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Tomato Verticillium wilt is a soil-borne vascular disease caused by the necrotrophic
fungus Verticillium dahliae. Although some understanding of plant defense mechanisms
against V. dahliae infection has been gained for incompatible interactions, including
identification of inducible resistant genes and defense signaling pathways, the genes
and signaling pathways involved in the compatible interaction remain unclear. To
investigate the molecular basis of the compatible interaction between tomato and V.
dahliae, transcriptomes of V. dahliae infected tomatoes were compared to those of a
control group. A total of approximately 25 million high-quality reads were generated by
means of the RNA sequencing (RNA-seq) method. The sequence reads were aligned
to the tomato reference genome and analyzed to measure gene expression levels, and
to identify alternative splicing events. Comparative analysis between the two samples
revealed 1,953 significantly differentially expressed genes (DEGs), including 1,281 up-
regulated and 672 down-regulated genes. The RNA-Seq output was confirmed using
RT-qPCR for 10 selected genes. The Nr, Swiss-Prot, Gene Ontology (GO), Clusters
of Orthologous Groups (COG), and Kyoto Encyclopedia of Genes and Genomes
(KEGG) databases were used to annotate DEG functions. Of the 1,953 DEGs identified,
1,953, 1,579, 1,739, 862, and 380 were assigned by Nr, Swiss-Prot, GO, COG,
and KEGG, respectively. The important functional groups identified via GO and COG
enrichment were those responsible for fundamental biological regulation, secondary
metabolism, and signal transduction. Of DEGs assigned to 87 KEGG pathways, most
were associated with phenylpropanoid metabolism and plant–pathogen interaction
pathways. Most of the DEGs involved in these two pathways were up-regulated, and
may be involved in regulating the tomato-V. dahliae compatible interaction. The results
will help to identify key susceptible genes and contribute to a better understanding of
the mechanisms of tomato susceptible response to V. dahliae.
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Introduction

Verticillium wilt is a serious vascular disease caused by the
soil-borne fungus Verticillium dahliae, which is able to infect
more than 200 plant species, including numerous economically
important food crops (Klosterman et al., 2009). The infection
of plants results from penetration of young roots by V. dahliae
via wounds or cracks that occur at the sites of lateral roots
(Fradin and Thomma, 2006; Klosterman et al., 2009). Once
the fungus enters the xylem vessels, it rapidly multiplies and
spreads along the xylem vessels to above-ground parts of
the infected plant. In tomato plants, first the tips and edges
of the lower leaves turn yellow, and V-shaped lesions form.
Symptoms include stunted growth and extensive defoliation,
which can be severe enough to lead to death of the plant
(Fradin and Thomma, 2006). Plants have evolved an intricate and
multilayered defense system to combat this infection, including
hypersensitive responses and phenotypes resistant to infection.
Plant responses to pathogens are usually classified as either
host resistant (incompatible interaction) or host susceptible
(compatible interaction) depending on the speed and extent
of the visible reaction to infection and the ability of plant to
limit pathogen growth. In general, following infection plant
responses consist of three steps: the pathogen recognition, signal
transduction, and the defense response itself, which involves
many genes expressing defense-related proteins, which regulate
complex signaling pathways (Jones and Dangl, 2006).

Tomato (Solanum lycopersicum) is one of the most
economically important crops throughout the world.Verticillium
wilt is a very important fungal disease of tomatoes and causes
severe reductions in yield and quality in many parts of the world
(Matta and Garibadli, 1997). The fungus develops extremely
persistent resting structures known as microsclerotia that are
capable of surviving in soil for many years. Chemical fumigation,
the only effective control measure, is costly and has harmful
environmental effects (Rowe et al., 1987; Fradin and Thomma,
2006). Efforts to develop varieties resistant to V. dahliae are
frustrated by the emergence of new pathogen strains, which
overcome the resistance. Therefore, the development of novel
methods is necessary to control the disease, which demands a
better understanding of the molecular mechanisms of interaction
between tomato plants and the pathogen. To achieve the goal, it
is of fundamental importance to uncover changes in tomato gene
expression following infection, which will help to exploit both
key genes in resistant and susceptible responses to V. dahliae.
Besides the employment of multiple resistance genes in resistance
breeding, knocking out (down) key susceptible genes could be an
alternative method to develop cultivars with durable resistance.

Previous studies have used plant transcript profiling to identify
differentially expressed genes (DEGs) in plant incompatible and
compatible interactions to pathogens (Balaji et al., 2008; Ishihara
et al., 2012; Du et al., 2014). In the compatible interaction between
tomato and Clavibacter michiganensis ssp. michiganensis, the
overwhelming majority of DEGs are induced, and it has been
suggested that cell wall strengthening, oxidative burst, defense-
related hormones and signaling, transcription factors and many
pathogenesis related (PR) proteins have roles in basal defense

(Balaji et al., 2008). Using analysis of DEGs in resistant and
susceptible tomato lines during bacterial spot race T3 infection,
Du et al. (2014) found similarities in the defensive mechanisms
activated in the two tomato lines. In recent years, changes
in gene expression induced by V. dahliae attack have been
studied using transcriptional profiling in a number of plant-
V. dahliae interactions (Gayoso et al., 2010; Xu et al., 2011;
Sun et al., 2013). Expressions of various genes were increased
or decreased in cotton resistance responses to V. dahliae (Xu
et al., 2011; Zhang et al., 2013). It was also found that DEGs
involved in lignin metabolism pathway played an important
role in cotton resistance responses to V. dahliae (Xu et al.,
2011). Using an RNA-seq approach, DEGs were identified in
incompatible interactions between cotton and V. dahliae, and
these were principally associated with cell wall, lipids, secondary
metabolism, etc., (Sun et al., 2013). Microarray analysis showed
that in both susceptible and tolerant interactions between tomato
and V. dahliae, increased expressions of PR proteins were
observed, but genes that were associated with foliar necrosis and
cell death in the susceptible interaction appeared to be suppressed
in the tolerant interaction (Robb et al., 2007). The identified
induced DEGs were implicated in pathogen recognition, reactive
oxygen species generation, phenylpropanoid metabolism, and
phytohormone signaling. As a result, plants infected by the
pathogen not only express a series of primary defense related
genes but also activate phytohormone signal transduction and
produce secondary metabolites such as phenylpropanoids.

Phenylalanine ammonia-lyase (PAL) is a key enzyme in
phenylpropanoid metabolism, regulating lignin accumulation
and the formation of defensive structures, along with and the
synthesis of phenols which act as chemical defenses. Compatible
and incompatible interactions between tomato and the pathogen
both alter the timing of the onset of H2O2 production, Peroxidase
activity, and PAL activity, but the response of susceptible
tomato is slower and milder than that of resistant one (Gayoso
et al., 2010). A similar result was also observed in cotton.
Susceptible cotton strains showed obviously slower expression
of lignin synthesis-related genes and PAL enzyme activity
than those of resistant plants challenged by V. dahliae (Xu
et al., 2011). In the compatible interaction between chickpea
and the necrotrophic fungus Ascochyta rabiei, the up-regulated
expression of PAL genes within 24 h of inoculation was verified
by real-time PCR results (Jaiswal et al., 2012). In addition to gene
changes related to the phenylpropanoid pathway in secondary
metabolism, the expression of several phytohormone regulation
molecules differs according to the type of pathogen attack.
Plant defense response signals may be amplified through the
generation of secondary signal molecules, such as salicylic acid
(SA), ethylene (ET), and jasmonic acid (JA), which play an
important role in defense signaling networks. In general, SA-
dependent responses are involved in resistance to biotrophic
or hemibiotrophic pathogens, whereas JA- and ET-mediated
signaling pathways are activated in response to necrotrophic
pathogens (Glazebrook, 2005). In Arabidopsis plants, infection
with the biotrophic pathogen Pseudomonas syringae, which
induces SA-mediated defense but suppresses the JA signaling
pathway, rendered plants more susceptible to the necrotrophic
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pathogen Alternaria brassicicola (Spoel et al., 2007). A study
in which tomato plants were challenged by the necrotrophic
pathogen A. alternata f. sp. lycopersici suggests that the JA
signaling pathway, which is dependent on the JAI1 receptor,
is implicated in tomato susceptibility (Jia et al., 2013). In
the compatible Ascochyta-chickpea interaction, most of the
induced genes were transcriptionally up-regulated within 24 h
of inoculation, these were involved in signaling and metabolic
regulation, and included genes involved in the JA response
(Jaiswal et al., 2012). These results suggest that the hormone
pathways involved in plant defensive responses usually operate
through complex networks of regulatory interactions.

Differential gene expression analyses have been carried
out comparing transcription profiles from incompatible and
compatible plant-V. dahlia interactions, and the functions of
defense-related transcripts have been analyzed in detail (van Esse
et al., 2009; Xu et al., 2011; Sun et al., 2013; Zhang et al., 2013).
However, few studies have focused on differential expression
profiles in compatible plant-V. dahlia interactions with the aim of
identifying key genes in susceptible responses. In order to identify
key functional genes in susceptible responses and understand
the molecular basis of compatible interactions we used next-
generation high-throughput RNA-seq to monitor and compare
DEGs in tomato roots inoculated with V. dahlia with those in a
control group over 2 days. The results revealed the transcriptome
of tomato roots infected by V. dahliae and a large number of
DEGs, and have the potential to assist in the development of new
disease control strategies. The analyses of DEGs were focused
on functional classification and the discovery of novel genes,
particularly those involved in plant–pathogen interactions and
secondary metabolic pathways.

Materials and Methods

Culturing of V. dahliae
The highly aggressive defoliating V. dahliae fungus isolate Vd080
(Li et al., 2014), which was kindly provided by Institute of
Cotton Research, Chinese Academy of Agricultural Sciences, was
cultured on potato dextrose agar (PDA) for 7 days at 25◦C (Zhou
et al., 2012). To obtain conidia the cultured isolate was then
incubated in Czapek liquid medium for 5 days at 25◦C. The spore
suspension obtained was diluted to approximately 1× 107 spores
per ml with sterile distilled water prior to inoculation.

Plant Material and Inoculation Method
Seeds of the Verticillium susceptible tomato cultivar, Micro-Tom,
were disinfected with 70% ethanol for 30 s and subsequently
with 2.5% (v/v) sodium hypochlorite for 8–10 min. After each
disinfection step, the seeds were washed with sterile water five
times. The seeds were sown in culture bottles containing MS
medium solidified with 0.8% plant agar. The seeds were pre-
germinated at 4◦C in the dark for 3 days, and subsequently
transferred to a growth chamber at 25◦C with a cycle of 16 h
light (photosynthetic photon flux density 120 µmol·m−2·s−1)
and 8 h dark. The roots of Micro-Tom seedlings with two
fully expanded true leaves were inoculated with Verticillium.

One milliliter of the V. dahliae spore suspension was directly
pipetted onto the MS medium surface of each culture bottle.
Control seedlings were similarly treated, but 1 ml of sterile water
was substituted for the 1 ml of V. dahliae spore suspension.
Each treatment was independently repeated five times in
five individual culture bottles, and each bottle contained five
seedlings. After inoculation, all culture bottles with seedlings
were kept in the growth chamber at 25◦Cwith a cycle of 16 h light
(photosynthetic photon flux density 120 µmol·m−2·s−1) and 8 h
dark.

Determination of the Time-Point for Harvesting
Samples
In order to mine tomato early responsive genes during
compatible interaction with V. dahliae, the spatial and temporal
expressions of genes require defining time points for collecting
plant materials after inoculation. The early responsive genes
of chickpea, involved in signaling and regulation of metabolic
changes, were induced by fungus A. rabiei during compatible
interaction 1 day post-inoculation (dpi; Jaiswal et al., 2012). The
defense-related genes of susceptible tomato roots were elicited
at 2 dpi in compatible interaction of tomato with V. dahliae
(Gayoso et al., 2010). To observe Micro-Tom tomato response
to V. dahliae, we performed the stem section cultivation from
different time points after inoculation. Based on the protocol of
fungal recovery assay described by Fradin et al. (2009), which
minor modification was made, the stem sections of Micro-Tom
tomatoes were cut at time points of 1, 2, 3, 4, 5, 6, and 7 dpi,
respectively, and incubated on PDA at 25◦C. V. dahliae mycelia
were observed on the cultured stem sections collected from
Micro-Tom tomatoes of 6 and 7 dpi, while no mycelium was
observed on those of 1, 2, 3, 4, 5 dpi. It indicated the cotton
roots of 2 dpi could be suitable for mining genes involved in
the compatible interaction of cotton and V. dahliae based on the
disease progress estimated by the length of stem sections to root
tips of 6 and 7 dpi, which is coincided with the related previous
reports (Gayoso et al., 2010; Sun et al., 2013). Therefore, the
roots of 2 dpi for both pathogen-infected and control seedlings
were sampled for the following RNA-Seq analysis. The roots
harvested from five time repetitions of each individual treatment
were mixed together and frozen immediately in liquid nitrogen
for later use.

RNA Extraction, Library Construction, and
RNA-Seq
Total RNA was extracted from each root sample by using
Trizol Reagent (Invitrogen, Life Technologies, Carlsbad, CA,
USA) following the manufacturer’s protocol. Purified poly (A)
+ mRNA was extracted from the total RNA sample using
Oligo(dT) magnetic beads. The mRNA was sheared into short
fragments by adding a fragmentation buffer. First-strand cDNA
was synthesized from these short poly (A) + mRNA fragments
by adding random primers and SuperScript II. Buffer, dNTPs,
DNA polymerase I, and RNaseH were then added to generate
second-strand cDNA. The double-stranded cDNA was end-
repaired by adding T4 DNA polymerase, Klenow Enzyme, and
T4 polynucleotide kinase. This was followed by a single ‘A’ base

Frontiers in Plant Science | www.frontiersin.org 3 June 2015 | Volume 6 | Article 428

http://www.frontiersin.org/Plant_Science/
http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Science/archive


Tan et al. Tomato transriptome induced by Verticillium

addition using Klenow 3–5′ exo-polymerase, then sequencing
adapters were ligated to the fragments using DNA ligase. For
high-throughput sequencing, the cDNA fragments (PE200) were
then separated by agarose gel electrophoresis and collected as
sequencing templates. Finally, the cDNA library was constructed
and sequenced on the Illumina HiSeqTM 2000 platform.

Alternative Splicing
To identify potential splicing sites that may contain information
about exon boundaries and combinations in a transcript, paired-
end reads were aligned to the S. lycopersicum reference genome
(Zouine et al., 2012) using TopHat software set at the default
parameters (Trapnell et al., 2009). According to all the junction
sites of the same gene, we predicted types of alternative splicing
(AS) events including exon skipping (ES), intron retention
(IR), alternative 3′ splice site (A3SS), alternative 5′ splice
site (A5SS), alternative first exon (AFE), and alternative last
exon (ALE).

Sequence Data and Differentially Expressed
Gene Analysis
The raw reads were filtered, discarding sequences of adapters,
reads with ambiguous bases ‘N’ and reads with more than 20%
Q < 30 bases. All sequences smaller than 60 bp in length were
also discarded following Meyer et al. (2009). The cleaned reads
were aligned to the tomato genome (Zouine et al., 2012) using
the spliced read mapper TopHat (Trapnell et al., 2012) version
2.01. Transcript abundance and differential gene expression were
calculated with the program Cufflinks (Trapnell et al., 2012)2. To
compare gene expression levels between the two libraries, the
relative transcript level of each expressed gene was calculated
and normalized to the reads per kilobase of exon model per
million mapped reads (RPKM) values (Mortazavi et al., 2008).
Significant differences in gene expression were detected using
the General Chi-squared test integrated in IDEG6 software3
(Romualdi et al., 2003). The P value threshold was determined
by the false discovery rate (FDR) to account for multiple tests
of significance. In this study, a FDR threshold ≤ 0.01 and Fold
change ≥ 2 were adopted to judge the significance of the gene
expression differences (i.e., the RPKM value of the gene in one
sample was at least two times that of the gene in the other sample;
Benjamini and Yekutieli, 2001).

To determine the functional annotation of DEGs, a BLAST
(Basic Local Alignment Search Tool) alignment was performed
by searching the Non-redundant (Nr), SwissProt, Kyoto
Encyclopedia of Genes and Genomes (KEGG), and Clusters
of Orthologous Groups (COG) protein databases with an
E-value ≤ 1e-5.The best matches were selected to annotate the
DEGs. Blast2go software4 was also used with an E-value ≤ 1e-5,
to annotate the DEGs’ major Gene Ontology (GO) categories,
including molecular functions, biological processes, and cellular
components (Conesa and Götz, 2008).

1http://www.tophat.cbcb.umd.edu
2http://cufflinks.cbcb.umd.edu/
3http://telethon.bio.unipd.it/bioinfo/IDEG6/
4http://www.blast2go.org

Real-Time Quantitative PCR (RT-qPCR)
Analysis of the DEGs
Total RNA and cDNA syntheses were performed as described
above to prepare and sequence the inoculated and control Micro-
Tom tomato libraries. Primers of ten randomly selected DEGs
and tomato actin gene as the control (Fradin et al., 2009) for
RT-qPCR analysis were designed using DNAMAN6.0 software.
RT-qPCR reactions were performed in 384-well plates using an
ABI 7900HT Real Time PCR System (Applied Biosystems, Life
Technologies, Carlsbad, CA, USA) and a SYBR R© Premix Ex
TaqTM (Tli RNaseH Plus), ROX plus (Takara Bio Inc., Shiga,
Japan). The cycling conditions were as follows: 30 s denaturation
at 95◦C, followed by 40 cycles at 95◦C for 5 s, and 60◦C for 30 s.
The relative expression levels were normalized and calibrated
according to the 2−��CT method (Livak and Schmittgen, 2001).
Three biological replicates and three technical replicates were
carried out for each of the selected genes.

Results

Sequence Analyzing and Aligning to the
Reference Genome
To obtain a transcriptome profile of Micro-Tom tomato response
to V. dahliae, two cDNA samples were extracted at 2 dpi from
the roots of V. dahliae-inoculated (treatment) tomatoes and
sterilized water-inoculated (control) tomatoes. The mRNA-seq
libraries constructed for treatment or control tomatoes were
sequenced using Illumina mRNA-Seq technology, generating
more than 2 G of transcriptome data from each library. After
stringent quality assessment and data cleaning, approximately 25
million (M) reads with 80% Q30 bases (those with a base quality
greater than 30) were selected as high quality reads for further
analysis. The high quality reads in this study were deposited in
the NCBI SRA database (accession number: SRX1022130). An
average ‘G + C’ content of above 40% (43.82, 45.68% for control
and treatment libraries, respectively) was found. Of the selected
reads, 89.15% from the control sample and 71.04% from the
treatment sample were aligned onto the tomato reference genome
and matched either unique or multiple genomic locations. The
remaining 10.85 and 28.96% were unmapped on the tomato
genome (Table 1).

TABLE 1 | Summary of read numbers aligned onto the tomato reference
genome.

Statistical
content

Control Treatment

Number Percentage Number Percentage

Total reads 29,117,570 100% 21,893,066 100%

Mapped reads 25,957,067 89.15% 15,553,076 71.04%

Uniquely mapped
reads

8,126,050 27.91% 4,588,929 20.96%

Multiple mapped
reads

17,831,017 61.24% 10,964,147 50.08%

Unmapped reads 3,160,503 10.85% 5,739,990 28.96%

Frontiers in Plant Science | www.frontiersin.org 4 June 2015 | Volume 6 | Article 428

http://www.tophat.cbcb.umd.edu
http://cufflinks.cbcb.umd.edu/
http://telethon.bio.unipd.it/bioinfo/IDEG6/
http://www.blast2go.org
http://www.frontiersin.org/Plant_Science/
http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Science/archive


Tan et al. Tomato transriptome induced by Verticillium

Identification of Alternative Splicing Events
Alternative splicing produces diverse transcript variants from a
single gene through the selective use of different splice sites,
resulting in multiple protein products being generated from a
single splicing gene (Nilsen and Graveley, 2010). Many plant
genes undergo AS in response to pathogen attacks (Barbazuk
et al., 2008). To investigate AS events in the compatible tomato-
V. dahliae interaction, the sequence reads mapped to tomato
genome regions were identified using computational analyses to
find all theoretical splicing junctions. The following six types
of AS events were present: alternative 3′ splice site (A3SS),
alternative 5′ splice site (A5SS), ES, IR, AFE, and ALE (Table 2).
Of the above six AS events, 7170 AS events from control samples
and 5653 AS events from treatment samples were identified in
4833 and 4068 genes, respectively. IR was the most common type
of AS, accounting for 30.8 and 32.8% of all AS events in control
and treatment samples, respectively, while a rarer proportion
of ALE events were detected in both control and treatment.
Interestingly, the total number of AS events and the number of
genes in which they occurred was lower in V. dahliae inoculated
tomatoes than in control ones.

Functional Annotation and Classification of
Differentially Expressed Genes
To study the DEGs between the control and the treatment
tomatoes, we employed a General Chi-squared test with FDR
correction and a P value of 0.01 using IDEG6 software to
identify twofold up-regulated and twofold down-regulated genes.
Significantly different expression levels between the control and
the treatment samples were found in 1,985 genes. Of those
genes, 1,307 genes were up-regulated and 678 genes were down-
regulated in the treatment sample (Supplementary Table S1).
In Figure 1, the significantly up-regulated and down-regulated
DEGs are indicated by blue and red dots, respectively.

To identify the main functional groups of the DEGs, we
used a BLASTx search of the Nr, Swiss-Prot, KEGG, COG, and
GO databases. This indicated that 1,953 DEGs (98.39%) had

TABLE 2 | Predicted Alternative splicing (AS) events in Micro-Tom tomato.

Alternative
splicing type

Control Percentage Treatment Percentage

Alternative 3′
splice site (A3SS)

1,173 16.4% 865 15.3%

Alternative 5′
splice site (A5SS)

670 9.3% 507 9.0%

Exon skipping
(ES)

1,398 19.5% 1,091 19.3%

Intron retention
(IR)

2,211 30.8% 1,853 32.8%

Alternative first
Exon (AFE)

1,380 19.2% 1,071 18.9%

Alternative last
Exon (ALE)

338 4.7% 266 4.7%

Total AS events 7170 100% 5653 100%

Loci having AS
events

4833 4068

FIGURE 1 | Scatter plots of differentially expressed genes (DEGs)
between control and treatment tomatoes. The y-axis shows the
expression level of treatment tomatoes and the x-axis is the expression level
of control tomatoes.

significant matches in the Nr database, with 1,579 (79.55%) in
the Swiss-Prot database, and 380 (19.14%) in the KEGG database
(Table 3). A total of 1,953 DEGs (98.39%) had annotation
information in one or more of the Nr, Swiss-Prot, GO, KEGG,
and COG databases (Supplementary Table S2).

The identified functional classes of the DEGs were subjected
to GO enrichment analysis. According to the results of sequence
alignments, 1,739 differential sequences were classified into 51
functional groups, belonging to three main categories: cellular
components (1,563), molecular functions (1,430), and biological
processes (1,620) (Figure 2). In the cellular component category,
most DEGs were localized to cell part, cell and organelle and
membrane. A fewDEGs were localized to the extracellular matrix
and nucleoid. In the molecular function category, a large number
of DEGs were involved in catalytic activity and binding. In
addition, a few DEGs belonged to two functional subclasses

TABLE 3 | Functional annotation of the differentially expressed genes
(DEGs) between control and treatment tomatoes.

Annotated databases DEGs number Percentage

Nr-annotation 1,953 98.39%

Swiss Prot-annotation 1,579 79.55%

Gene Ontology (GO)-annotation 1,739 87.71%

Kyoto Encyclopedia of Genes and
Genomes (KEGG)-annotation

380 19.14%

Clusters of orthologous groups
(COG)-annotation

862 43.43%

Total 1,953 98.39%
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FIGURE 2 | Gene Ontology (GO) categories of DEGs between control and treatment tomatoes.

involved with protein binding transcription factor activity and
metallochaperone activity. In the biological processes category,
many DEGs were involved in cellular processes, metabolic
processes, responses to stimuli, and biological regulation. Several
DEGs were found to participate in biological adhesion, cell
killing, cell proliferation, locomotion, viral reproduction, and
carbon utilization. In total, these results indicate that most of
the identified DEGs were responsible for fundamental processes
associated with biological regulation and metabolism. KEGG
pathway enrichment analysis was performed to categorize the
biological functions of DEGs. A total of 290 DEGs were allocated
to 87 KEGG pathways (Supplementary Table S3). The pathways
involving the highest number of DEGs (29, 10.00%) were
phenylalanine metabolism and phenylpropanoid biosynthesis,
followed by plant hormone signal transduction (25; 8.62%),
plant–pathogen interaction (24; 8.28%), cysteine and methionine
metabolism (15; 5.17%), protein processing in endoplasmic
reticulum (15; 5.17%), and oxidative phosphorylation pathways
(15; 5.17%). These results suggest that phenylalanine metabolism
and phenylpropanoid biosynthesis, signal transduction, and
plant–pathogen interaction pathways were more involved in
tomato susceptible response to V. dahliae, which is similar
to those major pathways involved in plant and pathogen
interactions in previous reports (Glazebrook, 2005; Robb et al.,
2007; Spoel et al., 2007; Xu et al., 2011; Jaiswal et al., 2012; Sun
et al., 2013; Zhang et al., 2013). Therefore, the DEGs involved
in these pathways were considered as the candidates related to
tomato susceptibility to V. dahliae.

According to the annotation from the COG database, 862
DEGs were classified into different COG classes. While 642
of 862 DEGs can be classified into 20 functional categories
based on COG annotation, and the rest (220 DEGs) of
862 DEGs were without COG annotation. The DEGs of 20

functional categories were sequenced based on their number as
follows, general function prediction only (104), posttranslational
modification, protein turnover, chaperones (91), secondary
metabolites biosynthesis, transport and catabolism (70), amino
acid transport and metabolism (57), carbohydrate transport
and metabolism (43), energy production and conversion
(41), function unknown (38), inorganic ion transport and
metabolism (34), lipid transport and metabolism (31), defense
mechanisms (23), signal transduction mechanisms (21), cell
wall/membrane/envelope biogenesis (19), transcription (16),
translation, ribosomal structure and biogenesis (15), coenzyme
transport andmetabolism (14), intracellular trafficking, secretion,
and vesicular transport (9), nucleotide transport and metabolism
(7), replication, recombination and repair (5), cytoskeleton (3),
RNA processing and modification (1). The DEGs involved
in signal transduction mechanisms, secondary metabolites
biosynthesis, transport and catabolism, and defense mechanisms
are of interest because DEGs in these functional categories might
participate in secondary metabolites and complex signaling
pathways in response to the pathogen. In the 220 DEGs without
COG annotation 94 DEGs belonging to COG class of RTKL
were mainly homologous to receptor kinase genes based on
the Nr annotation, suggesting that these DEGs could involve
in the upstream of the tomato susceptible response pathway to
V. dahlia. It indicated that more than 85% (80 DEGs) of the
RTKL DEGs were up-regulated, implying that activated kinase
genes were more in tomato susceptible response toV. dahlia than
suppressed ones.

Selection of the Core Candidates Related to
Tomato Susceptibility to V. dahliae
It is important to select the candidate genes for further study after
obtaining transcriptomic data. Based on the results of KEGG,
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COG, GO and Nr annotation, the first set of candidates related
to tomato susceptibility to V. dahliae was selected from DEGs
involved in three KEGG pathways (phenylalanine metabolism
and phenylpropanoid biosynthesis, signal transduction, and
plant–pathogen interaction) was selected as the candidates
(Supplementary Table S4). The second set of candidates was
selected from the rest of DEGs not included in KEGG pathway
based on COG classification and the expression change levels
of DEGs. For COG classes, which DEGs had higher expression
change levels (up-regulated, log2FC > 3.5 or down-regulated,
log2FC < −3.5), the up-regulated DEGs (log2FC > 3.5), and
the down-regulated ones (log2FC < −3.5) were selected into
the second set of DEGs; for COG classes, all of which DEGs
had lower expression change levels (up-regulated, log2FC < 3.5
or down-regulated, log2FC > −3.5), the up-regulated DEG
with the highest expression change level and down-regulated
one with highest expression change level were selected for
each COG class (Supplementary Table S4). The third set of
candidates was selected from the rest of DEGs not included in
KEGG pathway and COG classes based on the GO classification
and the expression change levels of DEGs with the same
standard as that for the candidate selection in COG classes.
The fourth set of candidates was selected from the rest of
DEGs not included in KEGG pathway, COG, and GO classes
based on the expression change levels of DEGs with the same
standard as that for the candidate selection in COG and
GO classes (Supplementary Table S4). In the fourth set three
new genes were included, for which no match was found in
tomato cDNA database. In total 290 candidates were selected.
These candidate DEGs will be further verified whether they
are key genes involved in tomato susceptible responses to
V. dahliae.

Validation of Differentially Expressed Genes by
RT-qPCR
In order to validate the gene expression data from RNA-seq,
RT-qPCR of 10 randomly selected DEGs (five up-regulated and
five down-regulated) was conducted with gene specific primers
(Supplementary Table S5). Expression timing patterns of the
investigated genes were analyzed in tomato root samples at four
time-points (0, 1, 2, and 3 dpi). In each of three biological
replicates, the expression patterns of the randomly selected DEGs
according to RT-qPCR were in agreement with those obtained by
the RNA-Seq at 2 dpi (Figure 3), suggesting that the RNA-seq
data reflected the real expression patterns of the tomato genes in
the compatible interaction.

Discussion

In the biological process enrichment, the overwhelming majority
of the DEGs were related to cellular processes, metabolic
processes, responses to stimuli, and biological regulation.
Similarly, in a UniGene analysis of cotton resistant response to
V. dahliae, metabolic and cellular processes and responses to
stimuli were also among the most highly represented groups
associated with biological processes of (Zhang et al., 2013).

It suggests that similar genes could be employed by both
plant susceptible and resistant responses to V. dahliae. In the
compatible interaction between tomato plants and the gram-
positive bacterium Clavibacter michiganensis ssp. michiganensis,
the basal defense responses of tomato are activated, and result
in induction of a large number of defense genes, hormone
involvement, oxygen metabolism, and protein degradation
(Balaji et al., 2008). Our results show a similar activation
of basal defense response related genes, suggesting that there
may be an overlap among the susceptible responses of tomato
to bacterial and fungal pathogens. In addition to the general
function prediction, functional COG categories revealed that the
identified DEGs were mainly involved in signal transduction
mechanisms, transcription, secondary metabolism biosynthesis,
transport and catabolism, similar to the results obtained in the
biological process enrichment. It seems that, regardless of the
functional annotation method applied the DEGs identified were
mainly involved in metabolism and signal transduction. These
results suggest that V. dahliae infection causes drastic metabolic
changes in susceptible tomatoes leading to the accumulation of
different proteins and secondary metabolites in roots, similar
to the results about a previous study on tomato response to
V. dahliae infection (Yadeta and Thomma, 2013).

To further understand the biological functions of the
identified DEGs, a KEGG pathway enrichment analysis was
carried out. Of the 87 pathways examined, the four pathways
with the most associated DEGs (a total of 107) were
phenylalanine metabolism, phenylpropanoid biosynthesis, plant
hormone signal transduction, and plant–pathogen interaction.
Among these DEGs associated with these four pathways, the
overwhelming majority were up-regulated in roots of tomatoes
that had received the pathogen inoculation treatment. In plant–
pathogen interactions, the phenylpropanoid pathway plays a
critical role in plant defense response to V. dahliae (Gayoso
et al., 2010; Xu et al., 2011). It has also been reported that some
genes involved in the phenylpropanoid pathway are induced
during the compatible interaction of lettuce with the fungal
pathogen Botrytis cinerea (de Cremer et al., 2013). Although
this metabolic pathway was activated in both susceptible and
resistant plants, the response of susceptible plants was slower
and milder than that of resistant ones (Gayoso et al., 2010).
The onset of the first key step in the pathway involves PAL
which functions as a catalyst for phenylpropanoid metabolism.
Gayoso et al. (2010) reported that PAL activity was increased
in resistant tomato plants 2 hpi, while the induction of
PAL activity in susceptible plants was not seen until 2 dpi.
Of the six PAL genes with differing patterns of expression
following V. dahliae inoculation, only PAL3 had increased
expression 2 dpi in roots of susceptible plants, which coincided
with an increase in PAL activity in the roots of inoculated
susceptible plants. Our results also revealed that most of the
DEGs involved in this pathway were up-regulated at 2 dpi.
Intriguingly, two up-regulated DEGs were mapped to the node
of phenylpropanoid biosynthesis (EC 4.3.1.24; K10775), which is
associated with PAL1, PAL2, PAL3, and PAL4. One of the two
genes, Solyc03g042560.1, corresponds with PAL1 in tomatoes,
but the associated biological process is as yet unclear (Gayoso
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FIGURE 3 | Validation of the selected 10 DEGs in tomato Micro-Tom roots with RT-qPCR. (A,B) represent five up-regulated and five down-regulated genes,
respectively. SD with the average for three technical replicates are displayed.

et al., 2010). The other gene, Solyc10g011930.1, is not designated
as associated with any PAL in tomatoes in the databases of
the National Center for Biotechnology Information5. Therefore,
further research is necessary to elucidate the biological functions
of these two PAL genes in susceptible tomatoes inoculated by
V. dahliae.

Plant–pathogen interactions are complex processes that
trigger a series of molecular responses at several expression
levels. While resistant plants initiate responses in incompatible
interactions, susceptible plants can also launch a series of basal
defense responses in compatible interactions. Although they
present similar expression profiles, defense gene induction in
compatible interactions occurs later than that in incompatible
interactions (Tao et al., 2003; Li et al., 2006; Balaji et al.,
2008; Lara-Ávila et al., 2012). In the compatible chickpea–
Ascochyta interaction, most of the genes analyzed were
rapidly induced and transcriptionally up-regulated 1 dpi. Most
of the up-regulated genes were related to plant–pathogen
interactions (Jaiswal et al., 2012). Likewise, a study which
compared the response of compatible potato inoculated with
Phytophthora infestans to that of a control sample uncovered
significant differential expression of many defense- and disease-
responsive genes (Restrepo et al., 2005). In light of these
facts, we selected one late time point (2 dpi), at which
the expression profile of susceptible tomato roots was well
revealed by RNA-seq. As mentioned before, more defense
DEGs were induced and up-regulated in inoculated tomatoes
in the control sample. Among these, in addition to those
participating in the phenylpropanoid pathway, there were
24 DEGs assigned to nodes of plant–pathogen interaction
pathways, of which 23 were up-regulated DEGs. In plant–
pathogen interactions, plant hormone signaling transductions
have been widely studied in different regulation pathways.
In general, plants employ SA-dependent pathway against
biotrophic pathogens, and adopt JA and ET signaling to combat
necrotrophic pathogens (Glazebrook, 2005). JA signaling has

5http://www.ncbi.nlm.nih.gov/

been shown as key to basal resistance to necrotrophic fungi
in tomatoes (AbuQamar et al., 2008; El-Oirdi et al., 2011).
Several studies have confirmed that JA-ZIM domain (JAZ)
is a negative regulator of JA signaling (Yan et al., 2007;
Chung and Howe, 2009). Demianski et al. (2012) found that
JAZ10 was one of the most highly induced genes among
twelve JAZs induced in Arabidopsis by the bacterial pathogen
P. syringae strain DC3000, and enhances susceptibility via
a branch of the JA signaling pathway. Our results show
that all four DEGs at the JAZ node were up-regulated in
susceptible tomatoes. These DEGs were Solyc07g042170.2,
Solyc12g009220.1, Solyc03g122190.2, and Solyc06g068930.1,
which are assigned to the SlJAZ1, SlJAZ2, SlJAZ3, and SlJAZ8
tomato proteins, respectively (Sun et al., 2011). Whether
these tomato JAZ proteins play a role in the regulation of
JA signaling and promotion of tomato susceptibility to the
necrotrophic fungus V. dahliae still needs further validation.
Hence, verifying the biological functions of these genes is likely
to help elucidate the molecular basis of susceptible responses to
V. dahliae.

In this study about 66% of the total DEGs (1,953) were up-
regulated and about 34% were down-regulated. For the DEGs
involving in the upstream of the tomato susceptible response
pathway to V. dahlia, the percentages of up-regulated genes were
even higher. For example, for the DEGs belonging to COG class
of RTKL, which were homologous to receptor kinase genes, more
than 85% (80 DEGs) of the RTKL DEGs were up-regulated. It
implied that susceptible response probably needs more genes to
be activated than to be suppressed. However, the reason why
different genes belonging to the same class showed different
regulation patterns (up or down) in the tomato and V. dahliae
interaction needs further study.

Conclusion

Although the molecular mechanisms of plant defense responses
to pathogens are increasingly being determined, few studies
have shown that plants can become susceptible to disease
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via complex signaling pathways. This study provides valuable
information concerning gene expression patterns of tomato
roots susceptible to V. dahliae, which are believed to be
molecular signaling mechanisms and may be part of a complex
regulatory process. The present transcriptome analysis should
promote further investigations into the detailed regulatory
pathways regulating tomato susceptibility to V. dahliae,
and contribute to a better understanding of the susceptible
response of tomatoes to necrotrophic fungi. Future work
should aim to further characterize the functions of the
selected candidate DEGs involved in tomato-V. dahliae
interactions (Supplementary Table S4), and elucidate the role
of the genes involved in tomato susceptibility. This will help
to determine the detailed regulatory mechanisms of plant
diseases and develop new strategies for controlling tomato
pathogens.
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