (Normanly et al., 2010), it is usually
supplemented in much higher concentrations to media used for
ME (Table 1).

TABLE 1 | The most popular PGRs and their concentration ranges [mg l−1]
used standardly in media dedicated for ME induction and
microspore-derived embryo regeneration.

PGRs Induction media Regeneration media

Auxins and synthetic auxin analogs

IAA 1–4 0.01–3.5

IBA 0.5–1 1–2

PAA 1–100 1–4

2,4-D 0.1–8 0.5–3

NAA 0.5–2.5 0.05–5

Dicamba 0.1–2.5 -

Picloram 0.07–4 -

Anti-auxin and auxin transport inhibitors

PCIB 1–5 -

TIBA 0.05–2 0.1–1

Cytokinins

BAP 0.05–3 0.1–5

Kinetin 1 0.1–5

Z/ZR 0.1–1 0.5–2.2

TDZ 0.1–1 -

2iP 0.0001–0.4 0.1

Other PGRs

GA3 0.001–5 0.01–0.1

ABA 0.001–10 0.05–3

For more details see review in Supplementary Table S1.
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Interestingly, besides auxins, several inhibitors of auxin
biosynthesis (AZI) or auxin polar transport TIBA, NPA, or
1-NOA as well as anti-auxins OCPIB, PCIB have been used
quite frequently (for details see Supplementary Table S1;
Table 1). All these chemicals influence embryo development
through disruption of auxin homeostasis (Lankova et al., 2010).
However, depending on the plant species, type of substance
and procedures used, the results were ambiguous or even
contradictory. For example, preculture of Nicotiana tabacum
anthers in the presence of the inhibitor of AZI and anti-auxin
(OCPIB) resulted in enhanced plantlet formation (Dollmantel
and Reinert, 1980). In contrast, IAA-oxidase activator, CPIBA,
IAA transport inhibitor (quercetin), and IAA-oxidase inhibitor
(dopamine) did not give positive results in maize anther cultures
(Delalonde and Coumans, 1998). Due to structural similarity,
anti-auxins (Jönsson, 1961) can compete with IAA at the binding
site of its receptors (McRae and Bonner, 1953) and exhibit
some antagonistic effects. Lower concentration of PCIB (20 µM)
enhanced the development of microspore-derived embryos of
Brassica juncea and B. napus, while higher doses were detrimental
and resulted in a high frequency of morphologically abnormal
embryo formation (Agarwal et al., 2006; Ahmadi et al., 2012).
In B. rapa, critical ME-stimulating concentration of PCIB was
twofold higher (40 µM), but similarly its overdose decreased
microspore-derived embryo yield and increased the frequency of
morphological abnormalities (Zhang et al., 2011). The effect of
TIBA (1 µM), which conjugates specifically to the ingression site
and inhibits polar transport of IAA, on barley ME was highly
genotype-dependent (Cistué et al., 1999). Although it decreased
the number of dividingmicrospores in some cultivars, a tendency
to produce a higher percentage of embryos and to improve
embryo quality was also observed. Higher doses (2–4 µM) of
TIBA were beneficial for low responsive cultivar, increasing
well developed embryo production and reducing albinism. TIBA
could also affect later phases of microspore-derived embryo
development. The treatment applied to B. napus cv. Topas at the
preglobular/globular stages of embryo development resulted in
altered shoot apical meristem development and in production
of one fused cotyledon, which indicates a continuation of radial
symmetry (Ramesar-Fortner and Yeung, 2006). However, tillers
pre-treatment with 5 µM PCIB or 10 µM TIBA had no effect on
ME induction in triticale anther culture (Żur et al., 2015). Similar
to TIBA in the report of Cistué et al. (1999), PCIB stimulated
plant regeneration but only in the highly recalcitrant triticale
genotype. The supplementation of ME-induction medium with
the same concentrations of TIBA or PCIB did not improve the
efficiency of the process in the case of the recalcitrant genotype
and significantly decreased the number of microspore-derived
embryos produced by the responsive one (Żur et al., 2015).

The negative effect of NPA on embryogenesis was observed
in microspore suspension of oak (Rodriguez-Sanz et al., 2014).
This compound together with 1-NOA are potent synthetic auxin
inhibitors (Lankova et al., 2010). It was proved that NPA strongly
inhibits auxin efflux (Petrasek et al., 2003), whereas 1-NOA
blocks both auxin influx and efflux. NPA interferes with actin
dynamics being under the control of auxin itself, while 1-NOA
action has been suggested to be related to the dynamics of

membrane vesicle transporting auxin carriers (Titapiwatanakun
and Murphy, 2009; Lankova et al., 2010).

Two major properties of cytokinins that predispose these
adenine derivatives for in vitro cultures are their abilities to
induce cell division and differentiation. Their effects result from
co-action with auxins, but each of these PGR groups seems
to control different phases of the cell cycle: auxins – DNA
replication, whereas cytokinins – mitosis and cytokinesis (Gaspar
et al., 1996). Among cytokinins, kinetin (N6-furfuryladenine;
KN), 6-benzylaminopurine (BAP), and zeatin (Z) have been
frequently tested both in ME induction and regeneration media
(for details see Supplementary Table S1; Table 1). Other kinds
of cytokinins, like thidiazuron (N-phenyl-N’-1,2,3-thiadiazol-
5-ylurea; TDZ), N6-(2-isopentenyl)-adenine (2iP) or meta-
topoline (6-3-hydroxybenzylaminopurine, mT) are less popular
ingredients of culture media (Kumar et al., 2003; Grewal et al.,
2009; Esteves et al., 2014). TDZ has been used successfully in vitro
to induce adventitious shoot formation and to promote axillary
shoot proliferation. It is particularly effective with recalcitrant
woody species. However, prolonged exposure to this cytokinin
may cause problems such as hyperhydricity and abnormal shoot
or root development (Lu, 1993). 2iP was used for ME initiation
in anther culture of Cicer arietium (Grewal et al., 2009), whereas
regeneration medium supplemented with mT proved beneficial
for green plants production in microspore culture of barley
(Esteves et al., 2014).

Abscisic Acid

Besides auxins and cytokinins, ABA, known as a ubiquitous plant
stress hormone, has been claimed to play a role in ME-inducing
signal transduction system (Maraschin et al., 2005; Żur et al.,
2012, 2015; Dubas et al., 2013b; Ahmadi et al., 2014). It is well
documented that plant cells and tissues usually increase their
ABA level in response to different biotic and abiotic stresses
(Zeevaart and Creelman, 1988; Christmann et al., 2004; Cutler
et al., 2010). During ME induction various stress conditions (e.g.,
starvation, cold, osmotic stresses) have been commonly used as
a trigger of microspore switch toward sporophytic development
pathway (Touraev et al., 1997; Zoriniants et al., 2005). ABA level
increases in tissues and microspores exposed to these stresses and
many reports have suggested a causal involvement of ABA in ME
induction, describing the positive influence of ABA accumulation
on the effectiveness of this process (Reynolds and Crawford,
1996; van Bergen et al., 1999; Wang et al., 1999; Żur et al.,
2008, 2012). Furthermore, a positive relationship has been shown
to exist between higher regeneration efficiency and increased
endogenous ABA level during ME induction by osmotic stress
in barley (Hoekstra et al., 1997; van Bergen et al., 1999). These
positive ABA effects on ME have been confirmed in several
manipulative experiments with a treatment with exogenous
ABA or its inhibitor fluridone (Imamura and Harada, 1980;
Reynolds and Crawford, 1996; Wang et al., 1999; Guzman and
Arias, 2000). In Hordeum species the addition of 10−7 M ABA
enhanced the regeneration of plants at sub-optimal anther pre-
treatment conditions, while ABA-biosynthesis inhibitor fluridone
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strongly reduced regeneration efficiency, particularly green plant
production (Hoekstra et al., 1997; van Bergen et al., 1999).
In another study of rapeseed, ME efficiency was improved by
exogenous ABA treatment – 0.5 mg ABA l−1 for 12 h enhanced
ME threefold compared with untreated cultures and increased
normal plantlet regeneration by 68% (Ahmadi et al., 2014). In
turn Żur et al. (2008, 2012) observed a significant endogenous
ABA increase during ME induction by low temperature stress in
triticale. However, there was no linear relationship between the
extent of ABA accumulation and ME efficiency in the population
of 72 triticale DH lines (Żur et al., 2012). On the contrary, higher
level of endogenous ABA significantly diminished green plant
regeneration efficiency. Therefore, it seems that the induction
of ME requires a certain genotype-specific threshold level of
ABA, which initiates a signaling cascade switching the program
of embryogenic development. Moreover, it seems that a specific
PGRs homeostasis and auxins/cytokinins/ABA crosstalk is a
more important prerequisite for effective ME than the level of
individual PGRs (Żur et al., 2015). It has also been discovered that
microspores’ membrane fluidity may indirectly affect the level of
ABA accumulation within the cell (Dubas et al., 2013b). Those
findings verified the hypothesis about the influence of ABA on
ME induction in rapeseed and pointed out that increased ABA
concentration (to about 2.1 µM) in heat-treated microspores
enhanced ME. Altogether, the role of ABA in microspore
reprogramming is complex – it acts as a common anti-stress
factor increasing microspores’ viability during ME induction,
and on the other hand, ABA-induced signaling cascade plays a
vital role in the activation of many genes (mainly controlling the
synthesis of LEA proteins), in the activity of enzymes and in the
ox-redox status as well as interacts with other PGRs (Maraschin
et al., 2005; Żur et al., 2012, 2014, 2015; Ahmadi et al., 2014).

Other Plant Growth Regulators

Despite many studies on microspore and anther culture in crop
species, the effects of phytohormones such as gibberellins (GAs),
brassinosteroids (BRs), jasmonic acid (JA), salicylic acid (SA), or
ethylene on ME are not fully recognized.

GAs are involved in a wide range of developmental responses
(Moshkov et al., 2008). They are required for normal pollen,
anther and seed development, and are probably involved in
a broad spectrum of responses to abiotic stress (Colebrook
et al., 2014), but a complete understanding of their specific
function remains elusive (Swain and Singh, 2005). Only scarce
information is available on GAs in cultured cells. Plant tissue
cultures can generally be induced to grow and differentiate
without GAs. One of the most bioactive forms, GA3 is generally
used in plant tissue to stimulate stem elongation. It was also
supposed to be an essential ingredient of media for culturing cells
at low densities (Stuart and Street, 1971). In microspore cultures
of B. napus and Solanum tuberosum, GA3 improved plantlet
regeneration (Supplementary Table S1), mainly via elongation
of the embryo axis and acceleration of its maturation (Haddadi
et al., 2008). Similarly Ahmadi et al. (2012) reported that the
highest percentage of normal B. napus plantlet regeneration

(40%) was received as a result of 0.05–0.1 mg l−1 GA3
treatment. More attention has been attracted by a wide range of
synthetic substances, called ‘anti-gibberellins,’ which block GAs
biosynthetic pathways. In the studies of Biddington et al. (1992),
the addition of paclobutrazol into induction media inhibited
embryo production in anther cultures of Brussels sprout.
However, the authors suggested that this effect could be caused
not only by inhibition of GA-biosynthesis but also by inhibition
of sterol biosynthesis. Another inhibitor of GA-biosynthesis,
uniconazole, applied to B. napus embryo at the globular stage
of development significantly reduced axis elongation (Hays et al.,
2002).

Brassinosteroids (BRs) are a class of plant steroidal hormones
that regulate multiple developmental and physiological processes
essential for plant growth and development. Their involvement in
cell elongation and division, vascular differentiation, senescence,
flowering time, male fertility, pollen development, seed size,
photomorphogenesis, and resistance to biotic and abiotic stresses
has been reported (Clouse et al., 1996; Li and Chory, 1999; Ye
et al., 2010; Clouse, 2011). BRs, in particular 24-epibrassinolide
(EBr), increased frequency of induction of both somatic (Azpeitia
et al., 2003; Pullman et al., 2003) and ME (Ferrie et al.,
2005; Malik et al., 2008). The role of EBr may be related
to protection against abiotic stresses as its positive impact on
the acquisition of thermotolerance was reported (Divi et al.,
2010). Other BR, brassinolide (BL) also enhanced embryogenesis
and the quality of microspore-derived embryos in B. napus
and B. juncea (Ferrie et al., 2005; Belmonte et al., 2010). The
addition of BRs did not affect plant regeneration but seems
to influence chromosome doubling. Moreover, depletion of
cellular BL decreasesmicrospore-derived embryo production and
disrupts the architecture of the apical meristems of B. napus
(Belmonte et al., 2010).

As ME is induced by stress treatment it could be supposed
that not only ABA, but also other stress hormones like jasmonic
acid (JA), salicylic acid (SA), or ethylene can be involved in this
process.

JA is widely distributed in the plant kingdom and regulates
a wide range of processes from growth and photosynthesis
to reproductive development. The most important is the role
connected with plant defense reactions against biotic and abiotic
stresses (Santino et al., 2013). In anther cultures of barley, ME-
induction treatment resulted in higher expression of three genes
encoding enzymes involved in JA biosynthesis (Jacquard et al.,
2009). Ahmadi et al. (2014) claimed that the supplementation of
induction medium with 1.0 mg l−1 JA for 24 h improved embryo
yield in microspore cultures of B. napus. Moreover, the addition
of 0.5 mg l−1 JA for 12 h resulted in better plantlet regeneration.

SA, a plant phenolic derivative, is now considered to be a
hormone-like endogenous regulator and its role in the defense
mechanisms against biotic and abiotic stress is well documented
(Catinot et al., 2008). Being a mobile molecule, SA is capable
of acting as a cell signal that senses, amplifies, and transmits
information initiating the embryogenic program (Mulgund et al.,
2012). There are several papers that describe the application
of SA to culture media in order to improve ME efficiency.
In the above-mentioned work, Ahmadi et al. (2014) reported
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a positive effect of short-term application (6 h) of 0.2 and
0.5 mg l−1 of SA on B. napus microspore-derived embryo
yield. The mechanism of SA action could be connected with its
ability to increase the activity of superoxide dismutase (H2O2-
producing enzyme), and to inhibit ascorbate peroxidase and
catalase activities (H2O2-decomposing enzymes), thus leading to
endogenous H2O2 accumulation, which is supposed to initiate
ME (Larqué-Saavedra, 1978, 1979; Leslie and Romani, 1988; Luo
et al., 2001; Żur et al., 2014).

Ethylene is a gaseous plant hormone involved in many
developmental processes – seed germination, root development,
flower senescence, abscission, and fruit ripening (Kumar et al.,
2009). Its biosynthesis is tightly regulated by internal signals
and environmental stresses, like wounding, low temperature,
hypoxia, or pathogen attack (Wang et al., 2002). Its role in in vitro
callus growth, organo- and embryogenesis has been suggested
(Kumar et al., 2009). It was reported that embryogenesis in barley
can be stimulated by both promoters and antagonists of ethylene,
depending on the genotype (Cho and Kasha, 1989). It suggests
that the response depends upon how much ethylene is being
produced and that an optimum level of ethylene is required for
ME initiation. More often, positive effects induced by substances
known as inhibitors of ethylene action – silver nitrate (Prem
et al., 2005), activated charcoal (Prem et al., 2008), AVG or cobalt
chloride (Leroux et al., 2009) were observed. On the other hand,
there is also evidence reporting benefits from ethylene precursor
ACC or promoter ETP. Their application increased ME initiation
in anther culture of barley (Evans and Batty, 1994) and oat
(Kiviharju et al., 2005).

New Concepts Describing PGRs
Involvement in ME Regulation

New Kinds of PGRs Possibly Involved in ME
Regulation
Although IBA is commonly considered to be only an IAA
precursor and storage form (Woodward and Bartel, 2005;
Korasick et al., 2013), some evidence suggests that it could act
directly as an active auxin (Ludwig-Muller, 2000; Poupart and
Waddell, 2000; Zolman et al., 2000). Recent results shown by
Dubas et al. (2013a) suggest that the increased level of IBA
in B. napus microspores under heat shock treatment might be
used as a marker of cell embryogenic competence. However, IBA
accumulation was not sufficient for ME initiation in the case of
recalcitrant genotypes. Similar results were received in anther
cultures of triticale (Żur et al., 2015), where higher concentration
of IBA seems to be advantageous for effective ME induction.
However, because IBA pool in triticale anthers comprises only
about 1% of the total auxins content, it is questionable whether
differences in its concentration are of any significance. In the
same report, trans and cis isomers of tZ, cZ and tZR, cZR were
detected in anthers of eight DH lines of triticale. Interestingly,
cZ commonly regarded as cytokinin derivative without any or
with low biological activity, prevailed significantly and positively
correlated with ME induction. Similarly, in reports of Emery
et al. (1998), Vyroubalová et al. (2009), and Kudo et al. (2012) cZ

appeared to be the dominant form of cytokinins in specific plant
organs and/or stages of development. In a recently published
report, Gajdošová et al. (2011) concluded that cZ can be
qualified as a regulator of cytokinin responses in plants under
growth-limiting conditions. Another finding of Żur et al. (2015)
was a relatively high concentration of KN-like compound and
its negative correlation with ME efficiency. KN was the first
compound identified as cytokinin, but for many years it was
classified as a product of DNA rearrangement not produced by
plant cells. This opinion started to change in the last decade,
as sources of KN in biological samples were found in cellular
DNA, plant tissues and extracts (Barciszewski et al., 1996, 1999,
2007; Ge et al., 2005). The role of endogenous KN and the
molecular mechanisms of its action are not well understood,
although some data indicate its strong antioxidant properties
and some ABA- and JA-antagonistic effects (Barciszewski et al.,
2000).

High Concentrations of PGRs as a Stress
Factor
Higher concentration (5–10 mg l−1) of 2,4-D stimulated
ME initiation in some recalcitrant plant species, namely oat
(Kiviharju and Tauriainen, 1999), Triticum turgidum (Jauhar,
2003), and cassava (Perera et al., 2014). It has been suggested that
2,4-D is not only an auxin analog but at higher concentrations
acts as a stress factor effectively triggering embryogenic pathway
of cell development (Gaj, 2004). The observed effect is probably
the result of concerted PGRs action as evidence that 2,4-D
regulates the activity of genes associated with auxin, ABA and
ethylene biosynthesis has been reported (Raghavan et al., 2006).
Short-term treatment with extremely high concentration of this
substance (15–45 mg l−1 2,4-D for 15–45 min) has been recently
used as an effective substitute of classical heat shock treatment
(Ardebili et al., 2011) for B. napus ME initiation. It has been
proposed as an alternative for plant species whose microspores
are extremely sensitive to classical stresses.

Endogenous Level of PGRs and their
Interaction with their Exogenously Applied
Analogs
Inconsistent or even contradictory effects of various PGRs and
their inhibitors suggest that the endogenous level of natural
phytohormones and its balance with exogenously applied ones
can be crucial both for yield and quality of microspore-derived
embryos.

The first report pointing out that endogenous auxins level
can determine anther culture responsiveness was published as
early as by Dollmantel and Reinert (1980). Next, the results
published by Gorbunova et al. (2001) indicated that wheat
genotypes with high endogenous IAA content required lower
concentration of 2,4-D in induction medium. Other data
showing that anti-auxin (PCIB) and auxin transport inhibitor
(TIBA) can stimulate microspore-derived embryo formation,
probably due to overcoming the inhibitory effect of high auxin
concentration, were published by Cistué et al. (1999) and
Agarwal et al. (2006). Also in the case of triticale (Żur et al.,
2015), for which ME-induction medium was supplemented
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with 1 mg l−1 DIC, 1 mg l−1 PIC, and 0.5 mg l−1 KN,
anther cultures of responsive DH lines were characterized
by significantly lower endogenous/exogenous auxins ratio in
comparison to recalcitrant genotypes. In the same cultures,
higher embryogenic potential was associated with significantly
higher endogenous/exogenous cytokinins ratio.

Generally, exogenous PGRs are not required for ME in
Brassica species. However, too low levels of endogenous
auxins and/or cytokinins could disturb the proper course
of the process, especially the transition from the radial to
the bilateral microspore-derived embryo symmetry, as it was
observed in B. napus (Ramesar-Fortner and Yeung, 2006).
Similarly, the addition of 0.1–0.3 mg l−1 BAP significantly
improved microspore-derived embryo yield in several B. rapa
subspecies (Takahashi et al., 2012). Recently, Prem et al.
(2012) and Dubas et al. (2014) showed how endogenous auxin
distribution influenced embryo development in microspore
suspension of B. napus. Precise endogenous auxin estimation
in transgenic DR5rev::GFP or DR5::GUS microspores of highly
embryogenic spring rape line (Dubas et al., 2014) revealed
IAA concentration at 1.01 µM in microspores under ME-
initiating heat treatment (1 day at 32◦C). It could be supposed
that such IAA concentration is optimal for further embryo
development.

Crosstalk of Various PGRs and their
Interaction with Stress Treatment and Plant
Genotype in ME Initiation
A number of reviews highlighting phytohormone crosstalk in
plant growth, development and response to abiotic and biotic
stresses have been published recently (Depuydt and Hardtke,
2011; Hou et al., 2013; Kohli et al., 2013; Lyons et al.,
2013; Wang et al., 2013). It is also well known that altered
homeostasis of PGRs is one of the most dynamic changes in
response to stress conditions (Kohli et al., 2013). As tissue/cell
sensitivity to PGRs also changes during plant development in
response to environmental or genetically coded changes (Davies,
2010), it could be supposed that interactions between PGRs,
stress-induced responses and genotype-specific PGRs sensitivity
coordinate microspore reprogramming and regulate the final
efficiency ofME. The analysis of recent findings obtained with the
use of modern analytical techniques brought some new insights
into hormonal regulation of microspore reprogramming and the
initiation of embryogenic development.

The results of extensive analysis of phytohormone content
changes after exposure to various ME-inducing stress treatments
in anthers of three highly recalcitrant legume species were
presented by Lulsdorf et al. (2012). It was revealed that the
most common response was increased level of IAA-asparagine,
a putative IAA metabolite. Of the various cytokinins, only cZR
increased after the application of stressors.

In B. napus, the level of various auxin forms depends
significantly on the sample source (leaves, flower buds, isolated
microspores) and temperature regimes during the growth of
donor plants (10◦C/18◦C). For the first time Dubas et al. (2012,
2013a) showed that IBA prevailed in isolated microspores and
its level could be reduced by low temperature. Interestingly, the

combination of low temperature and heat shock reversed this
effect. IAA level tends to change in a similar manner to IBA, both
in responsive and recalcitrant genotypes. Based on these data, it
could be concluded that noticeable changes in the level of both
auxins forms caused by stress treatments are important for ME.

Similarly, low temperature ME-initiating treatment (3 weeks
at 4◦C) meaningfully changed PGRs homeostasis in several DH
lines of triticale (Żur et al., 2015). Accumulation of IAA, IBA,
cZ, cZR, and ABA together with a decrease in tZ content was
observed in all studied genotypes. It was discovered that as
result of cold treatment anthers of highly responsive triticale
genotypes were characterized by higher concentrations of IBA,
cZ, tZ, cZR, and lower amount of IAA and KN-like compound
in comparison with recalcitrant ones. However, the effects of
exogenously applied ABA, PCIB and TIBA suggest that none of
the studied PGRs acts alone in the determination of embryogenic
competency. An important prerequisite for effective ME seems to
be a specific PGR homeostasis – lower auxin rate in comparison
with cytokinins and ABA, and lower cytokinin/ABA ratio.

Genetically or/and environmentally determined changes in
PGR sensitivity at least partially explain the importance of the
timing of hormonal treatment/application. For example,Wassom
et al. (2001) showed that modification of maize anther culture
mediumwith various PGRs (ABA, GA3, ancymidol, or fluridone)
was ineffective in comparison to donor plant treatments, where
these substances were pipetted into whorls of field-grown plants
3 days before tassel harvest. Similarly, Liu et al. (2002a,b) and
Zheng et al. (2003) demonstrated stimulation of ME in wheat
by a combination of high temperature tillers pre-treatment
with their ‘inducer chemical formulation.’ It seems that altered
PGR homeostasis preceding microspore isolation and transfer
to in vitro culture triggers changes important for effective ME
initiation.

Summary

The data presented above indicate why standard culture
medium optimization using the traditional ‘one-factor-at-
a-time’ and ‘trial-and-error’ techniques, which require a
considerable amount of time and effort, can sometimes
be completely ineffective. As a large number of important
crop species, cultivars or genotypes still remain highly
recalcitrant to ME, only a much more precise recognition
of molecular/physiological/metabolomical background that
favors the initiation of embryogenic development could bring
any substantial progress. As hormonal homeostasis seems to be
one of the most important factors determining cell embryogenic
competency, only a more comprehensive approach leading to
the recognition of the mechanisms controlling the process could
break the barrier of ME recalcitrancy.

Supplementary Material

The Supplementary Material for this article can be found online
at: http://journal.frontiersin.org/article/10.3389/fpls.2015.00424/
abstract
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Żur et al. Hormonal regulation of microspore embryogenesis

Gorbunova, V. Y., Kruglova, N. N., and Abramov, S. N. (2001). The
induction of androgenesis in vitro in spring soft wheat. balance of
exogenous and endogenous phytohormones. Biol. Bull. 28, 25–30. doi:
10.1023/A:1026602603527

Grewal, R., Lulsdorf, M., Croser, J., Ochatt, S., Vandenberg, A., and Warkentin, T.
(2009). Doubled-haploid production in chickpea (Cicer arietinum L.): role
of stress treatments. Plant Cell Rep. 28, 1289–1299. doi: 10.1007/s00299-009-
0731-1

Guha, S., and Maheshwari, S. C. (1964). In vitro production of embryos from
anthers of Datura. Nature 204, 497. doi: 10.1038/204497a0

Guzman, M., and Arias, F. J. Z. (2000). Increasing anther culture efficiency in rice
(Oryza sativa L.) using anthers from ratooned plants. Plant Sci. 151, 107–114.
doi: 10.1016/s0168-9452(99)00204-6

Haddadi, P., Moieni, A., Karimadeh, G., and Abdollahi, M. R. (2008). Effects
of gibberellin, abscisic acid and embryo desiccation on normal plantlet
regeneration, secondary embryogenesis and callogenesis in microspore culture
of Brassica napus L. cv. PF(704). Int. J. Plant Prod. 2, 153–162.

Hays, D. B., Yeung, E. C., and Pharis, R. P. (2002). The role of gibberellins in
embryo axis development. J. Exp. Bot. 53, 1747–1751. doi: 10.1093/jxb/erf017

Hoekstra, S., Vanbergen, S., Vanbrouwershaven, I. R., Schilperoort, R. A., and
Wang, M. (1997). Androgenesis in Hordeum vulgare L: effects of mannitol,
calcium and abscisic acid on anther pretreatment. Plant Sci. 126, 211–218. doi:
10.1016/s0168-9452(97)00096-4

Hou, X., Ding, L., and Yu, H. (2013). Crosstalk between GA and JA signaling
mediates plant growth and defense. Plant Cell Rep. 32, 1067–1074. doi:
10.1007/s00299-013-1423-4

Hul, T., and Kasha, K. J. (1997). Improvement of isolated microspore culture of
wheat (Triticum aestivum L.) through ovary co-culture. Plant Cell Rep. 16,
520–525. doi: 10.1007/BF01142316

Imamura, J., and Harada, H. (1980). Effects of abscisic acid and water-stress on
the embryo and plantlet formation in anther culture of Nicotiana tabacum
cv Samsun. Z. Pflanzenphysiol. 100, 285–289. doi: 10.1016/S0044-328X(80)
80232-7

Jacquard, C., Mazeyrat-Gourbeyre, F., Devaux, P., Boutilier, K., Baillieul, F.,
and Clement, C. (2009). Microspore embryogenesis in barley: anther pre-
treatment stimulates plant defence gene expression. Planta 229, 393–402. doi:
10.1007/s00425-008-0838-6

Jauhar, P. P. (2003). Formation of 2n gametes in durum wheat haploids: sexual
polyploidization. Euphytica 133, 81–94. doi: 10.1023/a:1025692422665

Jönsson, A. (1961). “Chemical structure and growth activity of auxin and
antiauxins,” in Encyclopedia of Plant Physiology, ed. W. Ruhland (Berlin:
Springer), 959–1006.

Kiviharju, E., Moisander, S., and Laurila, J. (2005). Improved green plant
regeneration rates from oat anther culture and the agronomic performance of
some DH lines. Plant Cell Tissue Organ Cult. 81, 1–9. doi: 10.1007/s11240-004-
1560-0

Kiviharju, E. M., and Tauriainen, A. A. (1999). 2,4-Dichlorophenoxyacetic acid
and kinetin in anther culture of cultivated and wild oats and their interspecific
crosses: plant regeneration from A. sativa L. Plant Cell Rep. 18, 582–588. doi:
10.1007/s002990050626

Kohli, A., Sreenivasulu, N., Lakshmanan, P., and Kumar, P. P. (2013). The
phytohormone crosstalk paradigm takes center stage in understanding
how plants respond to abiotic stresses. Plant Cell Rep. 32, 945–957. doi:
10.1007/s00299-013-1461-y

Korasick, D. A., Enders, T. A., and Strader, L. C. (2013). Auxin biosynthesis and
storage forms. J. Exp. Bot. 64, 2541–2555. doi: 10.1093/jxb/ert080

Kudo, T., Makita, N., Kojima, M., Tokunaga, H., and Sakakibara, H. (2012).
Cytokinin activity of cis-zeatin and phenotypic alterations induced by
overexpression of putative cis-zeatin-o-glucosyltransferase in rice. Plant
Physiol. 160, 319–331. doi: 10.1104/pp.112.196733

Kumar, H. G. A., Murthy, H. N., and Paek, K. Y. (2003). Embryogenesis and plant
regeneration from anther cultures ofCucumis sativus L. Sci. Hortic. 98, 213–222.
doi: 10.1016/S0304-4238(03)00003-7

Kumar, V., Parvatam, G., and Ravishankar, G. A. (2009). AgNO3 – a potential
regulator of ethylene activity and plant growth modulator. Electronic J.
Biotechnol. 12, 1–16. doi: 10.2225/vol12-issue2-fulltext-1

Lankova, M., Smith, R. S., Pesek, B., Kubes, M., Zazimalova, E., Petrasek, J.,
et al. (2010). Auxin influx inhibitors 1-NOA, 2-NOA, and CHPAA interfere

with membrane dynamics in tobacco cells. J. Exp. Bot. 61, 3589–3598. doi:
10.1093/jxb/erq172

Lantos, C., Juhász, A., Somogyi, G., Ötvös, K., Vági, P., Mihály, R., et al. (2009).
Improvement of isolated microspore culture of pepper (Capsicum annuum L.)
via co-culture with ovary tissues of pepper or wheat. Plant Cell Tissue Organ
Cult. 97, 285–293. doi: 10.1007/s11240-009-9527-9

Larqué-Saavedra, A. (1978). The antiranspirant effect of acetylsalcylic acid
on Phaseolus vulgaris. Physiol. Plant. 43, 126–128. doi: 10.1111/j.1399-
3054.1978.tb01579.x

Larqué-Saavedra, A. (1979). Stomatal closure in response to acetylsalicylic
acid treatment. Z. Pflanzenphysiol. 93, 371–375. doi: 10.1016/S0044-328X(79)
80271-8

Leroux, B., Carmoy, N., Giraudet, D., Potin, P., Larher, F., and Bodin, M.
(2009). Inhibition of ethylene biosynthesis enhances embryogenesis of cultured
microspores of Brassica napus. Plant Biotechnol. Rep. 3, 347–353. doi:
10.1007/s11816-009-0109-4

Leslie, C. A., and Romani, R. J. (1988). Inhibition of ethylene biosynthesis by
salicylic acid. Plant Physiol. 88, 833–837. doi: 10.1104/pp.88.3.833

Letarte, J., Simion, E., Miner, M., and Kasha, K. J. (2006). Arabinogalactans and
arabinogalactan-proteins induce embryogenesis in wheat (Triticum aestivum
L.) microspore culture. Plant Cell Rep. 24, 691–698. doi: 10.1007/s00299-005-
0013-5

Li, H., and Devaux, P. (2001). Enhancement of microspore culture efficiency
of recalcitrant barley genotypes. Plant Cell Rep. 20, 475–481. doi:
10.1007/s002990100368

Li, J. M., and Chory, J. (1999). Brassinosteroid actions in plants. J. Exp. Bot. 50,
275–282. doi: 10.1093/jexbot/50.332.275

Liu, W., Zheng, M. Y., and Konzak, C. F. (2002a). Improving green plant
production via isolated microspore culture in bread wheat (Triticum aestivum
L.). Plant Cell Rep. 20, 821–824. doi: 10.1007/s00299-001-0408-x

Liu, W. G., Zheng, M. Y., Polle, E. A., and Konzak, C. F. (2002b).
Highly efficient doubled-haploid production in wheat (Triticum aestivum
L.) via induced microspore embryogenesis. Crop Sci. 42, 686–692. doi:
10.2135/cropsci2002.0686

Lu, C.-Y. (1993). The use of thidiazuron in tissue culture. In Vitro Cell. Dev. Biol.
Plant 29, 92–96. doi: 10.1007/BF02632259

Ludwig-Muller, J. (2000). Indole-3-butyric acid in plant growth and development.
Plant Growth Regul. 32, 219–230. doi: 10.1023/a:1010746806891

Lulsdorf, M., Yuan, H., Slater, S., Vandenberg, A., Han, X., and Zaharia, L. I.
(2012). Androgenesis-inducing stress treatments change phytohormone levels
in anthers of three legume species (Fabaceae). Plant Cell Rep. 31, 1255–1267.
doi: 10.1007/s00299-012-1246-8

Luo, J. P., Jiang, S. T., and Pan, L. J. (2001). Enhanced somatic embryogenesis by
salicylic acid of Astragalus adsurgens Pall.: relationship with H2O2 production
and H2O2-metabolizing enzyme activities. Plant Sci. 161, 125–132. doi:
10.1016/s0168-9452(01)00401-0

Lyons, R., Manners, J. M., and Kazan, K. (2013). Jasmonate biosynthesis and
signaling in monocots: a comparative overview. Plant Cell Rep. 32, 815–827.
doi: 10.1007/s00299-013-1400-y

Malik, M. R., Wang, F., Dirpaul, J. M., Zhou, N., Hammerlindl, J., Keller, W., et al.
(2008). Isolation of an embryogenic line from non-embryogenic Brassica napus
cv. Westar through microspore embryogenesis. J. Exp. Bot. 59, 2857–2873. doi:
10.1093/jxb/ern149

Maraschin, S. F., De Priester, W., Spaink, H. P., and Wang, M. (2005). Androgenic
switch: an example of plant embryogenesis from the male gametophyte
perspective. J. Exp. Bot. 56, 1711–1726. doi: 10.1093/jxb/eri190

McRae, D. H., and Bonner, J. (1953). Chemical structure and antiauxin activity.
Physiol. Plant. 6, 485–510. doi: 10.1111/j.1399-3054.1953.tb08406.x

Morris, D. A., and Johnson, C. F. (1987). Regulation of auxin transport in pea
(Pisum sativum) by phenylacetic acid – inhibition of polar auxin transport
in intact plants and stem segments. Planta 172, 408–416. doi: 10.1007/bf003
98671

Moshkov, I. E., Novikova, G. V., Hall, M. A., and George, E. F. (2008). “Plant
growth regulators iii : gibberellins, ethylene, abscisic acid, their analogues and
inhibitors; miscellaneous compounds,” in Plant Propagation by Tissue Culture,
eds E. F. George, M. Hall, and G.-J. Klerk (Dordrecht: Springer), 227–281.

Moubayidin, L., Di Mambro, R., and Sabatini, S. (2009). Cytokinin-auxin crosstalk.
Trends Plant Sci. 14, 557–562. doi: 10.1016/j.tplants.2009.06.010

Frontiers in Plant Science | www.frontiersin.org 8 June 2015 | Volume 6 | Article 424

http://www.frontiersin.org/Plant_Science/
http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Science/archive
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