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Necrotrophic diseases of wheat cause major losses in most wheat growing areas of
world. Tan spot (caused by Pyrenophora tritici-repentis) and septoria nodorum blotch
(SNB; Parastagonospora nodorum) have been shown to reduce yields by 10–20%
across entire agri-ecological zones despite the application of fungicides and a heavy
focus over the last 30 years on resistance breeding. Efforts by breeders to improve the
resistance of cultivars has been compromised by the universal finding that resistance
was quantitative and governed by multiple quantitative trait loci (QTL). Most QTL had a
limited effect that was hard to measure precisely and varied significantly from site to site
and season to season. The discovery of necrotrophic effectors has given breeding for
disease resistance new methods and tools. In the case of tan spot in West Australia,
a single effector, PtrToxA and its recogniser gene Tsn1, has a dominating impact in
disease resistance. The delivery of ToxA to breeders has had a major impact on cultivar
choice and breeding strategies. For P. nodorum, three effectors – SnToxA, SnTox1,
and SnTox3 – have been well characterized. Unlike tan spot, no one effector has a
dominating role. Genetic analysis of various mapping populations and pathogen isolates
has shown that different effectors have varying impact and that epistatic interactions also
occur. As a result of these factors the deployment of these effectors for SNB resistance
breeding is more complex. We have deleted the three effectors in a strain of P. nodorum
and measured effector activity and disease potential of the triple knockout mutant. The
culture filtrate causes necrosis in several cultivars and the strain causes disease, albeit
the overall levels are less than in the wild type. Modeling of the field disease resistance
scores of cultivars from their reactions to the microbially expressed effectors SnToxA,
SnTox1, and SnTox3 is significantly improved by including the response to the triple
knockout mutant culture filtrate. This indicates that one or more further effectors are
secreted into the culture filtrate. We conclude that the in vitro-secreted necrotrophic
effectors explain a very large part of the disease response of wheat germplasm and
that this method of resistance breeding promises to further reduce the impact of these
globally significant diseases.
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Introduction

Effectors are defined as molecules that are produced by microbial
pathogens that interact with specific “recognition” gene products
in the plant host so as to affect the outcome of the contact –
disease susceptibility or resistance (Tyler and Rouxel, 2012;
Rovenich et al., 2014; Vleeshouwers and Oliver, 2014). Pathogen
species are believed to harbor up to a few hundred such
effectors and plant host species contain a much larger number
of recognition genes to cope with the plethora of pathogens with
which they will come into contact.

Plant pathogens are conventionally described as either
biotrophic, in which the infected host tissue remains alive or
necrotrophic, where host tissues are killed. In typical biotrophic
interactions, recognition of an effector by a specific plant
recognition gene (normally termed an R-gene) leads to a defense
response and elimination of the pathogen. Recognition of just
one such effector is sufficient to render the others redundant
(Stotz et al., 2014). Such functional dominance is characteristic
of interactions of biotrophic pathogens and accounts for the
marked differential between resistance and susceptibility in these
diseases.

Necrotrophic pathogens also produce effectors that induce
a defense like response upon recognition by an R-gene-like
recogniser protein (Lorang et al., 2007; Faris et al., 2010) but are
distinguished by their ability to survive in the affected plant tissue
and go on to proliferate and sporulate. Indeed, necrotrophic
disease is clearly promoted by the recognition of effectors (Oliver
and Solomon, 2010).

Like biotrophic pathogens, necrotrophs also produce many
effectors. The question we address here is how do the multiple
effector/recogniser interactions cooperate to cause disease?
Necrotrophic diseases are typically quantitative in nature;
the null-hypothesis is that each effector/recogniser interaction
operating in a given situation acts additively to produce the
degree of necrosis and that this directly translates into a
corresponding level of disease. Depending on the context, the
level of disease can be defined in terms of either as loss of yield
or quantity of pathogen sporulation.

This question has practical importance as effector recognition
has been adopted by breeders as a partial proxy for field
resistance testing (Vleeshouwers and Oliver, 2014). Can the
disease resistance of new cultivars be accurately predicted from
the response to effectors of the input germplasm?

Parastagonospora (syn. ana, Stagonospora; teleo,
Phaeosphaeria) nodorum (Berk.; Quaedvlieg, Verkley, and
Crous) is the causal agent of Septoria nodorum blotch (SNB)
on wheat (Solomon et al., 2006a; Quaedvlieg et al., 2013) and is
responsible for significant yield losses in some areas of the world
(Murray and Brennan, 2009; Oliver et al., 2012). Losses in the
West Australian wheat belt amount to greater than AUD$100 m
pa. Breeding for disease resistance has been a priority but has
been hampered by the quantitative nature of the interaction.
Wheat genetic analysis using infection assays as the phenotype
has revealed a multitude of quantitative trait loci (QTL) and
efforts to define molecular markers acceptable to breeders has
proved frustrating (Oliver et al., 2012).

The discovery of multiple necrotrophic effectors has provided
a clear framework to dissect the disease and has provided breeders
with much needed tools (Friesen et al., 2006, 2008, 2009, 2012;
Chu et al., 2010; Faris et al., 2011; Waters et al., 2011; Abeysekara
et al., 2012; Crook et al., 2012; Liu et al., 2012; Oliver et al., 2012;
Tan et al., 2012; McDonald et al., 2013). Our working hypothesis
is that the disease can be explained by the interaction of effectors
(which all appear to be small proteins secreted into culturemedia)
and their corresponding recognition genes. Genetic analysis of
the response to purified effectors has identified several wheat
genetic loci that correspond to regions conferring susceptibility
to the disease.

Thus far, three necrotrophic effector genes have been cloned
from Parastagonospora nodorum. These are SnToxA (for which
the recognition gene Tsn1 has been cloned; Liu et al., 2006; Faris
et al., 2010), SnTox3 (Liu et al., 2009), and SnTox1 (Liu et al.,
2012). The corresponding recognition genes Snn3 and Snn1 have
been mapped but not yet cloned. Furthermore, it is clear that
several other effectors operate in this pathosystem (Friesen et al.,
2012; Tan et al., 2014; Gao et al., 2015).

We have previously examined the degree of correlation
between the effector sensitivities of current cultivars of West
Australian cultivars and their reported field resistance (Tan et al.,
2014). Unlike the tan spot system for which there is a clear
dominance of one effector/recogniser interaction (ToxA/Tsn1;
Moffat et al., 2014), no single effector had a similarly dominating
role in SNB. One consideration was that all the current cultivars
were sensitive to at least one of these three effectors SnToxA,
1 or 3.

Our overall goal is to model the disease susceptibility of
wheat cultivars from knowledge of their effector sensitivities.
We seek to understand the relative importance of each known
effectors, formulate strategies to identify novel effectors/their
corresponding host recogniser genes/QTLs and determine how
they interact in the SNB interaction.

In this study, we have constructed a P. nodorum strain deleted
in SnToxA, SnTox1, and SnTox3. This approach allows us to
detect further secreted effectors and determine how recognition
corresponds to disease expression without the interference of
SnToxA, SnTox1, and SnTox3. We demonstrate that the removal
of the three effectors reduced but did not entirely eliminate
pathogenicity. We conclude that the secreted necrotrophic
effector-recogniser model remains sufficient to explain the
disease and provides a useful framework for cultivar resistance
breeding.

Materials and Methods

Wheat Cultivars
All wheat cultivars used in this study were obtained from
the Australian Winter Cereal Collection (Tamworth, NSW,
Australia) and grown in vermiculite in a growth chamber at
21◦C with a 12 h light/dark cycle for 2 weeks prior to infection
or infiltration. Current SNB disease resistance ratings (DRR)
of commercial cultivars were obtained from the Department of
Agriculture and Food Western Australia (DAFWA; Shackley
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et al., 2013). For statistical purposes, a numerical scoring system
was assigned to all DRR categories: (1) very susceptible; (2)
susceptible–very susceptible; (3) susceptible; (4) moderately
susceptible–susceptible; (5) moderately susceptible; (6)
moderately resistant–moderately susceptible. Note that no
cultivars are scored in categories 7 to 10.

SnToxA, SnTox1, and SnTox3 Triple Gene
Deletions in P. nodorum
Parastagonospora nodorum SN15 strains deleted in ToxA,
SnTox1, and SnTox3 (toxa13) were created through sequential
transformations using homologous-gene knockout vectors that
were generated from fusion PCR (Solomon et al., 2006b)
and Gibson assembly (Gibson et al., 2009; Table 1). All
PCR amplifications were performed with Phusion Taq DNA
polymerase (New England Biolabs, Ipswich, MA, USA). The
SnTox3 deletion construct harboring a phleomycin resistance
cassette described in Tan et al. (2014) was transformed into
SN15 tox18 carrying a SnToxA deletion to facilitate gene
knockout. PCR was used to identify the appropriate mutants
deleted in SnTox3. A robust quantitative PCR was used to
determine the integration copy number of SnTox3 deletion
constructs in all transformants (Solomon et al., 2008). The
mutant toxa3-10 carrying a single copy SnTox3 deletion
vector insertion was subsequently selected for SnTox1 deletion
(Supplementary Figure S1). The SnTox1 deletion vector was
constructed using the Gibson assembly mix (New England
Biolabs, Ipswich, MA, USA). The 5′ and 3′ UTR regions
of SnTox1 were PCR amplified from genomic DNA using
5_Tox1Fbar, 5_Tox1Rbar, 3_Tox1Fbar, and 3_Tox1Rbar. Both
flanking regions were simultaneously fused to the Bar gene
(phosphinothricin acetyl transferase) derived from pBARKS1
(obtained from Fungal Genetics Stock Center) and pGEMT-Easy
for propagation (Table 1; Figure 1). The resulting gene knockout
vector was PCR-amplified for transformation to facilitate gene
knockout according to Solomon et al. (2004) with modifications.
Glufosinate was extracted from commercial herbicide Basta
containing 200 g.l−1 glufosinate ammonium (Bayer Cropscience,

TABLE 1 | Primers used to construct the SnTox1 deletion vector.

Primer Sequence (5′ – 3′)

5_Tox1Fbar CCGCAAGCAGATACAGCCGA

5_Tox1Rbar TGCCCGTCACCGAGATTTAG
GCCTAAGCCCTCAAACGTGAG

3_Tox1Fbar TCAATATCATCTTCTGTCGAC
AACCCTTGCACCGCTGGACTAG

3_Tox1Rbar GATTGAGGGTGAGGGGCGGG

Bar-strp-R CTAAATCTCGGTGACGGGCA

PtrpC-strt-F GTCGACAGAAGATGATATTGA

pGEMTEasy_EcoRI_Tox1 TCGGCTGTATCTGCTTGCGG
GAATTCCCGCGGCCGCCATGGC

pGEMTEasy_NotI_Tox1 CCCGCCCCTCACCCTCAATC
GCGGCCGCCTGCAGGTCGAC

The bold text refers to overlapping sequences required to facilitate appropriate
recombination of DNA fragments during Gibson assembly.

Monheim, Germany) using chloroform as described previously
(Nayak et al., 2006). An equal volume of chloroform was mixed
vigorously with the Basta herbicide and centrifuged at 6,000g
for 30 min. The upper aqueous layer containing glufosinate
was retained. Bar transformants were selected on minimal
medium containing 13 mM NH4Cl as the sole nitrogen source
and 8 µl.ml−1 of extracted glufosinate. PCR was used to
identify the appropriate mutants deleted in SnTox1. Quantitative
PCR was used to determine the integration copy number
of SnTox1 deletion constructs in all transformants according
to Solomon et al. (2008) with modifications. 5_Tox1qPCRF
(5′-CGTAAAGAGCCGAAGATATGCC-3′) and 5_Tox1qPCRR
(5′- ATAGCCCAACAGATAGGCCC-3′) were used to amplify
123 bp of the 5′ UTR homologous region immediately
adjacent to the Bar marker of the KO cassette. Wild-
type SnTox1 was as a standard control for copy number
determination of the SnTox1 knockout cassette in the mutants.
All fungal strains used in this study were described in
Table 2.

Production of Necrotrophic Effectors and
Infiltration
Necrotrophic effectors were produced from growth in Fries
3 medium broth as described in Liu et al. (2004). Culture
filtrate containing effectors were sequentially filtered gauze,
miracloth, Whatman paper, and 0.22 µm sterilizers prior to
infiltration with a needleless 1 cc syringe. The necrosis reaction
was scored at 10 days according to visual score of 0 to
3 as previously described (Waters et al., 2011). A score of
0 indicates insensitivity (no reaction); 1, slight chlorosis; 2,
extensive chlorosis; and 3, necrosis. Varieties that scored 1 were
considered weakly sensitive, whereas those that scored 2 or
3 were considered highly sensitive to the effector preparation.
Infiltration assays were performed on the first leaf of 2-week old
seedlings.

Whole Plant Infection Assay
Whole plant infection assay was performed on 2 week old wheat
seedlings as described (Solomon et al., 2005). Briefly, 2 week
old wheat seedlings were sprayed with 1 × 106 pycnidiospores
suspended with 0.5% w/v gelatin using an air brush system. To
facilitate the infection process, all seedlings were covered for
2 days to increase humidity. After this, plants were uncovered and
the infection process was allowed to continue for an additional
5 days prior the assessment of the disease symptom. A score of
1 indicates no disease symptoms were observed and a score of 9
indicates a fully necrotised plant.

Statistical Analyses
Statistical analysis was performed using JMP 10.0.0 (SAS
Institute, Cary, NC, USA) using a 2 × 2 Pearson’s chi-square test
was used to test effector sensitivity datasets and SNB DRR for
evidence of correlation (Tan et al., 2014). As Chi-square analyses
on individual effector sensitivity scores vesus SNB DRR classes
resulted in expected values less than one. As such, combining
classes was used to overcome this problem on a 2 × 2 Pearson’s
chi-square test (Tan et al., 2014). This approach enables a
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FIGURE 1 | Construction of the SnTox1 deletion vector. (A) 5′ and
3′ UTR of SnTox1 were amplified with primers that contain flanking
sequences for Bar. (B) All four fragments were simultaneously
recombined using the Gibson assembly reaction into pGEMT-Easy

(dash). The resulting vector containing the SnTox1-Bar knockout
construct was PCR-amplified with 5_Tox1Fbar and 3_Tox1Fbar for
transformation in toxa3-10 to result in SnToxA, SnTox1, and SnTox3
deletant mutants.

TABLE 2 | Parastagonospora nodorum strains used in this study.

Strain Description Source

SN15 Wildtype Department of agriculture WA

toxa-18 SN15 deleted in SnToxA Friesen et al. (2006)

toxa3-10 toxa-18 deleted in SnTox3 This study

toxa13-6 toxa3-10 deleted in SnTox1 This study

significant association to be demonstrated between SNBDRR and
effector insensitivity. Crude culture filtrate sensitivity scores of 2
and 3 were pooled and scores of 0 and 1 were similarly pooled.
As previously described in Tan et al. (2014), wheat cultivars
that carry SNB DRR of 5 and 6 were pooled separately from
scores 1 to 4. Cultivars withmixed effector sensitivity were treated
as missing values by the statistical software.

Results

Deletion of SnToxA, SnTox1, and SnTox3 in
P. nodorum SN15
SN15 is an aggressive P. nodorum wildtype isolate that
carries SnToxA, SnTox3, and SnTox1 (Hane et al., 2007;
Syme et al., 2013). To develop a strain deleted for all three
genes, we sequentially removed SnTox3 and SnTox1 from
P. nodorum tox18, a SN15 transformant deleted in SnToxA
(Friesen et al., 2006). Using the previously described SnTox3-
knockout vector (Tan et al., 2014), we were able to generate
14 phleomycin resistant transformants, of which two carried

the desired SnTox3 deletion as determined by PCR. This
represents 14.3% homologous recombination efficiency. We
then selected toxa3-10 for SnTox1 deletion. The transformation
yielded 27 glufosinate-resistant transformants, of which five
contained the desired SnTox1 deletion. This represents 18.5%
homologous recombination efficiency. We then selected four
SnTox1 knockout strains from the toxa3-10 background to
analyse for insert copy number (Supplementary Figure S2). All
strains possess a single integration of the SnTox1 knockout-Bar
cassette at the SnTox1 locus. From here, toxa13-6 was selected for
subsequent analyses.

Characterization of P. nodorum toxa13-6
Parastagonospora nodorum toxa13-6 was tested for its ability to
produce SnToxA, SnTox1, and SnTox3 in vitro. Culture filtrate
of the mutant was infiltrated into wheat cultivars BG261 (Tsn1,
snn1, and snn3), Chinese Spring (tsn1, Snn1, and snn3), and
BG220 (tsn1, snn1, and Snn3). Necrotic/chlorotic symptoms
that are associated with compatible effector responses were
not observed confirming the deletion of the genes (data not
shown).

The activity of the toxa13-6 culture filtrate was assessed on 46
Australian commercial wheat cultivars (Figure 2). Ten cultivars
are highly sensitive to the culture filtrate, resulting in significant
chlorosis and necrosis whereas nine were mildly sensitive. It was
observed that Cv. Magenta segregated in sensitivity to the culture
filtrate.

The triple deletion of SnToxA, SnTox1, and SnTox3 evidently
produces further n necrosis-inducing factors. We then compared
toxa13-6 culture filtrate sensitivity and SNB DRR using
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FIGURE 2 | Reactions of 46 Australian wheat cultivars to effectors
[∧ , from Tan et al. (2014)] and the Parastagonospora nodorum
toxa13-6 culture filtrate [#, this study]. ∗SNB disease rating was
obtained from Shackley et al. (2013). VS, very susceptible; S-VS,

susceptible-very susceptible; S, susceptible; MS-S, moderately
susceptible-susceptible; MS, moderately susceptible; MR-MS, moderately
resistant-moderately susceptible. Effector sensitivity scores are described
in Supplementary Table S1.
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frequency counts in a 2 × 2 mosaic plot (Figure 3A). No
significant correlation was observed between toxa13-6 culture
filtrate sensitivity and SNB DRR (p = 0.6508). The combined
SnToxA, SnTox1, and SnTox3 sensitivity scores correlated with
the variety DRRs correlated marginally above the p = 0.05
significance threshold (Figure 3B). However, when toxa13-6
culture filtrate scores were combined with the SnToxA, SnTox1,
and SnTox3 sensitivity scores of each wheat variety (Figure 3C), a
strongly significant correlation was observed with the SNB DRR
(p = 0.0239). This indicates that novel necrosis inducing factors
in the toxa13-6 culture filtrate positively contribute to the severity
of SNB.

The ability of toxa13-6 to infect wheat was assessed using
a whole plant spray on selected wheat cultivars that are highly
sensitive to the culture filtrate. It was observed P. nodorum
toxa13-6 can infect Calingiri, Emu Rock, and Halberd similarly to
the wildtype SN15 (Figure 4). The other four P. nodorum toxa13
mutants produced chlorosis/necrosis-inducing culture filtrates
and remained infective on Calingiri, Emu Rock, and Halberd
(data not shown).

Discussion

Classical genetic studies indicate that SNB resistance in wheat
is a polygenic trait (Wicki et al., 1999; Czembor et al., 2003).
Research since 2001 (reviewed in Oliver et al., 2012) has shown
that the SNB interaction involves a complex interplay of fungal
effector and host dominant susceptibility genes that are necessary
and sufficient to explain the polygenic and quantitative nature of
the interaction. Most wheat varieties are sensitive to more than
one effector and most pathogen isolates produce more than one
effector.

All wheat cultivars used in this study are sensitive to one
or more known effectors. This hinders the discovery of novel
effector discovery through the use of P. nodorum culture
filtrate infiltration. Furthermore, the presence of multiple QTLs
which could due to the presence of multiple effector/receptor
interactions can make the study of a targeted single interaction
difficult as other interactions may introduce bias that mask its
effect. Therefore, positional gene cloning may proof impossible
under these circumstance. To overcome these difficulties, we
developed pathogenic P. nodorum strains that are deleted in
SnToxA, SnTox1, and SnTox3 as a tool to discover novel effectors
and SNB/sensitivity QTLs in wheat that were previously masked
or unassigned. We have achieved this through the use of
selectable marker genes that confer resistance to hygromycin
(Solomon et al., 2004; Oliver et al., 2012) and phleomycin (Tan
et al., 2008). In this study, we have implemented Bar as a third
selectable marker for P. nodorum transformation. Bar has been
adapted for use as a selectable marker in other fungal system
(Avalos et al., 1989; Nayak et al., 2006; Chooi et al., 2010).
Nourseothricin and G418 were tested on P. nodorum SN15
as potential antibiotics for fungal transformation using their
respective selectable marker genes. However, P. nodorum showed
a high level of natural tolerance to these antibiotics and cannot be
used for the development of transgene resistance.

FIGURE 3 | Relationship between the distribution of 2013 septoria
nodorum blotch (SNB) disease resistance rating (DRR) and reactions
to (A) toxa13-6 culture filtrate (p = 0.6553); (B) combined SnToxA,
SnTox1, and SnTox3 sensitivity scores (p = 0.0743); and (C) combined
SnToxA, SnTox1, SnTox3, and toxa13-6 culture filtrate sensitivity
scores (p = 0.0239). The y-axis represents the proportion of effector
sensitivity for each DRR score designated on the x-axis. The right column
demonstrates the distribution of effector sensitivity scores. Effector sensitivity
scores are described in Supplementary Table S1. Statistical analysis was
performed using frequency counts in 2 × 2 mosaic plots. The Pearson’s
chi-square test was set at a significance threshold of p ≤ 0.05 as previously
described (Tan et al., 2014).

The acquisition of the triple effector knockout strain is a
tool that can be used to assess the presence of further effectors
relevant to commercially important wheat cultivars. These novel
effectors can then be identified using biochemical separation
methods. In addition, their role in virulence will be assessed
through the generation of gene deletion mutants. This approach
will require the deletion of additional genes in the P. nodorum
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FIGURE 4 | Septoria nodorum blotch and culture filtrate symptoms of
P. nodorum toxa13-6 on Calingiri, Emu Rock, and Halberd.
(A) P. nodorum toxa13 remained pathogenic on Calingiri, Emu Rock, and
Halberd. (B) Distinct chlorotic and necrotic symptoms were observed after
10 days post infiltration with P. nodorum toxa13-6 culture filtrate.

toxa13 background. To overcome limitations in marker-based
selection, a selectable marker recycling system using Cre-loxP
recombination is being developed and adapted for functional
gene analysis in P. nodorum (Mizutani et al., 2012). Novel
effectors that are verified for their role in the establishment
of SNB can be implemented as a tool in resistance breeding
(Vleeshouwers and Oliver, 2014).

A broad correlation between disease severity and the additive
effect of effectors was observed (Figure 4). Ten wheat varieties
showed strong sensitivity reactions to the toxa13-6 culture
filtrate. We also demonstrated that three of these wheat cultivars
are highly susceptible to SNB caused by the mutant. This clearly
indicates that the major effectors are secreted and function as
disease determinants (Figure 3). This approach will enable the
selection of wheat cultivars that show differential sensitivity to the
P. nodorum toxa13 culture filtrate and the construction of wheat
mapping populations to genetically identify novel QTLs that
confer effector sensitivity and disease susceptibility/resistance.
From here, reliable genetic markers that are closely linked with
QTLs of interest will be identified and used as a tool in resistance
breeding in parallel with effectors to facilitated the ultimate

removal of dominant sensitivity traits in wheat (Oliver et al.,
2013; Vleeshouwers and Oliver, 2014).

The response of cultivars to necrosis and chlorosis-inducing
effectors in the culture filtrate secretome can be compared to the
field responses. The correlation between effector sensitivity and
DRR is complex. We showed previously that there a significant
correlation to SnTox3 (Tan et al., 2014) using DRR data available
at that time. Here we show that the best correlation with the
current DRR is when reactions to the three cloned effectors
plus the culture filtrate from the triple mutants are combined.
The correlation is significant (Figure 3B) and so this indicates
that breeding by selecting germplasm that is insensitive to the
three effectors and the culture remains a viable strategy but
that functional redundancy exists between effectors. Purification
of the effectors and their individual use should improve the
correlation still further.

Nonetheless, whilst the correlation is significant, it is not a
simple additive reaction. Epistatic effects have been observed,
whereby SnToxA or SnTox1 sensitivity has been found to
eliminate the reaction to SnTox3 (Oliver et al., 2012). Different
effectors have different effector activity, different variants of
effectors have different effector activity and different recogniser
genes have different responses (Tan et al., 2012). This indicates
that whilst elimination of effector sensitivities from breeding
programs will lead ultimately to improved resistance, individual
steps may have an impact that is too small to be noticeable or
indeed may be zero. Conversely, the impact of elimination of
effector sensitivities is predicted never to be negative. Trade-offs
in disease resistance between resistance and susceptibility have
been found in the case of some genes conferring resistance to
biotrophic pathogens, such effects have not yet been found for
necrotrophic effectors sensitivities (Oliver et al., 2013). Whilst
we need to be vigilant for cases where the elimination of
effector sensitivities has a negative pleotropic effect, the current
necrotrophic effector model is both necessary and sufficient to
explain all that is known about these disease interactions and to
inform strategies for disease resistance.
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FIGURE S1 | Copy number of the SnTox3-phleomycin resistance gene
knockout cassette normalised to a single copy of actin (Act1). The
experiment was performed in biological triplicates. Standard error bars are shown.

FIGURE S2 | Copy number of the SnTox1-glufosinate resistance gene
knockout cassette normalised to a single copy of actin (Act1). The
experiment was performed in biological triplicates. The background strain
toxa3-10 was included as a single copy control. The toxa13-2 ectopic mutant was
included as a 5’ UTR SnTox1 multicopy control. Standard error bars are shown.
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