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induces long-term metabolic and
transcriptional changes involved in
Arabidopsis thaliana salt tolerance
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Salinity is one of the major limitations for food production worldwide. Improvement
of plant salt-stress tolerance using plant-growth promoting rhizobacteria (PGPR) has
arisen as a promising strategy to help overcome this limitation. However, the molecular
and biochemical mechanisms controling PGPR/plant interactions under salt-stress
remain unclear. The main objective of this study was to obtain new insights into
the mechanisms underlying salt-stress tolerance enhancement in the salt-sensitive
Arabidopsis thaliana Col-0 plants, when inoculated with the well-known PGPR strain
Burkholderia phytofirmans PsJN. To tackle this, different life history traits, together
with the spatiotemporal accumulation patterns for key metabolites and salt-stress
related transcripts, were analyzed in inoculated plants under short and long-term
salt-stress. Inoculated plants displayed faster recovery and increased tolerance after
sustained salt-stress. PsJN treatment accelerated the accumulation of proline and
transcription of genes related to abscisic acid signaling (Relative to Dessication, RD29A
and RD29B), ROS scavenging (Ascorbate Peroxidase 2), and detoxification (Glyoxalase
1'7), and down-regulated the expression of Lipoxygenase 2 (related to jasmonic acid
biosynthesis). Among the general transcriptional effects of this bacterium, the expression
pattern of important ion-homeostasis related genes was altered after short and long-
term stress (Arabidopsis KT Transporter 1, High-Affinity K+ Transporter 1, Sodium
Hydrogen Exchanger 2, and Arabidopsis Salt Overly Sensitive 7). In all, the faster and
stronger molecular changes induced by the inoculation suggest a PsJN-priming effect,
which may explain the observed tolerance after short-term and sustained salt-stress
in plants. This study provides novel information about possible mechanisms involved
in salt-stress tolerance induced by PGPR in plants, showing that certain changes are
maintained over time. This opens up new venues to study these relevant biological
associations, as well as new approaches to a better understanding of the spatiotemporal
mechanisms involved in stress tolerance in plants.

Keywords: plant growth promoting rhizobacteria (PGPR), ion transport, osmotic stress response, priming, abiotic
stress tolerance, reactive oxygen species (ROS), rhizosphere, beneficial bacteria
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Introduction

Salinity is one of the most limiting factors in agriculture,
affecting more than 45 million ha of irrigated land worldwide
(Munns and Tester, 2008). It reduces plant growth and crop
quality, with estimated annual global costs equivalent to US$
150 million in 2011 (FAO, 2011). Hence, increased salt tolerance
of crops and horticultural species is needed to sustain the
growing demand for food production in many regions of the
world (Gupta and Huang, 2014). In the early stages of stress,
salinity affects osmotic potential in plants, limiting their water
uptake (Munns, 2005). If salt exposure is prolonged, ions (mainly
Na™) accumulate inside the cells causing toxicity (Munns, 2005;
Munns et al., 2006) and growth decrease by impairing metabolic
processes and reducing photosynthetic efficiency (Deinlein et al.,
2014). As a result of both osmotic and ionic stress, plants
accumulate reactive oxygen species (ROS) and toxic compounds
that may lead to cell death (Mittler, 2002; Ismail et al,
2014).

Plants have evolved various mechanisms to cope with this
stress (Munns and Tester, 2008; Zhang and Shi, 2013; Gupta
and Huang, 2014) and it has been recently proposed that
the timing of their response to salt-stress is one of the key
factors that influences the ultimate response outcome, ranging
from adaptation to plant death (Geng et al., 2013; Ismail
et al., 2014). At the onset of stress, there is an early response
characterized by a growth arrest that involves detoxification
activity, ROS scavenging, a general hormonal response mainly
related with abscisic acid (ABA) and the adjustment of osmotic
potential (Ismail et al., 2014). ROS scavenging is carried out by
enzymes such as ascorbate peroxidases (Davletova et al., 2005;
Abogadallah, 2010; Bharti et al., 2013), superoxide dismutase,
catalase, glutathion reductase, and glutathion s-transferase (Apel
and Hirt, 2004; Gill and Tuteja, 2010). On the other hand
detoxification is related to crucial pathways, such as the
glyoxalase pathway that detoxifies methylglyoxal (Mustafiz et al.,
2011; Kwon et al,, 2013). ABA response is characterized by the
expression of various genes such as RD29A and RD29B related
to several abiotic stresses (Yamaguchi-Shinozaki and Shinozaki,
1994; Hu et al., 2013). Finally, osmotic potential adjustment is
regulated by the accumulation of proline and other compatible
solutes (Sneha et al., 2013).

The second phase of the response to salinity is caused by
the accumulation of salt ions at toxic levels and needs more
time to develop (Munns, 2005; Shavrukov, 2013; Ismail et al.,
2014). To protect themselves against Na™ toxicity, plants have
specific tissue-dependent mechanisms that minimize ion entry
into cells, as well as Na™ exclusion or storage into vacuoles
(Lv et al.,, 2012; Fan et al., 2014) and/or in older leaves (Munns,
2002; Munns and Tester, 2008). This is achieved by the activity
of diverse ion transporters, in a complex mechanism that is
not completely understood (Rozema and Schat, 2013; Zhang
and Shi, 2013; Deinlein et al.,, 2014; Gupta and Huang, 2014).
It has been proposed that HKT1, a plasma membrane Na*
transporter, localized mainly in the xylem parenchyma cells
(XPC), acts by unloading Na* from the xylem sap into XPC in
the roots, preventing excessive amounts of Na¥ from reaching

the shoots (Munns et al., 2012). It is believed that the excess of
sodium in the XPC is excluded to the apoplast by the plasma
membrane Nat/HT antiporter SOS1 (Shi et al., 2002; Ariga
et al., 2013). The vacuolar storage of sodium in almost all cells
is conducted mainly by vacuolar Na*/H* antiporters of the
NHX family (Kronzucker and Britto, 2011). Recently, a possible
alternative mechanism for sodium compartmentalization via
vesicle trafficking has been also proposed (Garcia de la Garma
etal., 2015).

Many studies have shown the use of plant growth promoting
rhizobacteria (PGPR, Kloepper and Schroth, 1981) as a valuable
strategy to improve plant growth (Reviewed in Lugtenberg
and Kamilova, 2009) and, more recently, to confer abiotic
stress tolerance in plants (Egamberdieva et al., 2008; Zahir
et al., 2008; Kaymak et al.,, 2009; Yang et al., 2009; Upadhyay
et al, 2012; Chang et al, 2014; Naveed et al, 2014). In
relation to salt-stress, it has been shown that the inoculation
of PGPR in some plant species promotes growth and nutrient
uptake under saline conditions (Mayak et al., 2004; Dodd
and Perez-Alfocea, 2012; Han et al, 2014). In maize (Zea
mays), inoculation with Pseudomonas sp. promotes growth
and increases the chlorophyll content of plants exposed
to salinity (Nadeem et al, 2007). In cotton (Gossypium
hirsutum), treatment with Klebsiella oxytoca promotes growth
and nutrient uptake of plants grown in saline media (Liu
et al., 2013). The identification and exploitation of these
microorganisms that interact with plants by alleviating stress
opens new alternatives for developing a strategy against salinity
challenge, as well as novel approaches to discover hitherto
unknown pathways involved in stress tolerance (Dodd and
Perez-Alfocea, 2012). Nevertheless, the molecular mechanisms
underlying these plant-bacteria interactions under salt-stress
are far from being understood. To tackle this issue, the salt-
sensitive Arabidopsis thaliana ecotype Col-0 plants and the
well-known PGPR Burkholderia phytofirmans PsJN, were used
as model organisms in this study. The phenotypical effects of
PsJN strain inoculation were studied under short and long-
term salt-stress in plants, considering their whole life cycle,
finding that inoculation increased plant growth and tolerance
to various salt concentrations. Also, spatiotemporal molecular
and biochemical responses of A. thaliana plants exposed to
salt-stress were investigated in the early and later stages of
stress. Amongst the changes produced by bacterial treatment, a
promotion of metabolic and transcriptional responses associated
to salt tolerance was noted. These changes included a faster
accumulation of proline, accelerated induction of general abiotic
stress responsive genes, and a transcriptional regulation of genes
involved in ion homeostasis during salt-stress. Interestingly,
some of these responses were maintained over time after long-
term exposure to salinity. The anticipation of the molecular
response to salt-stress along with the transcriptional changes in
ion transporter genes could explain, at least in part, the improved
salt stress tolerance of inoculated plants along their whole life
cycle. To the best of our knowledge, this is one of the first
reports of a detailed molecular and phenotypical analysis of the
spatiotemporal responses of plants under salt-stress inoculated
with a PGPR.
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Materials and Methods

Plant Growth Conditions and Treatments
Burkholderia phytofirmans PsJN, kindly provided by Angela
Sessitsch (AIT, Austria), was routinely grown in liquid minimal
saline medium containing 10 mM fructose, in an orbital shaker
(150 rpm) at 30°C. Cell suspensions from each inoculum were
then collected and adjusted to approximately 10® colony forming
units per milliliter (CFU/ml), as determined by plate counting.
Col-0 A. thaliana seeds were obtained from the ABRC. Seeds
were surface sterilized with 50% sodium hypochlorite (100%
commercial laundry bleach containing 0.1% Tween 20, rinsed
three times with sterile water, and kept at 4°C for 7 days to
synchronize germination. Square Petri dishes were prepared with
half strength Murashige and Skoog (1962) medium (MS1/2)
0.8% agar. To prepare the inoculated plates, the initial inoculum
(108 CFU/ml) was homogenously diluted in MS1/2 0.8% agar
just before gelling to reach a final concentration of 10* CFU
per ml of medium. Then, sterilized and synchronized seeds were
sown in the Petri dishes with MS1/2 medium inoculated or
not with the strain. To assess the effect of inactivated bacteria,
an inoculum was heated at 95°C for 20 min and then used
at the same dilution of 10* CFU per ml of MS1/2 medium
(Poupin et al, 2013). Mortality was corroborated by plate
counting. Plates were placed vertically in a growth chamber
at 22°C with a photoperiod of 16/8 h (light/dark). At day 11
after sowing (11 DAS) plants were transplanted to MS1/2 with
saline concentration ranging from 0 mM NaCl/0 mM CaCl,
to 250 mM NaCl/25 mM CaCl,. After 7 days in saline media
different growth parameters were determined in plants. For the
recovery treatment plants inoculated and stressed as described
before were transferred to individual pots with a 2:1 mix of
peat/vermiculite at 18 DAS and were watered normally. For the
long-term salt stress seeds were sown on MS1/2 (0.8% agar)
inoculated or not as described above and at 11 DAS were
transferred to individual pots with a 2:1 mix of peat/vermiculite.
After 7 days of acclimation, plants were irrigated two times per
week with 150 mM NaCl/15 mM CaCl, and one time with
water.

Plant Growth Measurements and Statistical
Analysis

Fresh weight of plants was determined with a Shimadzu
analytical balance (Shimadzu Corporation, Japan). The plants
in soil were photographed every 2 days, starting 7 days after
transplantation; rosette area color patterns were calculated using
Adobe Photoshop Cs3 software (Adobe Systems Incorporated,
San Jose, CA, USA). Senescent leaves were considered as those
with at least 1/3 of their area with senescence signs. Stem
length was registered using a ruler. T-student was used to
compare rosette area between stressed inoculated and non-
inoculated plants. When the experiments considered two factors
(bacteria and salt) two-way ANOVA was used. Kolmogorov-
Smirnov test was used for normality evaluation, and Hartley and
Bartlett test for homogeneity of variances evaluation. Statistical
analyses were carried out using the General Linear Models
option in the statistical software Prism Graphpad 5 (GraphPad

Software, Inc., La Jolla, CA, USA). When differences in the means
were significant, a Bonferroni correction test was performed.
Bonferroni correction was applied to determine which treatments
were significantly different from others.

Proline Extraction and Measurement

Proline extraction was performed according to a modification
of Bates et al. (1973) method. Plantlets were collected 2, 24,
and 48 h after salt-stress. For each treatment seven to ten
plants were used per replicate, and three to six replicates were
used per treatment. Plants were weighed on an analytic balance
(Shimadzu Corporation, Japan) and grounded with a pestle in an
eppendorf tube containing a sulfosalicylic acid 140 mM solution.
The resulting solution was filtered through a N°1 filter paper
(11 pm; GE Healthcare, Hartford, CT, USA). This liquid extract
was then mixed with an acid ninhydrin 140 mM solution and
glacial acetic acid in a 1:1:1 proportion. Tubes were heated at
100°C for one hour and cooled on ice. Toluene was added in a
1:1 proportion, and the reaction mixture was vigorously agitated.
Organic fraction was separated and added to a quartz cuvette for
absorbance measurement of the ninhydrin-proline complex at
520 nm by spectrophotometry. A proline calibration curve was
performed using 10, 20, 25, 40, 50, 75, 100, 150, and 200 pg
of commercial proline. Finally, values were corrected using the
following formula:

. -1, Asyp
Proline (g g ) = 0.0489 x g
RNA Extraction, cDNA Synthesis, and
qgRT-PCR Analyses

For short-term stress experiments, plants were treated as
described. RNA extractions were performed on plantlets before
being transplant to saline media (150 mM NaCl/15 mM CaCl,),
and 2, 24, or 72 h after transplant. About 50 plantlets per
treatment were separated in five groups; roots; and rosettes
were separated and collected in different eppendorf tubes. For
long-term stress experiments plants were transferred to soil as
described before, and RNA extraction was performed at 46 DAS.
Five plants were used per treatment, and in each one the oldest
and the newest leaves were collected in different eppendorf
tubes. Then, RNA was obtained using the Trizol® (Invitrogen™,
USA) method following the manufacturer’s instructions. For
cDNA synthesis, 1 pg of total RNA treated with DNAse I
(RQ1, Promega, USA) was reverse transcribed with random
hexameric primers using the Improm II reverse transcriptase
(Promega, USA), according to the manufacturer’s instructions.
Real time (RT)-PCR was performed using the Brilliant® SYBR®
Green QPCR Master Reagent Kit (Agilent Technologies, USA)
and the Eco RT PCR detection system (Illumina®, USA) as
described by Poupin et al. (2013). The PCR mixture (10 pl)
contained 2.0 pl of template cDNA (diluted 1:10) and 140 nM of
each primer. Amplification was performed under the following
conditions: 95°C for 10 min, followed by 40 cycles of 94°C,
30 s; 58-60°C, 30 s; and 72°C, 30 s, followed by a melting
cycle from 55 to 95°C. Relative gene expression calculations
were conducted as described in the software manufacturer’s
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instructions: an accurate ratio between the expression of the gene
of interest (GOI) and the housekeeping (HK) gene was calculated
according to equation: 2~ (ACtGOI=HK) (Dayelsherg et al., 2011).
Then, gene expression levels were normalized to the average
value of the treatment with less expression. Expression of three
HK genes was analyzed for treatments AtSAND (At2g28390),
PP2A (Atlgl3320), and TIP41-like (At4g34270), using previously
described PCR primers In all cases, expression of HK genes was
highly stable and similar results were obtained using them as
normalization genes (Czechowski et al., 2005). Data presented
here represent normalization using AtSAND amplification.
Primers were designed using Primer Express v.2.0 (Applied
Biosystems, USA) and confirmed with Primer-BLAST (NCBI).
Sequences of all primers and their references (if applicable)
are listed in Supplementary Table S1. In all cases the reaction
specificities were tested with melt gradient dissociation curves
and electrophoresis gels (agarose 2%) of each PCR product. All
experiments were performed with three to five biological and two
technical replicates.

Results

Burkholderia phytofirmans PsJN Enhances
Salt-Stress Tolerance and Recovery of

Stressed A. thaliana Plants

To address for differences in growth of A. thaliana Col-0
plants exposed to salt-stress in vitro, seeds were sown in half
strength Murashige and Skoog (1962) media (MS1/2) with or
without inoculation of strain PsJN as described in the “Materials
and Methods” section. At 11 DAS, plants were transferred to
MS1/2 media containing different salt concentrations ranging
from 150 mM NaCl/15 mM CaCl, to 250 mM NaCl/25 mM
CaCl,. Seven days after the transplant plants were photographed
(Figure 1A) and rosette areas and fresh weights were determined
(Figure 1). B. phytofirmans treatment produced a significant
87 £ 20% increase in rosette area in stressed plants (Figure 1B,
left). Fresh weight was also significantly higher (97 + 21%) in
plants treated with strain PsJN and exposed to salinity (Figure 1B,
right). Also, primary root length was increased in inoculated
and stressed plants (Supplementary Figure S1). In addition, a
treatment with heat-killed bacteria (K-PsJN) was incorporated as
described by Poupin et al. (2013), to discriminate the effects of
metabolically active bacteria from those of inactive bacteria on
plants under salt-stress. Treatment with K-PsJN had no effect on
A. thaliana growth, neither on MS media nor under salt-stress
(Supplementary Figure S1).

To investigate the effects of PsJN inoculation on the recovery
of A. thaliana plants exposed to salt-stress, plants were inoculated
and exposed to salinity as described in the “Materials and
Methods” section. After 7 days in the saline media, plants were
transferred to soil and watered normally. Plant growth was
recorded during 2 months (Figure 2A) by the measurement
of rosette area, stem length, number of siliques, and senescent
leaves (Figures 2B-E, respectively). During the first month
in soil, plants treated with strain PsJN and not stressed
had significantly larger rosette area, compared to the other

treatments. Plants inoculated with strain PsJN and exposed
to stress showed no differences in comparison to the control
plants (non-inoculated and non-exposed to salt), while the non-
inoculated and stressed plants had significantly smaller rosettes
than all the other treatments. This pattern was observed until
46 DAS, when plants in all treatments showed comparable rosette
areas (Figure 2B).

Stems appeared first (~38 DAS) in plants formerly treated
with strain PsJN and not exposed to salt-stress, followed by
both, control and inoculated salt-stressed plants (~40 DAS), and
finally by the non-inoculated and stressed plants (~42 DAS;
Figure 2C). Non-stressed plants treated with strain PsJN always
showed significantly longer stems than plants from the other
treatments until 58 DAS. At this point, control and inoculated
salt-stressed plants reached the same stem length as PsJN-treated
non-stressed plants. Finally, the non-inoculated salt-stressed
plants reached the same stem length as the other treatments at
61 DAS (Figure 2C).

At 56 DAS, all the plants corresponding to the four treatments
developed at least one silique. From then on, non-stressed plants
previously treated with strain PsJN always showed a significantly
higher number of siliques than the other treatments. At 63 DAS,
both stressed and non-stressed plants, previously treated with
strain PsJN, reached a comparable number of siliques, which
was significantly higher (25%) than the control plant’s number
of siliques. Non-inoculated plants, stressed, and non-stressed,
showed a comparable number of siliques through the treatment
(Figure 2D). At 61 DAS, all the treatments exhibited at least one
senescent leaf per plant. Plants stressed and non-treated with
strain PsJN, presented significantly less senescent leaves than
all the other treatments at every measured time (Figure 2E).
This behavior was maintained throughout the whole experiment
(Figure 2E).

To explore a long-term salt-stress tolerance in Arabidopsis,
plants were inoculated as described in the “Materials and
Methods” section, transferred to soil and stressed by periodically
irrigating with a saline solution (150 mM NaCl/15 mM CaCl,).
Rosette areas were higher in inoculated plants after 35 days of
stress (Figures 3A,B). During the first 14 days under stress,
growth rate of inoculated plants was significantly higher than the
non-inoculated plants (0.36 cm?/d vs. 0.27 cm?/d, respectively;
Figure 3B). During the final stage of the stress treatment the
rosette area of non-inoculated plants decreased (wilted) in a
significantly higher rate (—0.08 cm?/d) than the inoculated
plants (—0.04 cm?/d; Figure 3B). Also, stressed foliar areas
were determined analyzing the color pattern of plant images, to
quantify the recession of green colored leaf area caused by stress.
Interestingly, inoculated plants showed significantly larger green
areas than the non-inoculated plants (Figures 3C,D). Control
non-stressed plants began to lose green coloration only at 50 DAS
(data not shown).

Burkholderia phytofirmans PsJN Induces Early
Transcriptional and Metabolic Changes in
Salt-Stressed A. thaliana Plants

To study the molecular and metabolic mechanisms behind the
enhancement of salt-stress tolerance in PsJN inoculated plants,
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FIGURE 1 | Effects of Burkholderia phytofirmans PsJN on Arabidopsis
thaliana growth in vitro. (A) Representative photographs of A. thaliana
plants treated with or without B. phytofirmans PsJN, and transplanted at

11 days after sowing (DAS) to Murashige Skoog (MS) with or without
addition of salt (150 mM NaCl/15 mM CaCl, to 250 mM NaCl/25 mM
CaClp). Data was collected 7 days after transplantation. (B) Graphic
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representation of rosette area (left) and fresh weight (right) of plants treated
under the experimental conditions described before. Data are means + 1 SE
of at least 20 plants per treatment. Asterisks indicate significant differences
between control and PsJN treatment (Two-way ANOVA, p < 0.05; Bonferroni
test, ***P < 0.01). Results are representative of two different experiments.
White bars in photographs correspond to 2 cm.

the content of the osmoprotectant molecule proline within plant
tissues (Sneha et al., 2013) was measured 2, 24, and 48 h after
transplant to MS or saline medium in both inoculated and
non-inoculated plants (Figure 4). Also, the temporal expression
patterns of genes related to general abiotic stresses were evaluated
in roots and rosettes of plants in the early phase of short-term
salt-stress treatments (Figure 5).

Proline content was not altered in plants transferred to MS1/2
media (Figure 3A), but augmented significantly 24 h after stress
treatment, reaching a maximum value after 48 h (Figure 4B).
Inoculated plants accumulated 47% more proline than control
plants after 24 h of salt-stress (Figure 4B). At 48 h proline
contents were comparable in both inoculated and control plants
(Figure 4B).

Quantitative RT-PCR was used for transcriptional analysis of
the genes: Relative to Dessication A (RD29A) and B (RD29B);
Lipoxygenase 2 (LOX2); Plant-defensin 1.2 (PDF1.2); Ascorbate
Peroxidase 2 (APX2) and Glyoxalase I 7 (GLYI7), (Yamaguchi-
Shinozaki and Shinozaki, 1994; Thornalley, 1996; Davletova et al.,
2005; Abogadallah, 2010; Leon-Reyes et al., 2010; Mustafiz et al.,
2011; Figure 5). Expression of PDFI1.2 was not detected in
roots. In rosettes, the transcript level of the gene was slightly
affected by inoculation, and significantly up-regulated in the
stressed and inoculated plants 24 h post-stress (Supplementary
Figure S2). The transcription levels of the five other genes were
not altered in roots or rosettes when plants were transferred to
MS1/2 media (Figures 5A,B). Interestingly, in roots under salt-
stress, inoculated plants presented an accelerated up-regulation
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FIGURE 2 | Effect of B. phytofirmans PsJN on A. thaliana recovery (B), average stem length (C), average number of siliques/plant (D), and
after salt stress. (A) Representative photographs of in vitro salt-treated average number of senescent leaves/plant (E) of plants under the
A. thaliana plants transplanted to soil. Plants were sown in half strength MS experimental conditions described before. Data are means + 1 SE of at least
media with or without inoculation of B. phytofimans PsJN. Eleven DAS 12 plants per treatment. Asterisks indicate significant differences between
plantlets were transplanted to MS media with or without additional 150 mM control treatment and the other treatments in each time (Two-way ANOVA,
NaCl/15 mM CaCly. Seven days after saline treatment, plants where p < 0.05; Bonferroni test, *P < 0.1; **P < 0.05; ***P < 0.01). White bar in
transplanted to soil. (B=E) Graphic representation of average rosette area photograph corresponds to 2 cm.
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representation of average rosette area (growth rate is indicated for the first and

c
Control B Green
Non-
S
©
Q
©
o 50
=]
Q
wv
o
o

89 I I
| | 004 cm/d
— @ PsIN
€ 61 @ Control
Q
3 :
= 44 036 cm/d * -0.08 cm?/d
0 | |
£
3 ol I I
= 027 cm/d | I
| |
c 1 L) | ) T U U 1
20 25 27 32 36 41 46 50
Days after sowing
PsIN M Green
[l Non-green
100 KRR RO SRR

x
1]
g
(1]
o 50
£
(]
wv
o)
o<

18 22

27 32 36 41 46 50

Days after sowing

last periods of the experiment, cm?/d. (C,D) Percentage of non-green area of
non-inoculated (C) and inoculated (D) plant rosettes under the experimental
condition described. Data are means + 1 SE of at least eight plants per
treatment. Asterisks indicate significant differences between control and PsJN
treatment in each time point (t-student, p < 0.05; Welch’s correction, *P < 0.1;
**P < 0.05; **P < 0.01). Whitebars in photograph correspond to 2 cm.

A 0 mM NaCl /0 mM CaCl,

S 15007

[V

20

oo

= 1000

€

[0}

€

S 5001

(]

£

°

g JOm Mm [N
2h

24h 48h

Time after stress

FIGURE 4 | Effect of B. phytofirmans PsJN on A. thaliana proline
accumulation. Graphic representation of proline levels in A. thaliana plants
treated with or without B. phytofirmans PsJN, and transplanted at 11 DAS to
half strength MS media with (B) or without (A) addition of 150 mM

B 150 mM NaCl /15 mM CaCl2

= 1500

=

[V

oo

S~

[eT]

= 1000-

E *%

]

c

8 500- I

w ﬂ

£

°

£ LM . .
2h 24h 48h

Time after stress

NaCl/15 mM CaCl,. Proline was extracted 2, 24, and 48 h after
transplantation. Data are means + 1 SE of at least three biological
replicates. Asterisks indicate significant differences amongst treatments
(Two-way ANOVA, p < 0.05; Bonferroni test, **P < 0.05).

Frontiers in Plant Science | www.frontiersin.org

June 2015 | Volume 6 | Article 466


http://www.frontiersin.org/Plant_Science/
http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Science/archive

Pinedo et al. B. phytofirmans PsJN enhances Arabidopsis salt-tolerance
Root Rosette
A B
MS NaCl 150 mM MS NaCl 150 mM
c 7 RD29A O Control ° RD29A O Control RD29A O Control RD29A *%* O Control
% W PsIN ® PsIN 0 W PsIN 40 ® PsIN
m 304 304
ol T 30 30+
x 20 204
[}
l]>.) 204 204
= 104 10
E 104 10
[ ./I\- _
o 0 T 3 T T [ T T T T 0 1 i T - [} U T T T
0h 2h 24h 72h Oh 2h 24h 72h Oh 2h 24h 72h Oh 2h 24h 72h
c RD29B O Control| 50041 RD29B O Control RD29B 0O Control RD29B O Control
9 2000 W PsIN @ PsIN W PsIN ® PsIN
5 60 60
5_ 15004 1000
X 300 40 40
:j 1000- T
2 2001 204 204
& 0 ol » o
O.h 2‘;\ Z:h 7;h Ovh 2‘h 2-‘th 7éh (;;| 2‘!’1 2;h 7éh OYh 2‘h 2#'“\ 7ih
c LOX2 O Control LOX2 O Control LOX2 O Control LOX2 O Control
9 W PsIN @ PsIN W PsIN @ PsIN
2 15 154
[ 104 10
S
x 104 10
[}
(] 5 5
2 * = 5 5
=]
B S
g o ‘Aﬁ:ﬁ o a e 5 o
Olh 2Ih ZAIIh 7éh dh 2h 2-‘1h 7éh Olh 2Ih ZAIIh 7éh dh Z‘h ZAIh 7ih
c APX2 O Control APX2 O Control APX2 O Control APX2 O Control
2 4 PN 204 *T* ® PN 204 PN 201 ® PN
o
o 30 30 15+ 15+
x
U 20 20 104 10
[
>
210 10 5 51 N
EJ o B o o —_—g o
oh 2h 24h  72h oh 2h 24 72h oh 2h 24h  72h oh 2h 24h  72h
c GLYI7 O Control GLYI7 O Control GLYI7 0O Control GLYI7 O Control
kel W PsIN ® PsIN W PN ® PsIN
a 304 301 30 30
g
X 20 20 20 20
[}
[}
2 104 10-] 104 10
=1 -
i
Cqé A - n B r,,l.\ = a
0h 2h 24h 72h oh 2h 24h 72h oh 2h 24h 72h oh 2h 24h 72h
Time Time Time Time
FIGURE 5 | Effects of B. phytofirmans on A. thaliana abiotic stress transplanted at 11 DAS to half strength MS media with or without addition of
responsive genes. Quantitative RT-PCR determinations of relative 150 mM NaCl/15 mM CaCl,. RNA was extracted before transplantation (O h)
expression levels of the genes: RD29A (Responsive to Dessication 29A); and after 2, 24, and 72 h in transplant media. Data are means + 1 SE of at
RD29B (Responsive to Dessication 29B); LOX2 (Lipoxigenase 2); APX2 least three biological replicates. Asterisks indicate significant differences
(Ascorbate Peroxidase 2); GLYI7 (Glyoxalase | 7), in roots (A) and rosettes amongst treatments (Two-way ANOVA, p < 0.05; Bonferroni test, *P < 0.1;
(B) of A. thaliana plants treated with or without strain PsdN, and P < 0.05; ***P < 0.01).

of the RD29A, RD29B, APX2, and GLYI7 at 2 h post-stress (up
to 196 times in the case of RD29B, Figure 5A). In rosettes,
plants treated with strain PsJN showed a clear up-regulation
for GLYI7, and a minor but significant effect for APX2 at 2 h
post-treatment, and at 24 h for RD29A (Figure 5B). In the
case of LOX2, the inoculation produced and up-regulation after
2 hours of stress, but remarkably after 24 and specially 72 h
post-stress, a down-regulation of this gene was observed in roots
(Figure 5A).

Burkholderia phytofirmans PsJN is Associated
with Early Changes in Transcriptional

Response of lon Transporter Genes in

A. thaliana Plants under Salt-Stress

To test for transcriptional differences in ion transporter genes
in inoculated plants under salt-stress, the transcript level
of Arabidopsis Kt Transporter 1 (AKTI), Sodium Hydrogen
Exchanger 2 (NHX2), Arabidopsis Salt Overly Sensitive 1 (SOS1),
and High-Affinity Kt Transporter 1 (HKTI) were measured
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(Figure 6). Plants were treated as described in the “Materials
and Methods” section for RNA extraction and transcript level
determination.

Arabidopsis KT Transporter 1 is a potassium plasma memb-
rane transporter involved in root K uptake at any extracellular
concentration above 10 wM (Sentenac et al., 1992; Lagarde et al.,
1996). Here, AKT1 transcript level depended on the interaction
between the effects of salinity and bacteria in roots (Figure 6A).
After 2 h of stress, salinity down-regulated this gene; an effect
that was stronger in non-inoculated plants. After 24 h of stress in
roots, treatment with PsJN down-regulated AKT1 (Figure 6A). In
rosettes, AKT1 was significantly up-regulated by PsJN treatment
in A. thaliana at all time points, while salinity seemed to
down-regulate the expression of this gene after 24 h of stress
(Figure 6B).

Sodium Hydrogen Exchanger 2 is a vacuolar Nat, K*/H™
antiporter involved in ion compartmentalization in normal and
salt-stress conditions (Jiang et al., 2010; Leidi et al., 2010). In
roots, NHX2 transcription depended only on the effect of salt,
which up-regulated this gene at 2, 24, and 72 h post stress
(Figure 6A). Transcript level on rosettes showed three different
behaviors after salt-stress. Firstly, after 2 h of salt-stress, PsJN
treatment up-regulated NHX2 in a salt-independent manner
(Figure 6B). Then, after 24 h of stress, salinity up-regulated this
gene independently of inoculation (Figure 6B). Finally, at 72 h
the expression depended on the interaction of salinity and Ps]N,
where bacteria down-regulated the gene (Figure 6B).

Arabidopsis Salt Overly Sensitive 1 is a plasma membrane
Na™/H' antiporter (Zhu et al, 1998; Shi et al, 2002). It
participates in sodium expulsion from the cytoplasm in salt-stress
context (Zhu et al., 1998; Shi et al., 2002). Inoculation down-
regulated SOSI in roots before exposure to stress (Figure 6A).
In this tissue, transcript accumulation after transplant depended
only on the effect of bacteria, which up-regulated this gene after
2 h, and then repressed it after 24 and 72 h (Figure 6A). In
rosettes, plants treated with strain PsJN showed a significant
increase in SOSI transcript 2 and 24 h after the transplant to
saline media (Figure 6B).

High-Affinity KT Transporter 1 is a plasma membrane sodium
transporter (Maser et al., 2002; Davenport et al., 2007). It has been
related to sodium unloading from xylem at root level, preventing
its movement to leaves under salt-stress conditions (Maser
et al., 2002; Davenport et al., 2007). Under these experimental
conditions the gene was down-regulated in roots by bacteria
treatment before exposure to stress, then the inoculation down-
regulated it after 2 h in saline media, while the same was observed
at 24 h in non-inoculated plants (Figure 6A). In rosettes, the gene
was slightly up-regulated in non-stressed and inoculated plants at
24 h, while it was markedly down-regulated by the salt-stress at 24
and 72 h independently of the inoculation (Figure 6B).

Burkholderia phytofirmans Modifies

A. thaliana Expression of lon Transporters and
Detoxification Genes after Long-Term

Exposure to Salt-Stress

To determine if treatment with B. phytofirmans PsJN had long-
term effects on the transcription of the ion transporters genes

AKTI, NHX2, SOS1, and HKT1, plants were treated as described
in the “Materials and Methods” section. For RNA extraction, the
oldest and the newest leaves of each plant were selected, and
RNA extractions were performed at a point were salt-stress had
not stopped plant growth but stress signs were noted (46 DAS,
Figure 3). As noticed before, AKT1I transcript accumulation was
up-regulated by PsJN treatment both in new and old leaves at
35 days after stress (Figures 7A,B). The gene was up-regulated
also by salt-stress only in old leaves (Figure 7B). The vacuolar
transporter NHX2, showed an up-regulation due to salinity in
new leaves. Interestingly, a stronger and significant up-regulation
was observed when plants were inoculated with strain PsJN
(Figure 7A). In old leaves this gene was similarly down-regulated
by bacteria and salt-stress (Figure 7B). SOSI expression was not
altered in old leaves and PsJN up-regulated this gene in new
leaves in non-stressed plants (Figure 7A). HKT1I transcript level,
consistent with what was observed before, only depended on the
effect of salinity that significantly down-regulated this gene, both
in new and old leaves (Figures 7A,B). Finally, the expression of
some of the early-stress responsive genes was analyzed after long-
term exposure to stress. Expression of RD29B, PDF1.2, and LOX2
was not affected by salinity or PsJN inoculation at this time in new
leaves (Supplementary Figure S3) and was not detected in old
leaves (data not-shown). The detoxification gene, GLYI7, was up-
regulated by salinity and not by PsJN in new leaves (Figure 7A).
Notably, in old leaves, salinity also produced an up-regulation of
the gene, but this effect was significantly lower when plants were
treated with strain PsJN (Figure 7B).

Discussion

It is well known that some PGPRs can enhance the tolerance
of certain plant species to salt-stress (Chang et al, 2014).
Most studies are mainly focused on physiological or metabolic
parameters, basing their results on changes in growth, nutrient
uptake, and/or synthesis of stress related compounds (Ait Barka
et al., 2006; Upadhyay et al., 2011). In terms of transcriptional
changes, there is literature that relates the effects of PGPRs
with a rapid activation of the immune system, leading to a
primed or faster and stronger response to biotic (Van Loon et al.,
1998; Pieterse et al., 2013) and abiotic stress (Induced Systemic
Tolerance, IST, Yang et al., 2009; Theocharis et al., 2012; Kim
etal,, 2014). Unfortunately, there is little evidence about the links
between PGPR inoculation and ion transporter genes related to
salt tolerance in plants (Zhang et al., 2008). Also, transcriptional
analysis in the vast majority of salt-stress studies is focused on
the first hours after stress, but little is known about the molecular
effects of salinity after a long-term exposure (Geng et al., 2013;
Kim et al., 2014). In this study, we showed that B. phytofirmans
PsJN enhances A. thaliana growth and salt tolerance in various
experimental schemes during the whole life cycle of the plant.
Interestingly, this effect seems to be related with an acceleration
of the natural metabolic and transcriptional response to salt-
stress in Arabidopsis and also with the long-term regulation of
some genes. Moreover, the transcription of some important ion
transporters related to salt-stress tolerance was modified in plants
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treated with strain Ps]N and, remarkably, these changes were
observed both in plants exposed or not to salt-stress.

Effects of B. phytofirmans on A. thaliana

Growth after Short and Long-Term Salt-Stress
Burkholderia phytofirmans PsJN is a PGPR capable of producing
positive effects on Arabidopsis (Poupin et al,, 2013; Zuniga
et al., 2013) and in horticultural crops such as potato and grape
(Compant et al., 2005; Sessitsch et al.,, 2005; Da et al., 2012;
Mitter et al., 2013). Also, it has been related with biotic and
abiotic induced tolerance in plants like grape, maize, and wheat
(Ait Barka et al., 2006; Bordiec et al., 2011; Fernandez et al.,
2012; Naveed et al., 2014). Here, treatment with B. phytofirmans
PsJN promoted the growth of A. thaliana in saline media at
high salt concentrations, from 150 mM NaCl/15 mM CaCl, to
250 mM NaCl/25 mM CaCl,. This effect was only noted when
bacteria were metabolically active in agreement with previous
work of Poupin et al. (2013), that reported that inactivated PsJN
cannot induce growth in A. thaliana. This suggests that growth
promotion and/or salt-stress tolerance induction is not related
to mere plant recognition of bacterial molecular determinants,
either expressed in the bacterial surface or released during heat
inactivation, and that metabolically active bacteria are required
to induce those changes. Regarding the molecular determinants
of PsJN that trigger induced salt-tress tolerance in plants, we
have recently found evidence of a possible role of volatile
organic compounds (Ledger et al., unpublished). When plants
were inoculated with strain PsJN the rate of recovery, after
7 days of stress, was higher than in the non-inoculated plants.
Interestingly, the development of inoculated and stressed plants
was comparable to the control group (non-stressed). Remarkably,
an early inoculation at germination induced salt-stress tolerance
when the stress was maintained over time, suggesting the effects
of Ps]N trigger long-term changes in plants.

Transcriptional and Metabolic Effects of

B. phytofirmans in A. thaliana Early Response

to Salt-Stress

Relative to Dessication A (RD29A) and RD29B are commonly
used as a stress responsive reporter genes, RD29A promoter
region has one ABA responsive cis-acting element (ABRE)
and many ABA-independent dehydration responsive elements
(DRE/CRT), responding mainly to the ABA-independent
pathway. On the other hand, the RD29B promoter only has
ABRE elements, being controlled mainly by ABA (Yamaguchi-
Shinozaki and Shinozaki, 1994; Hu et al., 2013). ABRE binding
transcription factors (AREB) are a superfamily that responds
mainly to drought and high salinity stresses (Li et al., 2014).
While DRE binding (DREB) transcription factors respond to
cold and osmotic stresses (Li et al., 2014). Both AREB and DREB
elements promote the transcription of many genes related to
stress response (Finkelstein et al., 2002; Akhtar et al., 2012).
It has also been reported that RD29A and RD29B encodes for
similar proteins, but the first respond mainly to cold and drought
while the second one is highly induced by salinity (Msanne
et al., 2011). B. phytofirmans Ps]N treatment accelerated the
transcript accumulation of RD29A and more dramatically of

RD29B in roots. These results can be related to a faster sensing
of osmotic and/or salt-stress via ABA or dehydration signaling.
Interestingly, the highest effect of bacterial treatment on saline
media in RD29B (around 196 times) could be associated with
an active ABA pathway in roots induced by PsJN. In rosette,
RD29A expression was up-regulated by the bacterial treatment,
while no significant effect was noted on RD29B expression, this
could indicate the activation of an ABA-independent pathway
induced by Ps]N in the aerial zone. Either way, the acceleration
on expression of both genes probably leads to a faster response
of ABRE and/or DREB elements, and consequently, a primed
transcription of stress responsive genes (Figure 5).

Ascorbate Peroxidase 2 enzyme that reduces the reactive
oxygen species HyO, to H,O by the oxidation of ascorbate
(Abogadallah, 2010). It has been documented that ROS are both
helpful and harmful to plants in a stress situation, because
they act as second messenger in stress response, but also their
accumulation drives to oxidation of several molecules and cell
damage (Apel and Hirt, 2004; Golldack et al., 2014). When
ROS accumulate at later stages, or are formed as a consequence
of mitochondrial damage, jasmonic acid (JA) synthesis is over
induced together with an autocatalytic oxidative burst (Ismail
et al,, 2014). Therefore, plants require a tight regulation between
formation and scavenging of ROS, in order to perceive the stress
signal, but also to be capable of resisting it (Apel and Hirt,
2004; Bhattacharjee, 2012; Garcia de la Garma et al, 2015).
Bharti et al. (2013) observed that foliar Ascorbate Peroxidase
activity was increased by PGPR treatment, and this was associated
with general salt tolerance augmentation on Bacopa (Bacopa
monnieri). Here, the inoculation of A. thaliana plants with the
strain PsJN accelerated the transcript accumulation of APX2 in
roots and up-regulated it in the rosettes of salt-stressed plants
(Figure 5). Interestingly, LOX2 that codes for a Lipoxygenase
involved in JA biosynthesis, presented an up-regulation after 2 h
of stress, but after 24 and specially 72 h post-stress, a down-
regulation of this gene was observed. Similarly, PDF1.2 (that
encodes an ethylene and jasmonate-responsive plant defensin)
presented a temporal up-regulation in stressed rosettes (24 h)
and then returned to a similar level than the non-inoculated
plants. This is in accordance with our previous results showing
that LOX2 and PDFI.2 are two of the 408 genes with altered
transcription in the transcriptome of PsJN inoculated plants
(Poupin et al., 2013). These expression patterns on the JA and/or
ethylene-related genes reflect the complexity of the hormonal-
related responses, where genes can be controlled through distinct
pathways or with a different timing, being the crosstalk between
hormones one of the crucial aspects in the final outcome of stress
response. Thus, PsJN treatment could be incrementing APX2
activity on roots and shoots, improving plant capacity for ROS
scavenging, while reducing the expression of the JA biosynthesis-
related gene LOX2. This could lead, according to the literature
(Apel and Hirt, 2004; Abogadallah, 2010), to a better sensing of
ROS as a second messenger deriving to a more effective response
to salt-stress. Future quantifications of APX2 activity, JA levels
and ROS quantities could support this hypothesis.

Glyoxalase 1 7 is a highly abiotic-stress inducible isoform
of Glyoxalase I, an enzyme part of the glyoxalase pathway
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(Thornalley, 1996; Mustafiz et al., 2011). The main function
of this pathway is to detoxify the cells of methylglyoxal, a
toxic compound that is accumulated during stressful conditions
(Thornalley, 1996). In tobacco and tomato, lines overexpressing
GLYT and GLYII, showed an increment in salt tolerance (Singla-
Pareek et al., 2003; Alvarez Viveros et al., 2013). Similarly in
A. thaliana, mutation in GLYII gene inhibits growth under saline
conditions, while overexpressing lines of the same gene showed a
modest protective effect (Devanathan et al., 2014). Here, GLYI7
transcription was anticipated by PsJN treatment in roots and
up-regulated in shoots of salt-stressed plants.

One of the main mechanisms to alleviate osmotic-stress is
the synthesis of osmoprotectant molecules, proline being one
of the most important (Yoshiba et al, 1995). It has been
documented that proline accumulation is highly inducible by
salinity, especially in the first 24 h after salt exposure (Verslues
and Sharma, 2010). Ait Barka et al. (2006) demonstrated that
B. phytofirmans treatment confers chilling tolerance to Vitis
vinifera plants, and also produced an augmentation in the
accumulation of proline in these plants. In this investigation,
the proline accumulation was studied in a temporal context and
strain PsJN accelerated its accumulation during the first 24 h after
salt-stress treatment.

It has been recently proposed that the relation between
adaptive salt signaling and destructive salt accumulation depends
on the timing of the events triggered by the salt-stress. An efficient
response could constrain a JA signaling through the activation
of ABA (Ismail et al., 2014). Here, an anticipation of proline
content augmentation, together with an anticipation of RD29A,
RD29B, APX2, and GLYI7 transcription, was observed during
the first 24 h under salt-stress in the roots of inoculated plants.
Remarkably, the gene showing the highest up-regulations was
RD29B, which is mainly regulated by ABA-dependent pathways.
Similar results, but in some genes with slower kinetics, were
obtained in rosettes. Also, the expression of LOX2, related with
JA biosynthesis was mainly down-regulated in the inoculated and
stressed plants. Interestingly, these genes were not induced when
plants were in control conditions. Therefore, plants inoculated
at germination responded faster to a later salt-stress, this could
be indicating an induction of a priming in inoculated plants
by B. phytofirmans PsJN that lead to a better response to
this abiotic stress. Notably, the regulation by PsJN in the
expression of some of the genes involved in stress-alleviation
such as GLYI7, at least in old leaves, was maintained over
time.

Effects of B. phytofirmans in A. thaliana lon
Transporters Transcription under Short and
Long-Term Salt-Stress

Many studies have focused on revealing the mechanisms behind
salt tolerance in plants (Zhang and Shi, 2013; Gupta and Huang,
2014). Two of the most important determinants for salt tolerance
discovered so far are: the maintenance of a high K*/Na™ ratio,
and the conservation of a low salinity concentration in the
cytoplasm (Zhang and Shi, 2013; Gupta and Huang, 2014). In
normal conditions potassium is the most abundant intracellular
cation (Britto and Kronzucker, 2008). This ion is used as co-factor

for many enzymatic reactions and it is also important for
controlling the stomatal aperture (MacRobbie, 1998; Maathuis,
2009). Potassium uptake is mediated by ion transporters like
AKT1, which mediates the uptake of this ion at any extracellular
concentration above 10 wM (Nieves-Cordones et al., 2014).
Once inside the cell, KT is stored in the vacuole by the action
of antiporters as NHX2 (Jiang et al., 2010; Leidi et al., 2010).
When plants are exposed to salt-stress, there is an increase of
sodium uptake that reduces the K*/Na™ ratio, leading to toxicity
(Hasegawa, 2013). When sodium enters the roots it moves toward
the xylem and up to the leaves, which are extremely sensitive
to Na™ toxicity. The sodium accumulation in leaves, at toxic
levels, produces enzymatic malfunction, generation of ROS, and
finally cell death (Hasegawa, 2013). In order to tolerate the effects
of sodium toxicity, most plants have various ion transporters
that maintain the ionic homeostasis inside the cell (Zhang and
Shi, 2013; Gupta and Huang, 2014). First, there are transporters
belonging to the NHX family (Bassil and Blumwald, 2014), that
are believed to reduce Na* concentration, driving this ion inside
the vacuole (NHX2) or expelling it to the apoplast (SOS1), (Bassil
and Blumwald, 2014; Fan et al., 2014). A. thaliana mutants in
SOS1 accumulate more sodium in leaves and roots, and are
more sensitive to salinity (Shi et al., 2002). NHX2 is a vacuolar
antiporter that drives Na™ or K™ into the vacuole and evicts H*
(Jiang et al., 2010; Leidi et al., 2010). NHX2 is one of the most
abundantly transcribed genes in A. thaliana, and its expression
is regulated by salt (NaCl, LiCl, KCI), osmotic-stress and ABA
(Shi et al., 2002; Aharon et al., 2003). NHX2 is only absent in
meristematic cells of the root tip (Shi et al., 2002). It is known that
overexpression of NHXI increases salt tolerance in A. thaliana
plants, and that mutants in nhxI and nhx2 are more sensitive to
salinity (Barragan et al., 2012; Fan et al., 2014). The mechanism
by which this transporter improves salt tolerance is not clear;
some researchers attribute the effect to a better KT retention,
while others think that this transporter improves the sodium
compartmentalization (Barragan et al., 2012; Fan et al., 2014).

Other transporters are responsible for the selective
accumulation of Na™. For example HKT1, which is specifically
localized in the root XPC, unloads Na‘t from the vascular
conducts to prevent its accumulation on leaves (Sunarpi et al.,
2005). It is not completely clear how HKTI is regulated, but
some reports correlated the presence of ROS to a reduction
of Na™ in leaves, supposedly via HKT1 activity (Jiang et al.,
2012). There is also evidence to support a repression of HKT1I by
ABA, via the transcriptional factor ABI4 that binds to the HKTI
promoter (Shkolnik-Inbar et al., 2013). Experiments with HKT1
cell-specific overexpressing mutants, showed that the activity of
this transporter is crucial for salt tolerance, but only when it is
overexpressed in the root stele (Moller et al., 2009).

Among the general transcriptional effects of PsJN in
inoculated plants (Poupin et al, 2013) in this study, it was
found that the bacterium also regulate the expression of
important ion-homeostasis related genes after short and long-
term exposure to salt-stress. Some of these genes were mainly
regulated by the bacterial inoculation, while the others by
the interaction between the inoculation and the salt-stress
exposure. The expression patterns were differently affected in

Frontiers in Plant Science | www.frontiersin.org

June 2015 | Volume 6 | Article 466


http://www.frontiersin.org/Plant_Science/
http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Science/archive

Pinedo et al.

B. phytofirmans PsJN enhances Arabidopsis salt-tolerance

roots and shoots. The transcription of AKTI on rosettes, and
SOSI and HKTI on roots was modified by PsJN treatment
before salt treatment. This means that PsJN affects some genes
related to salt-stress in a manner independent of the stress
challenge. After stress, genes presented three different patterns.
First, there were genes that showed an acceleration of their
normal response (NHX2 and SOSI in rosettes, and SOSI and
HKTI in roots). This is similar to what was observed in
general stress responsive genes, where natural transcriptional
response was developed early, suggesting a faster or primed
response to stress in inoculated plants. In the second group,
there were genes that were not affected by bacterial-inoculation
(HKTI in rosette and NHX2 in roots). Finally, AKTI showed a
different behavior to the one mentioned above. In roots, PsJN-
inoculation appeared to delay the response of this gene. While in
shoots, AKT1 was up-regulated at all the time points, including
before salt-stress. Down-regulation of SOSI and HKTI before
stress could be related to a general reduction in Na™ levels,
making xylem Na® unloading and expulsion a less necessary
task.

After long-term exposure to salinity, AKTI, NHX2, and
SOSI were significantly affected by B. phytofirmans treatment.
In old leaves, inoculated non-stressed plants presented similar
patterns to the stressed plants regarding AKTI and NHX2
genes. This could mean that bacterial and salt treatments
produce a similar transcriptional effect, but in the case
of PsJN, it is not linked to damage, so plants could be
responding to a non-harmful signal in a way that can also
protect them in the eventuality of being affected by salt-
stress. In new leaves AKTI and SOSI expression was up-
regulated by PsJN treatment when plants where not stressed,
while salinity did not significantly affect the expression of
these genes. On the other hand, NHX2 expression was not
affected in non-stressed plants, but was significantly up-regulated
by salinity. Interestingly, this effect was potentiated by PsJN
inoculation.

As has been discussed, the response timing of plants under
stress is crucial to trigger specific pathways that lead to an
effective adaptation. Under these experimental conditions, an
early inoculation with strain PsJN increased salt-stress tolerance
in plants under short and long-terms of stress exposure.
The inoculation accelerated salt-stress molecular responses
of A. thaliana involved in ABA-dependent pathways; ROS
scavenging and detoxifying; down-regulated a gene related with
JA biosynthesis and modified the expression of genes specifically
related with ion homeostasis. A differential transcriptional effect
was observed in roots and shoots. Especially in the early-
stress responsive genes, the roots seem to present an early
and faster response than the aerial zone. Which is consistent
with the onset of stress with salt accumulation beginning at
the root level, and reaching aerial tissues at a later stage?
Overall, the stronger and faster molecular changes induced by
the inoculation with B. phytofirmans Ps]N suggest a priming
effect of this strain in the inoculated plants. In some genes

the regulation in their expression was maintained over time.
This may lead to salt-stress tolerance and could explain
the induction of long-term tolerance to this abiotic stress.
These findings contribute to a better understanding of the
molecular mechanisms underlying salt tolerance enhancement
induced by beneficial bacteria, reflecting a complex array of
hormonal crosstalk and molecular plant responses that leads
to the outcome of the stress situation in inoculated plants.
Also, they may open up new alternatives for a strategy
against salinity limitations on crop culture, as well as new
approaches to discover mechanisms involved in stress tolerance
in plants.
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Figure S1 | Effects of killed Burkholderia phytofirmans PsJN on
Arabidopsis thaliana growth in vitro. Graphic representation of relative fresh
weight (A), rosette area (B) and primary root length (C) of A. thaliana plants treated
with B. phytofirmans PsJN, heat-inactivated strain PsJN (K-PsJN) or without
inoculation (control), and transplanted at 11 days after sowing (DAS) to MS with or
without addition of 150 mM NaCl/15 mM CaCl,. Data were collected 7 days after
transplantation. Data are means +1 SE of at least 20 plants per treatment (One
way ANOVA, p < 0.05; Bonferroni test, *P < 0.1, ***P < 0.01).

Figure S2 | Effects of Burkholderia phytofirmans on Arabidopsis thaliana
PDF1.2 gene transcription. Quantitative RT-PCR determinations of relative
expression levels of PDF1.2 (Plant Defensin 1.2) in rosettes of A. thaliana plants
treated with or without strain PsJN, and transplanted at 11 days after sowing
(DAS) to half strength Murashige Skoog media (MS) with or without addition of
150 mM NaCl/15 mM CaCl,. RNA was extracted before transplantation (Oh) and
after 2, 24 and 72 hours in transplant media. Data are means +1 SE of at least 3
biological replicates. Asterisks indicate significant differences amongst treatments
(Two way ANOVA, p < 0.05; Bonferroni test, *P < 0.1).

Figure S3 | Effect of Burkholderia phytofirmans PsJN on Arabidopsis
thaliana abiotic stress responsive genes after long-term exposure to salt
stress. Quantitative RT-PCR determinations of relative expression levels of the
genes: RD29B (Responsive to Dessication 29B); LOX2 (Lipoxigenase 2); PDF1.2
(Plant Defensin 1.2), in new leaves of A. thaliana plants treated with or without
strain PsdN, and transplanted at 11 days after sowing (DAS) to soil. After 7 days of
acclimation plant were irrigated with water with or without addition of 150 mM
NaCl/ 15 mM CaCl,. RNA was extracted 35 days after irrigation started (46 DAS).
Data are means +1 SE of at least 3 biological replicates (Significant differences
were not detected in any of the treatments in the analyzed genes, ANOVA,

P < 0.05).

Frontiers in Plant Science | www.frontiersin.org

June 2015 | Volume 6 | Article 466


http://journal.frontiersin.org/article/10.3389/fpls.2015.00466
http://www.frontiersin.org/Plant_Science/
http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Science/archive

Pinedo et al.

B. phytofirmans PsJN enhances Arabidopsis salt-tolerance

References

Abogadallah, G. M. (2010). Antioxidative defense under salt stress. Plant Signal.
Behav. 5, 369-374. doi: 10.4161/psb.5.4.10873

Aharon, G., Apse, M., Duan, S., Hua, X., and Blumwald, E. (2003). Characterization
of a family of vacuolar Na*/H* antiporters in Arabidopsis thaliana. Plant Soil
253, 245-256. doi: 10.1023/A:1024577205697

Ait Barka, E., Nowak, J., and Clement, C. (2006).
chilling resistance of inoculated grapevine plantlets with a plant
growth-promoting  rhizobacterium, Burkholderia  phytofirmans  strain
PsN. Appl. Environ. Microbiol. 72, 7246-7252. doi: 10.1128/AEM.010
47-1046

Akhtar, M., Jaiswal, A., Taj, G., Jaiswal, J. P., Qureshi, M. I, and Singh, N. K. (2012).
DREB1/CBF transcription factors: their structure, function and role in abiotic
stress tolerance in plants. J. Genet. 91, 385-395. doi: 10.1007/s12041-012-0201-
203

Alvarez Viveros, M., Inostroza-Blancheteau, C., Timmermann, T., Gonzalez, M.,
and Arce-Johnson, P. (2013). Overexpression of Glyl and GIlyII genes in
transgenic tomato (Solanum lycopersicum Mill.) plants confers salt tolerance by
decreasing oxidative stress. Mol. Biol. Rep. 40, 3281-3290. doi: 10.1007/s11033-
012-2403-2404

Apel, K., and Hirt, H. (2004). Reactive oxygen species: metabolism, oxidative
stress, and signal transduction. Annu. Rev. Plant Biol. 55, 373-399. doi:
10.1146/annurev.arplant.55.031903.141701

Ariga, H., Katori, T., Yoshihara, R., Hase, Y., Nozawa, S., Narumi, I, et al. (2013).
Arabidopsis sos] mutant in a salt-tolerant accession revealed an importance of
salt acclimation ability in plant salt tolerance. Plant Signal. Behav. 8:¢24779. doi:
10.4161/psb.24779

Barragan, V., Leidi, E. O., Andres, Z., Rubio, L., De Luca, A., Fernandez,
J. A, et al. (2012). Ion exchangers NHX1 and NHX2 mediate active
potassium uptake into vacuoles to regulate cell turgor and stomatal
function in Arabidopsis. Plant Cell 24, 1127-1142. doi: 10.1105/tpc.111.
095273

Bassil, E.,, and Blumwald, E. (2014). The ins and outs of intracellular ion
homeostasis: NHX-type cation/H(+) transporters. Curr. Opin. Plant Biol. 22,
1-6. doi: 10.1016/j.pbi.2014.08.002

Bates, L. S., Waldren, R. P., and Teare, I. D. (1973). Rapid determination
of free proline for water-stress studies. Plant Soil 39, 205-207. doi:
10.1007/BF00018060

Bharti, N., Yadav, D., Barnawal, D., Maji, D., and Kalra, A. (2013). Exiguobacterium
oxidotolerans, a halotolerant plant growth promoting rhizobacteria, improves
yield and content of secondary metabolites in Bacopa monnieri (L.) Pennell
under primary and secondary salt stress. World J. Microbiol. Biotechnol. 29,
379-387. doi: 10.1007/s11274-012-1192-1191

Bhattacharjee, S. (2012). The language of reactive oxygen species signaling in
plants. J. Bot. 2012:22. doi: 10.1155/2012/985298

Bordiec, S., Paquis, S., Lacroix, H., Dhondst, S., Ait Barka, E., Kauffmann, S., et al.
(2011). Comparative analysis of defence responses induced by the endophytic
plant growth-promoting rhizobacterium Burkholderia phytofirmans strain Ps]N
and the non-host bacterium Pseudomonas syringae pv. pisi in grapevine cell
suspensions. J. Exp. Bot. 62, 595-603. doi: 10.1093/jxb/erq291

Britto, D. T., and Kronzucker, H. J. (2008). Cellular mechanisms of potassium
transport in plants. Physiol. Plant. 133, 637-650. doi: 10.1111/j.1399-
3054.2008.01067.x

Chang, P., Gerhardt, K. E., Huang, X. D., Yu, X. M,, Glick, B. R,, Gerwing, P. D.,
et al. (2014). Plant growth-promoting bacteria facilitate the growth of barley
and oats in salt-impacted soil: implications for phytoremediation of saline soils.
Int. J. Phytoremediation 16, 1133-1147.

Compant, S., Reiter, B., Sessitsch, A., Nowak, J., Clement, C., and Ait Barka, E.
(2005). Endophytic colonization of Vitis vinifera L. by plant growth-promoting
bacterium Burkholderia sp. strain PsJN. Appl. Environ. Microbiol. 71, 1685-
1693. doi: 10.1128/AEM.71.4.1685-1693.2005

Czechowski, T., Stitt, M., Altmann, T., Udvardi, M. K., and Scheible, W. R.
(2005). Genome-wide identification and testing of superior reference genes
for transcript normalization in Arabidopsis. Plant Physiol. 139, 5-17. doi:
10.1104/pp.105.063743

Da, K, Nowak, J., and Flinn, B. (2012). Potato cytosine methylation and
gene expression changes induced by a beneficial bacterial endophyte

Enhancement of

Burkholderia phytofirmans strain PsJN. Plant Physiol. Biochem. 50, 24-34. doi:
10.1016/j.plaphy.2011.09.013

Dauelsberg, P., Matus, J. T., Poupin, M. J., Leiva-Ampuero, A., Godoy, F., Vega, A.,
et al. (2011). Effect of pollination and fertilization on the expression of
genes related to floral transition, hormone synthesis and berry development
in grapevine. J. Plant Physiol. 168, 1667-1674. doi: 10.1016/j.jplph.2011.
03.006

Davenport, R. J., Munoz-Mayor, A., Jha, D., Essah, P. A, Rus, A., and Tester, M.
(2007). The Na™ transporter AtHKT1;1 controls retrieval of Na™ from the
xylem in Arabidopsis. Plant Cell Environ. 30, 497-507. doi: 10.1111/j.1365-
3040.2007.01637.x

Davletova, S., Rizhsky, L., Liang, H., Shengqiang, Z., Oliver, D. J., Coutu, J.,
et al. (2005). Cytosolic ascorbate peroxidase 1 is a central component of the
reactive oxygen gene network of Arabidopsis. Plant Cell 17, 268-281. doi:
10.1105/tpc.104.026971

Deinlein, U., Stephan, A. B., Horie, T., Luo, W., Xu, G., and Schroeder, J. L
(2014). Plant salt-tolerance mechanisms. Trends Plant Sci. 19, 371-379. doi:
10.1016/j.tplants.2014.02.001

Devanathan, S., Erban, A., Perez-Torres, R. Jr., Kopka, J., and Makaroff, C. A.
(2014). Arabidopsis thaliana glyoxalase 2-1 is required during abiotic stress
but is not essential under normal plant growth. PLoS ONE 9:€95971. doi:
10.1371/journal.pone.0095971

Dodd, I. C., and Perez-Alfocea, F. (2012). Microbial amelioration of crop salinity
stress. J. Exp. Bot. 63, 3415-3428. doi: 10.1093/jxb/ers033

Egamberdieva, D., Kamilova, F., Validov, S., Gafurova, L., Kucharova, Z., and
Lugtenberg, B. (2008). High incidence of plant growth-stimulating bacteria
associated with the rhizosphere of wheat grown on salinated soil in Uzbekistan.
Environ. Microbiol. 10, 1-9. doi: 10.1111/j.1462-2920.2007.01424.x

Fan, W., Deng, G., Wang, H., Zhang, H., and Zhang, P. (2014). Elevated
compartmentalization of Na into vacuoles improves salt and cold
stress tolerance in sweet potato (Ipomoea batatas). Physiol. Plant. doi:
10.1111/ppl.12301 [Epub ahead of print]

FAO. (2011). FAO Land and Plant Nutrition Management Service. Available at:
http://www.fao.org/ag/agl/agll/spush/

Fernandez, O., Theocharis, A., Bordiec, S., Feil, R., Jacquens, L., Clement, C.,
et al. (2012). Burkholderia phytofirmans PsJN acclimates grapevine to cold
by modulating carbohydrate metabolism. Mol. Plant Microbe Interact. 25,
496-504. doi: 10.1094/MPMI-09-11-0245

Finkelstein, R. R., Gampala, S. S., and Rock, C. D. (2002). Abscisic acid signaling in
seeds and seedlings. Plant Cell 14, S15-545.

Garcia de la Garma, J., Fernandez-Garcia, N., Bardisi, E., Pallol, B., Asensio-Rubio,
J. S, Bru, R, et al. (2015). New insights into plant salt acclimation: the roles of
vesicle trafficking and reactive oxygen species signalling in mitochondria and
the endomembrane system. New Phytol. 205, 216-239. doi: 10.1111/nph.12997

Geng, Y., Wu, R,, Wee, C. W,, Xie, F., Wei, X,, Chan, P. M,, et al. (2013). A spatio-
temporal understanding of growth regulation during the salt stress response in
Arabidopsis. Plant Cell 25, 2132-2154. doi: 10.1105/tpc.113.112896

Gill, S. S., and Tuteja, N. (2010). Reactive oxygen species and antioxidant
machinery in abiotic stress tolerance in crop plants. Plant Physiol. Biochem. 48,
909-930. doi: 10.1016/j.plaphy.2010.08.016

Golldack, D., Li, C., Mohan, H., and Probst, N. (2014). Tolerance to drought and
salt stress in plants: unraveling the signaling networks. Front. Plant Sci. 5:151.
doi: 10.3389/fpls.2014.00151

Gupta, B., and Huang, B. (2014). Mechanism of salinity tolerance in plants:
physiological, biochemical, and molecular characterization. Int. J. Genomics
2014:701596. doi: 10.1155/2014/701596

Han, Q.-Q,, Li, X.-P,, Bai, ].-P., Qiao, Y., Paré, P. W., Wang, S.-M,, et al. (2014).
Beneficial soil bacterium Bacillus subtilis (GB03) augments salt tolerance of
white clover. Front. Plant Sci. 5:525. doi: 10.3389/fpls.2014.00525

Hasegawa, P. M. (2013). Sodium (Na™) homeostasis and salt tolerance of plants.
Environ. Exp. Bot. 92, 19-31. doi: 10.1016/j.envexpbot.2013.03.001

Hu, Y., Chen, L., Wang, H., Zhang, L., Wang, F., and Yu, D. (2013). Arabidopsis
transcription factor WRKY8 functions antagonistically with its interacting
partner VQ9 to modulate salinity stress tolerance. Plant J. 74, 730-745. doi:
10.1111/tpj.12159

Ismail, A., Takeda, S., and Nick, P. (2014). Life and death under salt stress:
same players, different timing? J. Exp. Bot. 65, 2963-2979. doi: 10.1093/jxb/
erul59

Frontiers in Plant Science | www.frontiersin.org

June 2015 | Volume 6 | Article 466


http://www.fao.org/ag/agl/agll/spush/
http://www.frontiersin.org/Plant_Science/
http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Science/archive

Pinedo et al.

B. phytofirmans PsJN enhances Arabidopsis salt-tolerance

Jiang, C., Belfield, E. ]., Mithani, A., Visscher, A., Ragoussis, J., Mott, R,, etal. (2012).
ROS-mediated vascular homeostatic control of root-to-shoot soil Na*t delivery
in Arabidopsis. EMBO J. 31, 4359-4370. doi: 10.1038/emboj.2012.273

Jiang, X, Leidi, E. O., and Pardo, J. M. (2010). How do vacuolar NHX exchangers
function in plant salt tolerance? Plant Signal. Behav. 5, 792-795.

Kaymak, H., Guvang, L, Yarali, F., and Donmez, M. (2009). The Effects of bio-
priming with PGPR on germination of radish (Raphanus sativus L.) seeds under
saline conditions. Turk. J. Agric. For. 33,173-179.

Kim, K., Jang, Y.J., Lee,S. M., Oh, B. T., Chae, J. C.,and Lee, K. J. (2014). Alleviation
of salt stress by enterobacter sp. EJ01 in tomato and Arabidopsis is accompanied
by up-regulation of conserved salinity responsive factors in plants. Mol. Cells
37,109-117. doi: 10.14348/molcells.2014.2239

Kloepper, J. W., and Schroth, M. N. (1981). Plant growth-promoting rhizobacteria
and plant growth under gnotobiotic conditions. Phytopathology 71, 642-644.
doi: 10.1094/Phyto-71-642

Kronzucker, H. J., and Britto, D. T. (2011). Sodium transport in plants: a critical
review. New Phytol. 189, 54-81. doi: 10.1111/j.1469-8137.2010.03540.x

Kwon, K., Choi, D., Hyun, J. K, Jung, H. S., Baek, K, and Park, C. (2013).
Novel glyoxalases from Arabidopsis thaliana. FEBS ]. 280, 3328-3339. doi:
10.1111/febs.12321

Lagarde, D., Basset, M., Lepetit, M., Conejero, G., Gaymard, F., Astruc, S., et al.
(1996). Tissue-specific expression of Arabidopsis AKT1 gene is consistent with
arole in Kt nutrition. Plant J. 9, 195-203.

Leidi, E. O., Barragan, V., Rubio, L., El-Hamdaoui, A., Ruiz, M. T., Cubero, B.,
et al. (2010). The AtNHX1 exchanger mediates potassium compartmentation
in vacuoles of transgenic tomato. Plant J. 61, 495-506. doi: 10.1111/j.1365-
313X.2009.04073.x

Leon-Reyes, A., Van Der Does, D., De Lange, E. S., Delker, C., Wasternack, C.,
Van Wees, S. C,, et al. (2010). Salicylate-mediated suppression of jasmonate-
responsive gene expression in Arabidopsis is targeted downstream of the
jasmonate biosynthesis pathway. Planta 232, 1423-1432. doi: 10.1007/s00425-
010-1265-z

Li, C, Yue, J, Wu, X,, Xu, C,, and Yu, J. (2014). An ABA-responsive DRE-
binding protein gene from Setaria italica, SIARDP, the target gene of SIAREB,
plays a critical role under drought stress. J. Exp. Bot. 65, 5415-5427. doi:
10.1093/jxb/eru302

Liu, Y., Shi, Z., Yao, L., Yue, H., Li, H., and Li, C. (2013). Effect of IAA produced
by Klebsiella oxytoca Rs-5 on cotton growth under salt stress. J. Gen. Appl.
Microbiol. 59, 59-65.

Lugtenberg, B., and Kamilova, F. (2009). Plant-growth-promoting
rhizobacteria. Annu. Rev. Microbiol. 63, 541-556. doi:
10.1146/annurev.micro.62.081307.162918

Lv, S., Jiang, P., Chen, X,, Fan, P, Wang, X,, and Li, Y. (2012). Multiple
compartmentalization of sodium conferred salt tolerance in Salicornia
europaea. Plant Physiol. Biochem. 51, 47-52. doi: 10.1016/j.plaphy.2011.10.015

Maathuis, F. J. (2009). Physiological functions of mineral macronutrients. Curr.
Opin. Plant Biol. 12, 250-258. doi: 10.1016/j.pbi.2009.04.003

MacRobbie, E. A. (1998). Signal transduction and ion channels in guard
cells. Philos. Trans. R. Soc. Lond. B Biol. Sci. 353, 1475-1488. doi:
10.1098/rstb.1998.0303

Maser, P., Eckelman, B., Vaidyanathan, R., Horie, T., Fairbairn, D. J., Kubo, M.,
etal. (2002). Altered shoot/root Na™ distribution and bifurcating salt sensitivity
in Arabidopsis by genetic disruption of the Na™ transporter AtHKT1. FEBS Lett.
531, 157-161.

Mayak, S., Tirosh, T., and Glick, B. R. (2004). Plant growth-promoting bacteria
confer resistance in tomato plants to salt stress. Plant Physiol. Biochem. 42,
565-572. doi: 10.1016/j.plaphy.2004.05.009

Mitter, B., Petric, A., Shin, M. W., Chain, P. S., Hauberg-Lotte, L., Reinhold-
Hurek, B., et al. (2013). Comparative genome analysis of Burkholderia
phytofirmans Ps]N reveals a wide spectrum of endophytic lifestyles based
on interaction strategies with host plants. Front. Plant Sci. 4:120. doi:
10.3389/fpls.2013.00120

Mittler, R. (2002). Oxidative stress, antioxidants and stress tolerance. Trends Plant
Sci. 7, 405-410.

Moller, I. S., Gilliham, M., Jha, D., Mayo, G. M., Roy, S. ., Coates, J. C., et al. (2009).
Shoot Na* exclusion and increased salinity tolerance engineered by cell type-
specific alteration of Na* transport in Arabidopsis. Plant Cell 21, 2163-2178.
doi: 10.1105/tpc.108.064568

Msanne, J., Lin, J., Stone, J. M., and Awada, T. (2011). Characterization
of abiotic stress-responsive Arabidopsis thaliana RD29A and RD29B genes
and evaluation of transgenes. Planta 234, 97-107. doi: 10.1007/s00425-011-
1387-y

Munns, R. (2002). Comparative physiology of salt and water stress. Plant Cell
Environ. 25, 239-250.

Munns, R. (2005). Genes and salt tolerance: bringing them together. New Phytol.
167, 645-663. doi: 10.1111/j.1469-8137.2005.01487.x

Munns, R., James, R. A., and Lauchli, A. (2006). Approaches to increasing the
salt tolerance of wheat and other cereals. J. Exp. Bot. 57, 1025-1043. doi:
10.1093/jxb/erj100

Munns, R, James, R. A., Xu, B., Athman, A., Conn, S. J., Jordans, C., et al. (2012).
Wheat grain yield on saline soils is improved by an ancestral Na(+) transporter
gene. Nat. Biotechnol. 30, 360-364. doi: 10.1038/nbt.2120

Munns, R., and Tester, M. (2008). Mechanisms of salinity tolerance. Annu. Rev.
Plant Biol. 59, 651-681. doi: 10.1146/annurev.arplant.59.032607.092911

Murashige, T., and Skoog, F. (1962). A revised medium for rapid growth and
bio assays with tobacco tissue cultures. Physiol. Plant. 15, 473-497. doi:
10.1111/j.1399-3054.1962.tb08052.x

Mustafiz, A., Singh, A. K., Pareek, A., Sopory, S. K., and Singla-Pareek, S. L.
(2011). Genome-wide analysis of rice and Arabidopsis identifies two glyoxalase
genes that are highly expressed in abiotic stresses. Funct. Integr. Genomics 11,
293-305. doi: 10.1007/s10142-010-0203-202

Nadeem, S. M., Zahir, Z. A., Naveed, M., and Arshad, M. (2007). Preliminary
investigations on inducing salt tolerance in maize through inoculation with
rhizobacteria containing ACC deaminase activity. Can. J. Microbiol. 53, 1141-
1149. doi: 10.1139/W07-081

Naveed, M., Hussain, M. B. Zahir, Z., Mitter, B, and Sessitsch, A.
(2014). Drought stress amelioration in wheat through inoculation with
Burkholderia phytofirmans strain PsJN. Plant Growth Regul. 73, 121-131. doi:
10.1007/510725-013-9874-9878

Nieves-Cordones, M., Aleman, F., Martinez, V., and Rubio, F. (2014). K*
uptake in plant roots. The systems involved, their regulation and parallels
in other organisms. J. Plant Physiol. 171, 688-695. doi: 10.1016/j.jplph.2013.
09.021

Pieterse, C. M. J., Poelman, E. H., Van Wees, S. C. M., and Dicke, M. (2013).
Induced plant responses to microbes and insects. Front. Plant Sci. 4:475. doi:
10.3389/fpls.2013.00475

Poupin, M. J., Timmermann, T., Vega, A., Zuniga, A., and Gonzalez, B. (2013).
Effects of the plant growth-promoting bacterium Burkholderia phytofirmans
PsJN throughout the life cycle of Arabidopsis thaliana. PLoS ONE 8:¢69435. doi:
10.1371/journal.pone.0069435

Rozema, J., and Schat, H. (2013). Salt tolerance of halophytes, research questions
reviewed in the perspective of saline agriculture. Environ. Exp. Bot. 92, 83-95.
doi: 10.1016/j.envexpbot.2012.08.004

Sentenac, H., Bonneaud, N., Minet, M., Lacroute, F., Salmon, J. M., Gaymard, F.,
etal. (1992). Cloning and expression in yeast of a plant potassium ion transport
system. Science 256, 663-665.

Sessitsch, A., Coenye, T., Sturz, A. V., Vandamme, P., Barka, E. A,, Salles, J. F., et al.
(2005). Burkholderia phytofirmans sp. nov., a novel plant-associated bacterium
with plant-beneficial properties. Int. J. Syst. Evol. Microbiol. 55, 1187-1192. doi:
10.1099/ijs.0.63149-63140

Shavrukov, Y. (2013). Salt stress or salt shock: which genes are we studying? J. Exp.
Bot. 64, 119-127. doi: 10.1093/jxb/ers316

Shi, H., Quintero, F. J., Pardo, J. M., and Zhu, J. K. (2002). The putative
plasma membrane Na(+)/H(+) antiporter SOS1 controls long-distance Na(+)
transport in plants. Plant Cell 14, 465-477. doi: 10.1105/tpc.010371

Shkolnik-Inbar, D., Adler, G., and Bar-Zvi, D. (2013). ABI4 downregulates
expression of the sodium transporter HKT1;1 in Arabidopsis roots and affects
salt tolerance. Plant J. 73, 993-1005. doi: 10.1111/tp;j.12091

Singla-Pareek, S. L., Reddy, M. K., and Sopory, S. K. (2003). Genetic engineering
of the glyoxalase pathway in tobacco leads to enhanced salinity tolerance. Proc.
Natl. Acad. Sci. U.S.A. 100, 14672-14677. doi: 10.1073/pnas.2034667100

Sneha, S., Rishi, A., Dadhich, A., and Chandra, S. (2013). Effect of salinity on
seed germination, accumulation of proline and free amino acid in Pennisetum
glaucum (L.) Pak. ]. Biol. Sci. 16, 877-881.

Sunarpi, Horie, T., Motoda, J., Kubo, M., Yang, H., Yoda, K., et al. (2005). Enhanced
salt tolerance mediated by AtHKT1 transporter-induced Na™ unloading

Frontiers in Plant Science | www.frontiersin.org

June 2015 | Volume 6 | Article 466


http://www.frontiersin.org/Plant_Science/
http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Science/archive

Pinedo et al.

B. phytofirmans PsJN enhances Arabidopsis salt-tolerance

from xylem vessels to xylem parenchyma cells. Plant J. 44, 928-938. doi:
10.1111/j.1365-313X.2005.02595.x

Theocharis, A., Bordiec, S., Fernandez, O., Paquis, S., Dhondt-Cordelier, S.,
Baillieul, F., et al. (2012). Burkholderia phytofirmans Ps]N primes Vitis vinifera
L. and confers a better tolerance to low nonfreezing temperatures. Mol. Plant
Microbe Interact. 25, 241-249. doi: 10.1094/MPMI-05-11-0124

Thornalley, P. J. (1996). Pharmacology of methylglyoxal: formation, modification
of proteins and nucleic acids, and enzymatic detoxification-a role in
pathogenesis and antiproliferative chemotherapy. Gen. Pharmacol. 27, 565-573.

Upadhyay, S. K., Singh, J. S., Saxena, A. K., and Singh, D. P. (2012). Impact of PGPR
inoculation on growth and antioxidant status of wheat under saline conditions.
Plant Biol. (Stuttg.) 14, 605-611. doi: 10.1111/j.1438-8677.2011.00533.x

Upadhyay, S. K., Singh, J. S., and Singh, D. P. (2011). Exopolysaccharide-producing
plant growth-promoting rhizobacteria under salinity condition. Pedosphere 21,
214-222. doi: 10.1016/S1002-0160(11)60120-3

Van Loon, L. C,, Bakker, P. A., and Pieterse, C. M. (1998). Systemic resistance
induced by rhizosphere bacteria. Annu. Rev. Phytopathol. 36, 453-483. doi:
10.1146/annurev.phyto.36.1.453

Verslues, P. E., and Sharma, S. (2010). Proline metabolism and its implications for
plant-environment interaction. Arabidopsis Book 8:¢0140. doi: 10.1199/tab.0140

Yamaguchi-Shinozaki, K., and Shinozaki, K. (1994). A novel cis-acting element in
an Arabidopsis gene is involved in responsiveness to drought, low-temperature,
or high-salt stress. Plant Cell 6, 251-264. doi: 10.1105/tpc.6.2.251

Yang, J., Kloepper, J. W., and Ryu, C. M. (2009). Rhizosphere bacteria
help plants tolerate abiotic stress. Trends Plant Sci. 14, 1-4. doi:
10.1016/j.tplants.2008.10.004

Yoshiba, Y., Kiyosue, T., Katagiri, T., Ueda, H., Mizoguchi, T., Yamaguchi-
Shinozaki, K., et al. (1995). Correlation between the induction of a gene for
delta 1-pyrroline-5-carboxylate synthetase and the accumulation of proline in
Arabidopsis thaliana under osmotic stress. Plant J. 7, 751-760.

Zahir, Z. A., Munir, A,, Asghar, H. N., Shaharoona, B., and Arshad, M.
(2008). Effectiveness of rhizobacteria containing ACC deaminase for growth
promotion of peas (Pisum sativum) under drought conditions. J. Microbiol.
Biotechnol. 18, 958-963.

Zhang, H., Kim, M. S., Sun, Y., Dowd, S. E.,, Shi, H., and Pare, P. W. (2008).
Soil bacteria confer plant salt tolerance by tissue-specific regulation of the
sodium transporter HKT1. Mol. Plant Microbe Interact. 21, 737-744. doi:
10.1094/MPMI-21-6-0737

Zhang, J. L., and Shi, H. (2013). Physiological and molecular mechanisms of
plant salt tolerance. Photosyn. Res. 115, 1-22. doi: 10.1007/s11120-013-981
3-9816

Zhu, J. K,, Liu, J.,, and Xiong, L. (1998). Genetic analysis of salt tolerance in
Arabidopsis. Evidence for a critical role of potassium nutrition. Plant Cell 10,
1181-1191.

Zuniga, A., Poupin, M. J., Donoso, R., Ledger, T., Guiliani, N., Gutierrez, R. A,
et al. (2013). Quorum sensing and indole-3-acetic acid degradation play a
role in colonization and plant growth promotion of Arabidopsis thaliana by
Burkholderia phytofirmans PsN. Mol. Plant Microbe Interact. 26, 546-553. doi:
10.1094/MPMI- 10-12-0241-R

Conflict of Interest Statement: The authors declare that the research was
conducted in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Copyright © 2015 Pinedo, Ledger, Greve and Poupin. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted, provided the
original author(s) or licensor are credited and that the original publication in this
journal is cited, in accordance with accepted academic practice. No use, distribution
or reproduction is permitted which does not comply with these terms.

Frontiers in Plant Science | www.frontiersin.org

17

June 2015 | Volume 6 | Article 466


http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Plant_Science/
http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Science/archive

	Burkholderia phytofirmans PsJN induces long-term metabolic and transcriptional changes involved in Arabidopsis thaliana salt tolerance
	Introduction
	Materials and Methods
	Plant Growth Conditions and Treatments
	Plant Growth Measurements and Statistical Analysis
	Proline Extraction and Measurement
	RNA Extraction, cDNA Synthesis, and qRT-PCR Analyses

	Results
	Burkholderia phytofirmans PsJN Enhances Salt-Stress Tolerance and Recovery of Stressed A. thaliana Plants
	Burkholderia phytofirmans PsJN Induces Early Transcriptional and Metabolic Changes in Salt-Stressed A. thaliana Plants
	Burkholderia phytofirmans PsJN is Associated with Early Changes in Transcriptional Response of Ion Transporter Genes in A. thaliana Plants under Salt-Stress
	Burkholderia phytofirmans Modifies A. thaliana Expression of Ion Transporters and Detoxification Genes after Long-Term Exposure to Salt-Stress

	Discussion
	Effects of B. phytofirmans on A. thaliana Growth after Short and Long-Term Salt-Stress
	Transcriptional and Metabolic Effects of B. phytofirmans in A. thaliana Early Response to Salt-Stress
	Effects of B. phytofirmans in A. thaliana Ion Transporters Transcription under Short and Long-Term Salt-Stress

	Acknowledgments
	Supplementary Material
	References


