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Electron flow from PSII to PSI under
high light is controlled by PGR5 but
not by PSBS
Mikko Tikkanen*, Sanna Rantala and Eva-Mari Aro*

Molecular Plant Biology, Department of Biochemistry, University of Turku, Turku, Finland

Absence of the Proton Gradient Regulation 5 (PGR5) protein from plant chloroplasts
prevents the induction of strong trans-thylakoid proton gradient (�pH) and consequently
also the thermal dissipation of excess energy (NPQ). The absence of the PSBS protein
likewise prevents the formation of �pH-dependent NPQ. This component of NPQ is
called qE, which is nearly exclusively responsible for induction of NPQ upon increase in
light intensity. On the other hand, the pgr5 mutant is not only deficient in induction of
strong NPQ but it also lacks the capability to oxidize P700 upon increase in light intensity.
This, in turn, results from uncontrolled electron flow toward photosystem I (PSI), which
has been proposed to be caused by the lack of PSII down-regulation by NPQ and by a
poor control of electron flow via the Cytochrome b6f (Cyt b6f ) complex. Here we asked
whether NPQ really is a component of such regulation of electron flow from PSII to PSI at
high light. To this end, the two NPQ mutants pgr5 and npq4, the latter lacking the PSBS
protein, were characterized. It is shown that the npq4 mutant, despite its highly reduced
Plastoquinone pool, does not inhibit but rather enhances the oxidation of P700 in high
light as compared to wild type. This clearly demonstrates that the control of electron
flow from PSII to PSI cannot be assigned, even partially, to the down-regulation of PSII
by NPQ but apparently takes place solely in Cyt b6f. Moreover, it is shown that the pgr5
mutant can induce NPQ in very high light, but still remains deficient in P700 oxidation.
These results challenge the suggestion that NPQ, induced by PGR5-dependent cyclic
electron transfer, would have a key role in regulation of electron transfer from PSII to PSI.
Instead, the results presented here are in line with our recent suggestion that both PSII
and PSI function under the same light harvesting machinery regulated by �pH and the
PSBS protein (Tikkanen and Aro, 2014; Grieco et al., 2015).

Keywords: regulation of photosynthetic electron transfer chain, cyclic electron transfer, thermal dissipation, NPQ,
trans-thylakoid proton gradient, control of Cyt b6f, P700 oxidation

Introduction

Solar energy is converted into chemical form by photosynthetic light reactions, which in plants and
green algae take place in the thylakoid membrane inside the chloroplasts. Safe and efficient function
of the photosynthetic light reactions is based on synchronized function of the light-driven enzymes
photosystem II (PSII) and photosystem I (PSI), the former splitting water to protons and electrons
and the latter using electrons to reduce NADP to NADPH. Electron transfer from PSII to PSI takes
place via the intersystem electron transfer chain composed of Plastoquinone (PQ), Cytochrome
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b6f (Cyt b6f ), and Plastocyanin (PC). PQ accepts electrons from
PSII and the electrons are then transferred to PSI via Cyt b6f
and PC. The electron transfer reactions in Cyt b6f are coupled to
transfer of protons from chloroplast stroma to thylakoid lumen
(Q cycle). This reaction not only facilitates the generation of
trans-thylakoid proton gradient (�pH) but also allows the �pH
to control the rate of electron transfer to PSI (Joliot and Johnson,
2011; Tikhonov, 2014; Tikkanen and Aro, 2014). This is because
the oxidation of plastoquinol at the Qo site is the rate limiting
step of the electron transfer (Stiehl and Witt, 1969), making the
rate of electron transfer dependent on �pH.

Photosystem II and Photosystem I have their own minor
light harvesting antennae, but the energy capture to both
photosystems is largely based on the major light harvesting
system that is embedded in the thylakoid membrane and
composed of LHCII trimers (Wientjes et al., 2013; Grieco et al.,
2015). The distribution of excitation energy from the LHCII
system to PSII and PSI is redox regulated (See for review:
Allen et al., 1981; Murata, 2009). This regulation is based on
phosphorylation of thylakoid proteins and required to maintain
the functional balance between PSII and PSI upon changes
in light quality (Allen et al., 1981; Mekala et al., 2015) and
quantity (Mekala et al., 2015). Efficiency of the LHCII system,
in turn, is regulated by �pH and is dependent on the PSBS
protein (Li et al., 2000; Niyogi and Truong, 2013). The �pH
generated by PSII and the Q cycle is released by ATP synthase
in a reaction utilizing the proton motive force. Thus, �pH is
eventually determined by the ratio between the �pH generation
and release mechanisms according to the energetic state of
the chloroplast (Kanazawa and Kramer, 2002; Kohzuma et al.,
2013).

It is not fully understood how the regulation of trans-thylakoid
�pH actually occurs according to the light intensity and the
energetic state of the chloroplast. Nevertheless, it has been clearly
demonstrated that strengthening of �pH upon increase in light
intensity is dependent on proteins Proton Gradient Regulation
5 (PGR5) and Proton Gradient Regulation Like 1 (PGRL1;
Munekage et al., 2002; DalCorso et al., 2008). Traditionally, the
PGR5 protein is linked to the cyclic electron flow around PSI
(CET) via putative Ferredoxin (FD) -PQ oxidoreductase (FQR;
Munekage et al., 2002). By this mechanism, PGR5 is supposed
to enhance the generation of �pH and thereby accelerate the
induction of NPQ and slow down the Q cycle. This model,
however, is paradoxical since it states that the slowdown of
electron transfer (occurring in the Cyt b6f complex) results
from acceleration of electron transfer via Cyt b6f complex (in
CET). Based on this paradox, it has also been proposed that
PGR5 simply prevents the leaking of protons from the lumen
to chloroplast stroma by a still uncharacterized mechanism
(Avenson et al., 2005). Whatever the mechanism, it is clear
that the pgr5 mutant cannot increase the trans-thylakoid �pH
and consequently fails in the PSBS protein-dependent thermal
dissipation of excess excitation energy (NPQ) upon increase
in light intensity (Munekage et al., 2002; Suorsa et al., 2012).
Due to the impaired control of electron transfer via Cyt b6f
and low thermal dissipation of excess excitation energy, PSI
of the pgr5 mutant is sensitive for photoinhibition and has

reduced amount of PSI (Munekage et al., 2002). The amount
of PSI is adjusted according to the acceptor side limitation
of PSI, which in turn is dependent on the light intensity, the
capacity of carbon metabolism and the amount of active PSII
(Munekage et al., 2002, 2008; Suorsa et al., 2012; Tikkanen et al.,
2014).

Generally, NPQ is considered as a mechanism that specifically
down-regulates the activity of PSII and therefore is supposed to
limit electron transfer to PSI. However, based on the behavior of
mutants disturbed in the distribution of excitation energy from
the LHCII system to PSII and PSI (Tikkanen et al., 2010, 2011;
Grieco et al., 2012), it seems highly likely that NPQdownregulates
both photosystems to similar extent. Indeed, only in a specific
case of the stn7 mutant when energy distribution from the
LHCII system to PSI is impaired, the relaxation of NPQ in low
light selectively affects only PSII leading to high reduction of
the PQ pool (Tikkanen et al., 2010, 2011; Grieco et al., 2012).
This challenges the idea that NPQ is required for oxidation of
P700 in high light. Moreover, it has been reported that PSBS
mutants can oxidize P700 upon increase in light intensity (Grieco
et al., 2012; Roach and Krieger-Liszkay, 2012) indicating that the
PSBS-dependent mechanism does not specifically downregulate
PSII, but rather affects both photosystems. Previously the
interaction between proton gradient-dependent regulation of
electron transfer and NPQ was studied in Chlamydomonas
reinhardtii (Kukuczka et al., 2014). It was shown that the two
mechanisms are complementary, both of them being needed for
high light acclimation in oxygen limiting conditions.

Here, we demonstrate that the PSBS protein- and �pH-
dependent NPQ are needed to prevent over-reduction of the
PQ pool at high light, but importantly, NPQ is not required for
oxidation of P700 at high light. On the contrary, the oxidation
of P700 at high light is even enhanced in the npq4 mutant as
compared to wild type (WT), indicating that in the absence of
PSBS-dependent NPQ the excitation energy transfer to PSI is
enhanced. This also points out that the deficiency of the pgr5
mutant to oxidize P700 cannot result from the deficient NPQ,
but more likely solely from the missing photosynthetic control
via Cyt b6f.

Materials and Methods

Wild type (ecotype Columbia) and mutant lines pgr5 (Munekage
et al., 2002) and npq4 (Li et al., 2000) of Arabidopsis thaliana
were grown at 23◦C and in 60% relative humidity under an 8-
h photoperiod of constant white light (110–120 µmol photons
m−2 s−1) with OSRAM PowerStar HQIT 400/D Metal Halide
lamps as a light source. Leaves from 5-weeks-old plants were used
for the experiments. Detached leaves with petioles submerged
in tap water were incubated 10 min in darkness before the
measurements. For each lineage, leaves from three different
plants were analyzed and SD was calculated with formula√∑

(x − x̄)2/(n − 1).
Chlorophyll a fluorescence and signal from oxidized P700

(Klughammer and Schreiber, 1994, 2008) were detected with
Dual-PAM-100 (Heinz Walz). A saturating pulse (5000 µmol
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photons m−2 s−1 for 500 ms) was applied in every 1 min with
increasing 635-nm actinic light (50, 127, 274, 661, and 1595µmol
photons m−2 s−1 or 127 and 1953 µmol photons m−2 s−1).
Chlorophyll a fluorescence was detected with 460-nm measuring
light (19 µmol photons m−2 s−1) and oxidation state of P700
was determined based on the difference of intensities 875 nm
and 830 nm of pulse-modulated measuring light reaching the
photodetector (Klughammer and Schreiber, 2008). PSI redox
state (P/Pm) was obtained by normalizing the signal of oxidized
P700 at a given light phase (P) to the signal of maximal
proportion of oxidized P700 under a saturating pulse with far-
red background (Pm; Klughammer and Schreiber, 1994). Relative
reduction of QA (F′/Fm) was determined by normalizing the
fluorescence under actinic light (F′) to the maximal fluorescence
of dark-adapted leaf (Fm). Induction of NPQ (1–Fm′/Fm) was
calculated by reversing the maximal fluorescence from a light-
adapted leaf (Fm′) normalized to the maximal fluorescence of a
dark-adapted leaf (Fm).

Results

To clarify the differential roles of �pH-dependent control of Cyt
b6f and NPQ in regulation of electron flow from PSII to PSI
at high light, we investigated WT, pgr5, and npq4 with respect
to the redox state of PSI, redox state of PSII electron acceptors
and induction of NPQ upon changes in illumination conditions.
The functional phenotypes of the mutants were addressed by
applying saturating pulses with actinic light intensity increasing
either gradually (50, 127, 274, 661, and 1595 µmol photons m−2

s−1; Figure 1) or in two steps from darkness to light slightly
higher that growth light (127 µmol photons m−2 s−1) and
subsequently to very high light (1953 µmol photons m−2 s−1;
Figure 2).

Redox state of PSI was determined by normalizing the signal
of oxidized P700 to the signal of maximal proportion of oxidized
P700 (P/Pm).When increasing the actinic light intensity stepwise,
the npq4 mutant showed a higher oxidation level of P700 at
moderate high light intensities (274 and 661 µmol photons m−2

s−1), whereas no difference between npq4 and WT was detected
at lower or higher intensities (Figure 1A). The steep increase
in actinic light intensity, on the other hand, resulted in more
substantial difference in the oxidation of P700 between npq4
and WT (Figure 2A). In pgr5, P700 oxidized slightly during
the low actinic light intensities (50 and 127 µmol photons m−2

s−1), but remained reduced under higher intensities (Figure 1A)
and throughout the drastic increase of actinic light intensity
(Figure 2A).

To study the redox state PSII acceptor side, the redox state of
QA was estimated by normalizing fluorescence to the maximal
fluorescence (F′/Fm). Although the fluorescence normalized to
the maximal fluorescence does not linearly correlate with [QA

−]
due to the antenna connectivity (Lavergne and Trissl, 1995; Joliot
and Joliot, 2003), the parameter F′/Fm is the best parameter for
the mutants with severely altered behaviour of both Fm′ and
F′. During the gradual increase of actinic light intensity, WT
maintained its F′/Fm level, whereas pgr5 and npq4 showed a

FIGURE 1 | (A) (P/Pm), (B) (F ′/Fm), (C) (1–Fm
′/Fm) in wild type (black dots),

pgr5 (blue dots), and npq4 (purple dots) during a stepwise increase in actinic
light intensity. Saturating pulse was applied in every 1 min with gradually
increasing actinic light intensity (50, 127, 274, 661, and 1595 µmol photons
m−2 s−1). Detached leaves were incubated in darkness 10 min before
measurements. Representative data is shown with three different plants
measured of each lineage.

drastic increase in the parameter already at light slightly higher
that growth light and throughout the experiment (Figure 1B).
In addition, npq4 reached a still higher level of F′/Fm than
pgr5 at the high light intensities (661, 1595 µmol photons m−2

s−1), during which the QA begun to return to its oxidized
state (Figure 1B). The differential reduction pattern of pgr5 and
npq4 recurred during the steep increase of actinic light intensity
(Figure 2B).
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FIGURE 2 | (A) (P/Pm), (B) (F ′/Fm), (C) (1–Fm
′/Fm) in WT (black dots), pgr5

(blue dots), and npq4 (purple dots) during a steep increase in actinic light
intensity. Saturating pulse was applied in every 1 min with a non-gradual
increase in the actinic light intensity (0, 127, and 1953 µmol photons m−2

s−1). Detached leaves were incubated in darkness 10 min before
measurements. Representative data is shown with three different plants
measured of each lineage.

Induction of NPQ (1–Fm′/Fm) was analyzed in order to clarify
the relationship between thermal dissipation of excess excitation
energy and redox state of ETC. NPQ was almost non-existent
in the npq4 mutant, whereas pgr5 was capable of inducing a
relatively high NPQ compared to npq4 especially in very high
light (Figures 1C and 2C). In addition to the slower induction,
both mutants showed an impaired relaxation of NPQ during the
subsequent phase of darkness (Figure 2C).

Discussion

Limitation of electron flow to PSI upon increase in light intensity
has been shown to be crucial for protection of PSI against
photodamage (Munekage et al., 2002; Suorsa et al., 2012). The
mechanisms involved in such a regulation of electron flow have,
however, remained elusive. Here, we compared the putative
effects of NPQ and the reduction state of the PQ pool on P700
oxidation in WT and in the pgr5 and npq4 mutants (Schematic
model, Figure 3). It has been proposed that the deficiency of
pgr5 in generation of �pH upon increase in light intensity is
due to incomplete cycling of electrons from PSI acceptor side
back to the PQ pool by a putative FQR (Munekage et al.,
2002). This obviously has not been considered to be a problem
because the simultaneously induced energy-dependent NPQ is
believed to selectively downregulate PSII, thus leading to PSII
limitation of electron transfer, and consequent oxidation of PSI.
We tested this hypothesis and demonstrated (Figure 1) that
despite the absence of NPQ, the npq4 mutant perfectly oxidizes
P700, even more efficiently than WT. Importantly, P700 is
oxidized (Figures 1A and 2A) despite the fact that the PQ pool
is at the same time strongly reduced (Figures 1B and 2B). The
concomitant reduction of the PQ pool and oxidation of P700
strongly suggest that the electron transfer is controlled by Cyt b6f.

FIGURE 3 | Schematic model presenting the redox state of electron
transfer chain in WT and in npq4 and pgr5 mutants in growth light and
in high light. In growth light or light intensities below the growth light, WT,
npq4, and pgr5 can keep the intersystem electron transfer chain optimally
oxidized. Increase in light intensity enhances �pH in WT and npq4 but not in
pgr5. Increased �pH slows down electron flow via Cyt b6 f in WT and npq4,
but induces NPQ only in WT. In WT, NPQ prevents the over-reduction of
Plastoquinone (PQ) pool and slows down the Cyt b6f leading to oxidation of
plastocyanin (PC) and photosystem I (PSI). In the npq4 mutant, with low NPQ
but normal photosynthetic control, high light leads to high reduction of PQ
pool, and enhanced oxidation of PC and PSI. This indicates that in the
absence of PSBS protein-dependent NPQ, the photochemical capacity of the
both photosystems in improved. In the pgr5 mutant, that cannot raise the
�pH upon increase in light intensity, the entire electron transfer chain
becomes over-reduced. This results from the incapability to slow down the
Cyt b6 f rather than from the low level of NPQ.
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Moreover, the fact that oxidation of P700 is facilitated in the
npq4 mutant indicates that in the absence of the PSBS protein,
PSI has more excitation energy to oxidize P700 as compared to
WT. This difference, however, decreases at extremely high light
(Figure 1A), indicating that when the light intensity is strong
enough, the capacity of PSBS-dependent quenching mechanism
to limit excitation pressure becomes saturated.

The pgr5 mutant is severely deficient in induction of NPQ
when the increase in light intensity is not extreme (Figure 1C).
Nevertheless, when the increase in light intensity is strong
enough, the pgr5 mutant can induce a reasonably high NPQ that
inWT occurs concomitantly with oxidation of P700 (Figure 2A).
Despite the induction of NPQ, the pgr5 mutant cannot oxidize
P700 (Figures 1A and 2A), which further confirms that NPQ
is not a mechanism to control the electron flow to PSI. Further
support to this conclusion is provided by experiments (Tikkanen
et al., 2010; Grieco et al., 2012) conducted with the stn7 mutant
deficient in excitation energy transfer to PSI. Comparison of
WT and stn7 with respect to the reduction state of the electron
transfer chain, as affected by both the induction and relaxation of
NPQ, revealed two distinct phenomena. First, the redox state of
the PQ pool inWT remains relatively stable despite the induction
or relaxation of NPQ. Second, in the stn7 plants, the relaxation
of NPQ leads to reduction of the PQ pool (Tikkanen et al., 2010;
Grieco et al., 2012). Taken together, it can be concluded that when
the excitation energy distribution from the LHCII system to PSII
and PSI is in balance, NPQ does not change the relative capacity
of PSII and PSI electron transfer (Tikkanen et al., 2011). It is
worth noting here that opposite to the independence between
NPQ and oxidation of PSI, already a moderate photoinhibition
of PSII leads to selective down-regulation of PSII and consequent
oxidation of PSI (P700; Tikkanen et al., 2014).

Importantly, pgr5 is more efficient in oxidation of P700 in
low light than in high light (Figure 1). This may suggest that
in the absence of PGR5-provided �pH and resistance against
proton extrusion from the lumen, the NDH-1-dependent cyclic
is enhanced. Similar to bacterial and mitochondrial complex I
(Efremov et al., 2010), a transfer of electron is coupled with
translocation of four protons into thylakoid lumen via the
NDH-1 complex (For a review: Battchikova et al., 2011; Kramer

and Evans, 2011). This increases the amount of translocated
protons in relation to transported electrons as compared to
linear electron transfer and the FQR-CET. The additional �pH
generated by NDH-1-CET may increase the resistance against
LET via Cyt b6f, leading to enhanced oxidation of P700 in pgr5
in low light. Oxidation of P700 is, however, lost when the actinic
light exceeds the intensity of growth light. This indicates that
the NDH-1-dependent protonation of lumen is not capable of
compensating the function of the PGR5 protein in high light.
Indeed, in high light the PGR5 protein is essential in controlling
the rate of the intersystem electron transfer.

In our opinion, based on the facts that NPQ plays no role in
oxidation of P700 in vivo and the FQR-CETmodel is paradoxical
in requiring simultaneous acceleration and deceleration of
the electron transfer via Cyt b6f, it seems highly unlikely
that the function of the PGR5 protein in PSI CET is to
keep P700 oxidized. Therefore, we assume that there is a
still uncharacterized PGR5-dependent mechanism that controls
proton translocation across the thylakoid membrane and allows
synchronized induction of NPQ together with Cyt b6f -dependent
mechanism to control electron flow to PSI. A good candidate
for such a mechanism is the regulation ATP synthase according
to the redox state of electron transfer components between
light reactions and carbon assimilation reactions (Kohzuma
et al., 2013). It is known that PGR5 increases the resistance
against proton translocation from thylakoid lumen to chloroplast
stroma (Avenson et al., 2005). Interestingly, the PGR5-PGRL1
complex has redox active thiol groups being able to accept
electrons from ferredoxin (Hertle et al., 2013). It is conceivable
that the PGR5-PGRL1 complex senses the redox state of PSI
electron acceptors and accordingly exerts feedback-regulation on
photosynthetic light reactions, by tuning the resistance of proton
translocation via ATP synthase by a mechanism that remains to
be characterized.
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