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Establishment of seedlings is a key factor in achievement of uniform field stands
and, consequently, stable yields. Under Mediterranean conditions, soil moisture in the
upper layer is limited and seedlings may be exposed to frequent dehydration events.
The presence of the Reduced height (Rht)-B1b and Rht-D1b semi-dominant dwarfing
alleles results in insensitivity to gibberellin (GAI) and, hence, poor emergence from deep
sowing. Introduction of alternative dwarfing genes and, thereby, preservation of the
gibberellin response (GAR) and coleoptile length, contributes to better emergence from
deep sowing. Initially 47 wheat cultivars carrying different Rht alleles were screened
for their ability to emerge from deep sowing, and then 17 of them were selected for
detailed physiological characterization in the field. The modern wheat lines containing
GAI alleles showed significantly lower percentages of emergence from deep sowing than
the GAR lines, i.e., 52 and 74%, respectively. Differences in early developmental stages
were associated with grain yield, as indicated by a reduction of 37.3% in the modern
GAI cultivars. Our results demonstrate the potential of alternative dwarfing genes for
improving seedling establishment and grain yields in Mediterranean-like environments.

Keywords: coleoptile length, erratic precipitation pattern, gibberellin, semi-dwarf wheat, seedling establishment,
Rht, yield components

Introduction

Initial germination of seeds, and ability of seedlings to emerge and establish are key factors in
achievement of uniform, high-yielding field stands. Soil moisture is necessary for seed germination
and seedling growth but, under semi-arid Mediterranean conditions soil moisture in the upper
layer is limited and seeds may be exposed to frequent dehydration events. Moreover, in recent
years, climate change has led to increased fluctuation of precipitation (Marvel and Bonfils, 2013).
However, deep sowing could ensure adequate seed-zone moisture before germination and thereby
enhance seedling establishment (Richards et al., 2010; Mohan et al., 2013; Rebetzke et al., 2014b).
Deep sowing could also be important for avoiding the phytotoxicity of pre-emergence herbicides
(O’Sullivan et al., 1985) and preventing seed removal by predators (Brown et al., 2003).

Since the early 1970s the ‘Green Revolution’ has led to a significant improvement in wheat
yields, through incorporation of Reduced height (Rht) alleles (Gale and Youssefien, 1985) to
produce semi-dwarf cultivars (Flintham et al., 1997). Rht-B1 and Rht-D1 (formerly Rht1 and
Rht2) encode DELLA proteins (named after their conserved N-terminal D-E-L-L-A amino acid
motif), which act as repressors of gibberellin (GA)-responsive growth. The Rht-B1b and Rht-D1b
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mutations are gain-of-function mutations that impair GA
signaling and thereby confer dwarfism through constitutive
repression of cell division and elongation (Peng et al., 1999).
The shortened stem of GAI wheat results in liberation of
more assimilates to the parallel process of spike development,
thereby contributing to harvest index (HI) improvement and,
consequently, increased total grain yield (Austin et al., 1980).
The Rht improves lodging resistance and enables increased
application rates of chemical fertilizers.

However, modern GAI wheat cultivars have short coleoptiles
(the sheath-like structure that protects the elongating seedling
as it emerges through the soil surface), therefore they will not
establish well if sown too deep (Allan, 1980; Supplementary
Figure S1). In attempting to counter these problems of
establishment under deep sowing, several alternative dwarfing
genes that confer Rht while retaining responsiveness to
endogenous gibberellin (GAR) have been characterized (Ellis
et al., 2004; Rebetzke et al., 2011, 2014b; Chen et al., 2013).

The use of alternative dwarfing genes contributed to the
development of elite wheat cultivars with longer coleoptiles than
those of GAI cultivars, and improved establishment from deep
sowing (Schillinger et al., 1998). Lines containing these genes
emerge more successfully than those without them, when sown
deep or when used in conservation tillage systems (Rebetzke et al.,
2012). Enhanced responsiveness to GA could also contribute
to improved early vigor and could reduce water loss from the
soil and thereby improve competitiveness with weeds. In the
present study, we evaluated the breeding potential of alternative
GAR dwarfing genes under semi-arid Mediterranean conditions.
The aims were: (i) morpho-physiological characterization of
GA responsiveness in a collection of Mediterranean wheat
cultivars; (ii) measurement of the effect of GA responsiveness
on emergence ability from deep sowing; and (iii) evaluation of
the effect of GA responsiveness on yield components under deep
sowing.

Materials and Methods

Plant Material
Forty-seven wheat genotypes carrying different dwarfing alleles
were screened for their ability to emerge from deep sowing.
The germplasm array included: ten modern Israeli cultivars
carrying green-revolution-derived dwarfing alleles (Rht-B1b and
Rht-D1b); 34 Mediterranean wheat landraces, and three wheat
cultivars carrying known GAR genes (Rht8, Rht5, Rht13;
Supplementary Table S1). Following the initial screening, a
subset of 17 wheat cultivars (seven modern cultivars, eight
landraces, and two wheat lines carrying known GAR genes)
were selected for detailed physiological characterization. For each
genotype the year of collection or cultivar release, and molecular
characterization data are given in Table 1.

Characterization of Emergence from Deep
Sowing
Emergence from deep sowing was conducted in (9 × 20)-cm
cylindrical plastic containers filled with brown-red degrading

TABLE 1 | Wheat cultivars used for the field experiment, with years of
release or collection and descriptions of Rht genes.

Genotype/cultivar ID Year Country Rht genes

GA-responsive genotypes

Abu Fashi PI 384037 1937 Israel Rht12

Chuan Mai-18 – 1965 China Rht8

Fere Alexandrinum PI 134596 1939 Syria Rht9, Rht12

Gaza Cltr 12616 1947 Israel Rht9

Juljulith PI 292034 1936 Israel –

JM 3989 PI 572903 1991 Palestine Rht12, Rht13

Langdon Cltr 13165 1954 USA Rht5

Marfed Dwarf PI 542439 1987 USA Rht5, Rht13

MG 26427 PI 534500 1988 Egypt –

Persian Black PI 283891 1926 Iran Rht5

GA-insensitive genotypes

C-61 2013 Israel Rht-B1b, Rht5,
Rht13

Bet Hashita 1985 Israel Rht-B1b,
Rht12, Rht13

Zahir 2005 Israel Rht-B1b, Rht8,
Rht12, Rht13

Yuval 2012 Israel Rht-B1b, Rht12

Nirit 1996 Israel Rht-B1b, Rht9

Omer 2013 Israel Rht-B1b, Rht5,
Rht8, Rht12

Shoam 2003 Israel Rht-D1b, Rht12

sandy soil (Rhodoxeralf) composed of 76% sand, 8% silt and
16% clay (Figure 1A). Eight uniform-size seeds were placed, at
2 or 10 cm depth, in the control or deep-sowing treatments,
respectively, and watered to field capacity. The pots were placed
in a dark room at 18◦C and were monitored daily for number of
emerging seedlings. The experiment was repeated three times.

In addition, we tested the effect of soil type (Rhodoxeralf soil
and heavy clay soil) and sowing depth (2 or 10 cm) on plant
emergence of GAI (Israeli cultivars Yuval and Zahir) and GAR
(wheat lines Marfed Dwarf and Chuan Mai-18) wheat genotypes.

Coleoptile Length Measurement
The screening system was based on the ‘cigar roll’ method (Bai
et al., 2013). Ten uniform-size seeds of each genotype were placed
on moist germination paper (25 cm × 38 cm; Anchor Paper Co.,
St. Paul, MN, USA), about 4 cm apart, with germ end down. The
paper was covered with another sheet of moist germination paper
and the sandwich was rolled to a final diameter of 2 cm. The
bases of the rolls were placed in water in a tray in a darkened
growth chamber at a constant temperature of 18◦C. After 7 days,
the average coleoptile length of eight seedlings was recorded, to
the nearest millimeter, as measured from the base of the seed to
the coleoptile tip.

GA-Sensitivity Assay
Uniform-size seeds of each genotype were rolled in moist
germination paper, according to the ‘cigar roll’ method (Bai
et al., 2013). The base of the rolls were placed in a tray with
water (control) or 10−5 M gibberellic acid (GA3; Cat. No. G-
7645; Sigma; GA-treatment) and placed in a darkened growth
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FIGURE 1 | (A) Example of the laboratory screening for emergence from deep
sowing. (B) Coleoptile length distribution among 17 wheat genotypes; photo
was taken 7 days after sowing. (C) Example of leaf emergence from deep

sowing. (D) Coleoptile (marked with arrow) emergence from deep sowing.
(E) Effects of deep sowing on modern gibberellin-insensitive cultivars. (F) Field
experiment of deep sowing compared with common sowing practice.

chamber at a constant temperature of 10◦C. Coleoptile lengths
were measured 10 days after germination.

Molecular Analysis
Fresh leaf tissue (∼50 mg) from individual 6 days-old seedling
were used for DNA extraction by the CTAB method, follow
RNase treatment. A NanoDrop ND1000 spectrophotometer
(NanoDrop Technologies, Wilmington, DE, USA) was used to
measure the DNA concentration. Polymerase chain reaction
(PCR) protocols and primers used in this study were as described
by Ellis et al. (2002, 2005). Fragment sizes of PCR products were
determined on 2% agarose gel and visualized under UV light after
staining with ethidium bromide. The primer pairs for each Rht

gene were: Rht-B1b – BF and WR1; Rht-D1b – BF2 and WR2
(Ellis et al., 2002); Rht5 – XBarc102; Rht8 – Xwmc503; Rht9 –
XBarc151; Rht12 – Xwmc410; Rht13 – Xwms577 (Ellis et al.,
2005).

Field Trial for Emergence from Deep Sowing
A field experiment was conducted at the experimental farm of
the Hebrew University of Jerusalem in Rehovot, Israel (34◦47′
N, 31◦54′ E; 54 m above sea level). A split-plot factorial
(genotype/sowing depth) block design with six replicates was
employed; each block consisted of two main plots (one for each
of the two sowing depths), with each main plot split into 17
single-row plots (one for each genotype). The plants were spaced
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at 20 and 30 cm, within and between rows, respectively. Two
sowing-depth treatments were used: 2-cm as control, to mimic
the common agro-technical practice; and 10-cm deep-sowing
treatment. The field was treated with fungicides and pesticides
to prevent development of fungal pathogens or insect pests, and
was weeded manually weekly.

The number of seedlings that emerged from each soil depth
was recorded. Fifty-one days after sowing, the number of leaves
on the main stem was recorded. Sixty days after sowing, the
number of tillers and width of the last fully exposed leaf
were determined. The heading date of each plot, i.e., when
the first spikes of 50% of the plants were fully exposed, was
recorded. The thousand-kernel weight (TKW) for each plot was
determined by using an electronic seed counter (Model S-25;
DATA Technologies, Ltd., Jerusalem, Israel) and a digital scale.
Numbers of spikes per plant, spikelets per spike, and grains per
spikelet, and total grain yield were measured and calculated on a
single-plot basis.

Statistical Analyses
The JMP statistical package, Version 11 (SAS Institute Inc., Cary,
NC, USA) was used for statistical analyses. Principal component
analysis (PCA) of the eight continuous plant traits was used
to identify a smaller number of principal components that
accounted for most of the phenotypic variance found in the
field assay. The PCA was based on the correlation matrix and is
presented as biplot ordinations of wheat lines (PC scores) and
continuous plant traits (PC factor loading). Two components
were extracted by using eigenvalues >1 to ensure meaningful
implementation of the data by each factor.

Results

Physiological Characterization of the Wheat
Germplasm
We observed wide phenotypic diversity among the 47 tested
wheat genotypes, in their ability to emerge from deep-sowing
(10 cm; Supplementary Table S1). Based on this initial screening
(Figure 1A), we selected for detailed characterization 17
genotypes that represented the variation in emergence from
depth. It is worth noting that whereas in the early 19th century
most wheat cultivars, i.e., landraces, grown in this region were
of durum wheat, since the mid-20th century those cultivars
were replaced with bread wheat and, subsequently, with the
GAI “green revolution” cultivars. Therefore, our selection of
genotypes for the present study represents the material grown by
farmers in this region during the last century. Among these lines,
wide variations in coleoptile length were detected (Figure 1B).
It is important to note that when GAI wheat genotypes with
short coleoptiles are used in deep sowing the first leaf is forced
to penetrate the soil upper layers. As observed later in the
current field experiment, this could result in slow emergence
and might cause physical damage to the developing young tissue
(Figures 1C–F).

Under controlled conditions, the coleoptile length of the
wheat germplasm ranged from 7.84 cm (Nirit) to 13.62 cm

(Juljulith), with an average of 10.80 cm (Figure 2A; Table 2). The
coleoptile length of GAI cultivars was significantly (P = 0.0001)
shorter than that of the GAR cultivars, at 8.57 and 12.36 cm,
respectively. It is worth noting that all the GAI cultivars had
coleoptiles that were shorter than the present sowing depth of
10 cm, hence only leaf was emerging through the soil surface. The
average time to emergence from deep-sowing was significantly
(P = 0.0001) longer for the GAI than for the GAR lines:
11.87 and 9.16 days, respectively. The GAI lines showed non-
significant responses to application of exogenous GA (Figure 2B;
gray column). In contrast, several GAR lines showed significant
increments in coleoptile length in response to GA (Figure 2B;
white column).

Genetic Characterization of the Wheat
Germplasm
Characterization of the wheat germplasm with known DNA
markers for Rht genes showed that all the modern cultivars
possessed “marker alleles” for the dominant dwarfing gene: Rht-
B1b in C-61, Bet Hashita, Zahir, Yuval, Nirit, and Omer; or
Rht-D1b in Shoam. The DNA-marker analysis demonstrated that
these lines also contained the dwarfing alleles in the loci linked
to other dwarfing genes (GAR) (Table 1). The wheat landraces
contained markers for several known dwarfing alleles in the
alternative Rht loci: Rht5 in Langdon, Marfed Dwarf, and Persian
Black; Rht8 in Chuan Mai-18; Rht9 in Fere Alexandrinum, and
Gaza; Rht12 in Abu Fashi, Fere Alexandrinum, and JM 3989; and
Rht13 in JM 3989 and Marfed Dwarf. In Juljulith and MG 26427
no known markers associated with dwarfing genes were found
(Table 1).

Effect of Sowing Depth on Emergence and
Field Establishment
When sown deep, the modern GAI wheat lines showed
significantly (P = 0.0002) lower emergence percentages than
the GAR lines, averaging 52 and 74%, respectively. However,
it is worth noting that one GAI line – cv. Omer – showed
a high emergence percentage of 73% (Table 2). These GAI
lines also showed lower emergence percentages than the GAR
lines under controlled conditions in the field (Figure 3A).
Under deep sowing, the percentage reductions in leaf width,
compared with the control, were significantly (P = 0.0007)
higher in the GAI lines than in the GAR lines, averaging 19.7
and 4.5%, respectively (Supplementary Figure S2). Likewise,
the reduction in the number of leaves was significantly
(P = 0.0005) higher in the GAI than in the GAR lines,
with averages of 14.7 and 6.5%, respectively (Supplementary
Figure S2). The lower emergence rate from deep sowing
was associated with delay flowering of the GAI lines – by
2.5 days (Figure 3B). This finding was also reflected in a strong
correlation between emergence time and heading date (r = 0.55,
P = 0.027).

Clear interactions were detected between genotypes and
soil types. The Israeli cultivars that are characterized by short
coleoptiles (Figure 1B) exhibited significantly slower emergence
from depth in both soil types (Supplementary Figure S3A). In
contrast, in the case of Marfed Dwarf, which contains the Rht5
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FIGURE 2 | (A) Coleoptile lengths of the gibberellin-responsive (GAR; white) and GA-insensitive (GAI, gray) genotypes under controlled conditions. Dashed line
marks the sowing depth. Data are means ± SE (n = 10). (B) Effect of exogenous application of GA on coleoptile length. Data presented as percentages of control
values. Dashed line indicates no change, i.e., 100%. Data are means ± SE (n = 10).

GAR gene, significant differences in emergence rate were detected
only in heavy clay soil but not in light sandy soil (Supplementary
Figure S3B). However, soil type did not significantly affect the
emergence performances of Chuan Mai-18, which contains the
Rht8 GAR gene; this wheat line expressed high early vigor and
emergence rates at both sowing depths and in both soil types.

Effects of Sowing Depth on Grain Yield and
Yield Components
The effects of deep sowing were stronger on the GAI lines
than on the GAR lines, for all yield components; the percentage
reduction in the number of spikes per plant, i.e., fertile tillers,
was significantly (P = 0.002) lower in GAR than in GAI, at
12.3 and 33.4%, respectively (Figure 4; Table 2). Whereas the
GAR lines were not affected by deep sowing, the GAI lines
showed significantly (P = 0.02) fewer spikelet per spike, by 7.5%
(Figure 4). The final grain yield was significantly affected by deep
sowing for all the wheat lines: the GAI lines showed a significant
(P = 0.0001) 66.7% reduction in GY, and the GAR lines a 33.9%
reduction (Figure 4; Table 2).

Principal component analysis extracted two major
components (Eigenvalues >1) that accounted collectively
for 73.1% of the variance in the data set. Principal component 1
(PC1, X-axis, Figure 5) explained 53.6% of the variation among
lines, and was loaded positively with coleoptile length, spikes per

plant and grain yield and negatively with days from sowing to
emergence and effect on heading date. PC 2 (Figure 5; Y-axis)
accounted for 19.5% of the variation; it was positively loaded
with grains per spikelet and TKW, and negatively loaded with
spikelets per spike. The PCA showed strong associations between
days from sowing to emergence and heading date (Figure 5) –
a finding supported by the positive correlations between these
variables (r = 0.54, P = 0.002; Supplementary Table S2). The
resulting PCA surface was able to distinguish between the GAI
and the GAR lines, mainly evident along PC1 (Figure 5).

Discussion

Under Mediterranean-like environments, the common sowing
practice of the semi dwarf wheat lines containing the Rht-B1b
and Rht-D1b exposes the seedlings to dehydration risk because
of the high fluctuations in precipitation (Schillinger et al., 1998).
To avoid this negative effects of these widely used dwarfing genes,
several alternative genes (GAR) have been suggested as possible
means to improve emergence from deep sowing (Ellis et al., 2004;
Rebetzke et al., 2007, 2011, 2014b; Chen et al., 2013). In this
context, it should be noted that the set of wheat landraces used
in the present study had longer coleoptiles than the modern GAI
cultivars, which contributed to their better emergence from deep
sowing (Figures 1–3).
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FIGURE 3 | Effects of sowing depth on seedling emergence and
heading dates. (A) Seedling emergence percentages from deep sowing as
compared with control sown at 2 cm. Dashed lines represent
GAI-genotypes; solid lines GAR-genotypes; (B) A box plot showing the

effect of deep sowing on heading date as compared with control under
field conditions. Components of descriptive statistics are graphically
presented: median value (horizontal short line), quartile range (rectangle),
data range (vertical long line).

FIGURE 4 | Radar charts comparing the traits of yield and yield components of GAI (blue) and GAR (red) plants under deep sowing. Six individual plots
per line were used in each of the measurements, and the data were subjected to one-way ANOVA followed by Student’s t-test. Asterisks indicate significance:
∗P ≤ 0.05, ∗∗P ≤ 0.01, and ∗∗∗P ≤ 0.001.

The ability of seedlings to emerge from soil depth and
to establish a good field stand is considered the single most
important phenological factor influencing the success of an
annual plant (Forcella et al., 2000). This ability directly affects
important parameters of early vegetative growth, such as
number of leaves and leaf width, which determine subsequent
photosynthesis and growth (Pang et al., 2014). Likewise, the
number of spikelets per spike is determined during early

development stages, and could be affected by emergence
difficulties (Rebetzke et al., 2007). The use of short-coleoptile
wheat genotypes in deep sowing or conservation cropping
practices forces the developed young leaf to penetrate the soil
upper layers. This negatively affects the physical properties of
the seedling and its developmental processes: long-term research,
which tested the performance of modern wheat cultivars in
conservation cropping in Australia, estimated an 11% reduction
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FIGURE 5 | Principal component analysis (based on correlation matrix) of continuous plant traits recorded on 17 wheat lines. Biplot vectors are trait
factor loadings for principal component (PC) 1 and PC2. The GAI lines (�) and GAR (•) are marked.

in grain yield, which it attributed to poor establishment and poor
early vigor as the main causes (Watt et al., 2006).

A longer coleoptile is an asset in promoting seedling
emergence and establishment in drought-prone environments,
where there is a lack of moisture in the top layer of
the soil. Moreover, soil surface crusting, which is common
under the Mediterranean fluctuating precipitation, necessitates
fast coleoptile emergence (Schillinger et al., 1998), such as
characterizes several landraces – Persian Black, Juljulith, JM 3989
and MG 26427 (Figure 3A).

The coleoptile has a dual role in both providing mechanical
support, which is required for seedling emergence through the
soil, and protecting the protruding leaf. Generally, it has been
shown that GAI semidwarf genotypes have 30–40% shorter
coleoptiles than traditional genotypes (Allan et al., 1962). In
agreement with these findings, the modern cultivars in the
present study showed significantly 30% shorter coleoptiles than
the landrace genotypes (Table 2). Coleoptile length has previously
been reported to be important for seedling emergence from deep
sowing (Fick and Qualset, 1976; Richards et al., 2010), and in
the present study it was significantly correlated with number of
emerged seedlings (r = 0.59, P = 0.01; Supplementary Table
S2) and, most importantly, with days to seedling emergence
(r = −0.94, P = 0.0001; Supplementary Table S2).

Several environmental factors are considered to affect
emergence, and they might interact with coleoptile length to

determine early vigor of wheat seedlings. Among these factors
are soil texture, seed-zone water content, and temperature (Jessop
and Stewart, 1983; Mohan et al., 2013). In the present study
we demonstrated the soil type × genotype interaction in a
germination assay under controlled conditions (Supplementary
Figure S3). Our results reflect the more challenging nature of
the medium with which heavy clay soil confronts the emerging
seedling, compared with that of the more favorable light sandy
soil. Unlike Mohan et al. (2013), we do not dismiss the role of
coleoptile length as a contributor to early vigor of wheat and
its emergence from depth. Nevertheless, germination rate is the
final outcome of the interaction of the wheat with soil-related
environmental factors (Supplementary Figure S3).

Landraces have also shown higher values of leaf width and
leaf number than the GAI cultivars and, therefore, greater
early vigor when sown deep (Supplementary Figure S2). Leaf
width was previously reported as a reliable indicator for
early vigor, which is advantageous under Mediterranean or
semiarid environments characterized by a short growing season
(Rebetzke and Richards, 1999). Early vigor, in itself, could
contribute to early establishment, weed suppression and overall
improved assimilates balance. The delay in leaf growth of the
GAI genotypes has also been reported to be associated with
increased evaporation losses from the soil surface, which results
in significant reduction of plant water-use efficiency (López-
Castañeda and Richards, 1994). This pleiotropic effect of greater
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leaf area can benefit yield and has been proposed as a breeding
target for semiarid regions (Richards et al., 2010; Rebetzke et al.,
2014a).

The potential contribution to seedling establishment, of
replacing the GAI dwarfing genes, has been extensively
discussed (Rebetzke et al., 2012; Mohan et al., 2013). In the
present study, however, we tested the possible effects on yield
components. Grain yield is the final outcome of interrelated
polygenically controlled developmental processes, including
seedling establishment, tillering, floral initiation, anthesis, and
grain filling. Deep sowing as well as genotype × environment
interactions strongly affect these processes. In general, deep-
sowing treatments had negative effects on the yield components
associated with early wheat development (Figure 4). The GAR
lines, with longer coleoptiles, emerged faster than the GAI
ones from deep sowing and, consequently, their early yield
components were significantly less affected. These differences in
early development stages were evident in the differing final yield
reductions noted in GAI and GAR: 37.3 and 12.1%, respectively
(Figure 4; Table 2).

The advantage of GAR genotypes in their ability to emerge
from deep sowing, as shown in the present study, was mostly
expressed in the early growth period, whereas at later growth
stages the effects of this delay in seedlings emergence on yield
components were reduced (Figure 4). It seems that the faster leaf
area development contributes to enhanced assimilation, which
gives a significant advantage to the GAR genotypes, in developing
more tillers and biomass than the GAI genotypes. Although this
effect weakened in the course of time, it did have a significant
impact on the final grain yield (Figures 4 and 5).

Conclusion

Under Mediterranean-like conditions, the wheat-growing season
is limited by the timing of autumn rains during germination
and establishment, and by terminal drought during grain
filling. Under such conditions, a delay of a few days in
emergence from deep sowing have a long-term effect that
results in a shortened growing season. Consequently, yield
potential is reduced because grain filling occurs under suboptimal
conditions. Our present results, as well as others, demonstrate
the breeding potential of replacing the GAI dwarfing genes
with GAR genes for improving wheat yields under drought
conditions.
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