

Mitogen-activated protein kinase cascades in *Vitis vinifera*

Birsen Çakır^{1*} and Ozan Kılıçkaya²

¹ Department of Horticulture, Faculty of Agriculture, Ege University, Izmir, Turkey, ² Department of Pharmacetical Biotechnology, Faculty of Pharmacy, Cumhuriyet University, Sivas, Turkey

Protein phosphorylation is one of the most important mechanisms to control cellular functions in response to external and endogenous signals. Mitogen-activated protein kinases (MAPK) are universal signaling molecules in eukaryotes that mediate the intracellular transmission of extracellular signals resulting in the induction of appropriate cellular responses. MAPK cascades are composed of four protein kinase modules: MAPKKK kinases (MAPKKKKs), MAPKK kinases (MAPKKKs), MAPK kinases (MAPKKs), and MAPKs. In plants, MAPKs are activated in response to abiotic stresses, wounding, and hormones, and during plant pathogen interactions and cell division. In this report, we performed a complete inventory of MAPK cascades genes in Vitis vinifera, the whole genome of which has been sequenced. By comparison with MAPK, MAPK kinases, MAPK kinase kinases and MAPK kinase kinase kinase kinase members of Arabidopsis thaliana, we revealed the existence of 14 MAPKs, 5 MAPKKs, 62 MAPKKKs, and 7 MAPKKKKs in Vitis vinifera. We identified orthologs of V. vinifera putative MAPKs in different species, and ESTs corresponding to members of MAPK cascades in various tissues. This work represents the first complete inventory of MAPK cascades in V. vinifera and could help elucidate the biological and physiological functions of these proteins in V. vinifera.

Joanna Marie-France Cross,

Edited by:

İnönü University, Turkey

OPEN ACCESS

Reviewed by: Matthew R Willmann

University of Pennsylvania, USA Pao-Yang Chen, Academia Sinica, Taiwan Samia Daldoul, Center of Biotechnology of Borj Cedria, Tunisia

*Correspondence:

Birsen Çakır, Department of Horticulture, Faculty of Agriculture, Ege University, Bornova/Izmir 35100, Turkey birsencakir@hotmail.com

Specialty section:

This article was submitted to Plant Genetics and Genomics, a section of the journal Frontiers in Plant Science

Received: 08 February 2015 Accepted: 07 July 2015 Published: 22 July 2015

Citation:

Çakır B and Kılıçkaya O (2015) Mitogen-activated protein kinase cascades in Vitis vinifera. Front. Plant Sci. 6:556. doi: 10.3389/fpls.2015.00556 Keywords: MAP kinase, Vitis vinifera, signal transduction, protein phosphorylation

Introduction

Mitogen-activated protein kinase (MAPK) cascades are higly conserved modules of signal transduction in eucaryotes including yeast, animals, and plants. MAPK cascades play an important role in protein phosphorylation of signal transduction events (Rodriguez et al., 2010). MAPK cascades typically consist of three protein kinases, MAPK, MAPK kinase (MAPKK), and MAPK kinase kinase (MAPKKK), but sometimes include MAP3K kinase (MAP4K) that phosphorylate the corresponding downstream substrates (Jonak et al., 2002; Champion et al., 2004).

MAPK is activated via phophorylation of conserved threonine (T) and tyrosine (Y) residues in the catalytic subdomain by its specific MAPKK, which is in turn activated by phophorylation of two serine/threonine residues in a conserved S/T-X33-5-S/T motif by an upstream MAPKKK (Stulemeijer et al., 2007; Zaïdi et al., 2010; Huang et al., 2011). Upon activation, the MAPK could be translocated into the nucleus or cytoplasm to trigger the cellular responses through phosphorylation of downstream transcription factors or components of transcription machinery while some MAP kinases, like ERK3, are constitutively present in the nucleus and may function

Abbreviations: MAPK, mitogen-activated protein kinase; ORF, open reading frame.

in the nucleus (Lee et al., 2004; Pedley and Martin, 2005; Fiil et al., 2009; Nadarajah and Sidek, 2010). MAPKKK is usually activated by a G protein, but sometimes activation is mediated via an upstream MAP4K (Champion et al., 2004).

MAPK proteins contain 11 evolutionary conserved kinase domains that may be involved in substrate specifity or proteinprotein interaction (Nadarajah and Sidek, 2010). MAPK cascade proteins have TEY or TDY phophorylation motifs in the region between kinase domains VII and VIII (Group et al., 2002), which provides a protein-binding domain for the activation of MAPKs (Rohila and Yang, 2007).

In plants, MAPKs are involved in cellular responses to hormones, plant growth and development, regulation of the cell cycle, and responses to biotic and abiotic stresses (Jonak et al., 1993; Wilson et al., 1997; Zhang and Klessig, 1997; Bögre et al., 1999; Nishihama et al., 2001; Bergmann et al., 2004; Lukowitz et al., 2004; Katou et al., 2005; Meng et al., 2012).

A variety of genes encoding MAPKs have been cloned from Arabidopsis, rice, tobacco and barley, and oat (Huttly and Phillips, 1995; Knetsch et al., 1996; Mizoguchi et al., 1998; Nadarajah and Sidek, 2010; Zaïdi et al., 2010; Sun et al., 2014). The Arabidopsis genome contains 20 MAPK genes (Group et al., 2002; Jonak et al., 2002). MAPK genes such as AtMPK4 and AtMPK6, have been identified in Arabidopsis (Ichimura et al., 1998, 2000; Nadarajah and Sidek, 2010). It has been reported that MAPK genes are involved in biotic and abiotic stress responses (Mizoguchi et al., 1996; Ichimura et al., 2000; Asai et al., 2002; Nadarajah and Sidek, 2010). For example, OsMAPK3, OsMAPK6, and the MAPK kinase OsMKK4 are induced by a chitin elicitor in rice and the activated form of OsMKK4 induces cell death (Kishi-Kaboshi et al., 2010). Similarly, NtWIPK, OsMPK5, and AtMPK3 were activated by pathogens and abiotic stresses (Zhang and Klessig, 2001; Hamel et al., 2006; Rohila and Yang, 2007). AtMPK4 and AtMPK6 are activated by osmotic stress, low humidity, low temperature, and wounding (Ichimura et al., 2000; Teige et al., 2004). AtMPK3 and AtMPK6 are also regulated by biotic elicitors via AtMKK4/5 and AtMPK4 is a negative regulator of defense response (Asai et al., 2002). In addition, AtMPK3 and AtMPK6 are involved in the embryo, anther and inflorescence development and stomatal distribution on the leaf surface (Bergmann et al., 2004; Gray and Hetherington, 2004; Bush and Krysan, 2007).

MKKs are activated by the phosphorylation on conserved serine and threonine residues in the S/T-X3-5-S/T motif and characterized by a putative MAPK-docking domain K/R-K/R-K/R-X1-6-L-X-L/V/S, and a kinase domain (Group et al., 2002). To date, many MAPKKs have been identified from several plant species. All the identified MAPKK genes from *Arabidopsis*, rice and poplar contain 11 catalytic subdomains (Ichimura et al., 2002; Rao et al., 2010; Wang et al., 2014c). In *Arabidopsis*, MKK1 was activated by wounding and abiotic stress (Matsuoka et al., 2002). Alfalfa SIMKK mediates both salt and elicitor-induced signals (Kiegerl et al., 2000; Cardinale et al., 2002). NtMEK2 activates SIPK and WIPK resulting in cell death (Yang et al., 2001).

MAPKKKs form the largest class of MAPK cascade enzymes with 80 members classified into three subfamilies, MEKK,

Raf, and ZIK containing 21, 11, and 48 genes, respectively in Arabidopsis (Jonak et al., 2002). Plant MAPKKKs are characterized by different primary structures of their kinase domains, but are conserved within a single group (Champion et al., 2004). The MEKK subfamily comprises a conserved kinase domain of G(T/S)Px(W/Y/F)MAPEV (Jonak et al., 2002). The ZIK subfamily contains GTPEFMAPE(L/V)Y while the Raf subfamily has GTxx(W/Y)MAPE (Jonak et al., 2002). All the MAPKKK proteins have a kinase domain, and most of them have a serine/threonine protein kinase active site (Wang et al., 2015). In the RAF subfamily, most of the proteins have a long N-terminal regulatory domain and C-terminal kinase domain. By contrast, majority of the members in the ZIK subfamily have an N-terminal kinase domain (Wang et al., 2015). However, the MEKK subfamily has a less conserved protein structure with a kinase domain located either at the C- or Nterminal or in the central part of the protein (Wang et al., 2015). Homologs of MAPKKKs have been identified in plant species such as alfalfa, Arabidopsis, tobacco (Kovtun et al., 2000; Nishihama et al., 2001; Lukowitz et al., 2004; Nakagami et al., 2004). The MEKK subfamily contains NPK1, NbMAPKKKa, NbMAPKKKy, NbMAPKKKe in tobacco (Jin et al., 2002; del Pozo et al., 2004; Liu et al., 2004; Melech-Bonfil and Sessa, 2010), MEKK1 in Arabidopsis (Asai et al., 2002), and SIMAPKKKα and SIMAPKKKE in tomato (Oh et al., 2010; Sun et al., 2014). The second subfamily, Raf, includes Arabidopsis CTR1/raf1 (Kieber et al., 1993), EDR/Raf2 (Frye et al., 2001), and DSM1 in rice (Ning et al., 2010). In Arabidopsis, MEKK1 regulates defense responses against different pathogens including bacteria and fungi (Asai et al., 2002; Qiu et al., 2008; Galletti et al., 2011). In addition, AtEDR1, a Raf-like MAPKKK, regulates SA-inducible defense responses (Frye et al., 2001). The ZIK subfamily which contains 10 and 9 members in Arabidopsis and rice, respectively, are able to regulate flowering time and circadian rhythms (Wang et al., 2008; Kumar et al., 2011).

A putative phosphorylation domain T/Sx₅T/S is found between domains VII and VIII in MAP4Ks, which is identical to the phosphorylation motif of MAPKKs from plants (Jouannic et al., 1999; Ichimura et al., 2002). Both domains participate in peptide-substrate recognition (Champion et al., 2004). MAP4Ks can be linked to the plasma membrane through association with a small GTPase or lipid (Qi and Elion, 2005). They are directly activated by stimulated interaction with adaptor proteins (Qi and Elion, 2005). The MAP4Ks are divided into eight classes including PAK-related, Gck, Mst, Tao, Ste/PAK, Sok (Champion et al., 2004). The majority of MAP4Ks are from the large class of Ste20 protein kinases, which exhibit a highly diverse noncatalytic domain (Dan et al., 2001). The PAKs, which have a C-terminal catalytic domain, are separated from the GC Kinase-related polypeptides, which contain an N-terminal catalytic domain (Dan et al., 2001). Most of the MAP4Ks contain an N-terminal catalytic domain, but members of the STE20/PAK group have a C-terminal kinase domain and some plant MAP4Ks have their kinase domain in the middle of the sequences (Leprince et al., 1999). The Arabidopsis genome contains 10 putative MAP4Ks (Champion et al., 2004). A maize gene encoding MIK is a GCKlike kinase being a subfamily of MAP4K (Llompart et al., 2003),

which relates membrane-located receptors to MAP kinases (Dan et al., 2001). Some MAP4K are able to phosphorylate MEKK or Raf members whereas other MAP4Ks either phosphorylate MAPKKs or function as adaptors (Champion et al., 2004).

However, the functions of most MAPK genes in plants are still unknown. Although MAPK cascades are involved in signaling multiple defense responses, the role of Vitis MAPK cascades in response to biotic and abiotic stresses are not elucidated. In previous studies in grapevine, a few components of the MAPK gene family were isolated (Wang et al., 2014a). In addition, the gene family of MAPKKKs were identified and their expression profiles were analyzed in different organs in response to different stresses (Wang et al., 2014b). Interestingly, the expression of VvMAP kinase gene was induced by salinity and drought (Daldoul et al., 2012). However, the MAPKK and the MAPKKKK subfamilies have not yet been characterized. To explore the role of MAPK cascade proteins in biotic and abiotic stress responses in grapevine, the publicly available grapevine genome (Jaillon et al., 2007) was analyzed to identify all members of MAPK cascade proteins. Using these databases, we characterized all members of MAPK cascades of V. vinifera and performed a phylogenetic analysis in comparison with members of Arabidopsis MAPK cascade proteins.

Materials and Methods

Genome-wide Identification of MAPK Cascade Genes in Grapevine

The MAPK cascade protein sequences of Arabidopsis thaliana were used to search against the V. vinifera proteome 12× database (http://www.genoscope.cns.fr/externe/ GenomeBrowser/Vitis/) using a BLASTP analysis (http://www. ncbi.nlm.nih.gov/blast) (Altschul et al., 1990) with scores higher than 400 and an "E" value > e-120 (Çakır and Kılıçkaya, 2013). The sequences of Arabidopsis MAPK cascade proteins were obtained from the TAIR (http://www.arabidopsis.org/). MAPK domain (PS01351), ATP-binding domain (PS00107), protein kinase domain (PS50011), serine/threonine protein kinase active site (PS00108) were identified in the sequences of polypeptides corresponding to V. vinifera MAPK cascade proteins by the Conserved Domain Database (CDD) at NCBI (http://www.ncbi. nlm.nih.gov/Structure/cdd/wrpsb.cgi) and PROSITE (http:// prosite.expasy.org/) (Marchler-Bauer et al., 2009). In addition, the NCBI non-redundant protein database was screened with each sequence in order to independently validate the automatic annotation.

Multiple-sequence Alignment and Phylogenetic Tree Construction

Multiple-sequence alignments of the putative MAPK cascade proteins were aligned using CLUSTAL W and subjected to phylogenetic analysis by both the maximum parsimony and distance with neighbor-joining methods with 1000 bootstrap replicates (Saitou and Nei, 1987; Thompson et al., 1994). The phylogenetic tree was illustrated using MEGA5. Because similar results were obtained with both methods, only the single tree retrieved from the distance analysis is discussed in detail. For MAPK cascade subfamilies from both *V. vinifera* and *A. thaliana*, multiple sequence alignment was performed using the multiple sequence comparison by log-expectation (MUSCLE) alignment tool (http://www.ebi.ac.uk/Tools/msa/muscle/) (Edgar, 2004). The phylogenetic analysis was performed using a neighbor-joining method with 1000 bootstrap replicates andvisualized with MEGA5 software (Tamura et al., 2011). The protein theoretical molecular weight and isoelectric point were predicted using compute pI/MW (http://au.expasy.org/tools).

Orthology Analysis and Database Search

Orthology analysis was performed using the PHOG web server (http://phylofacts.berkeley.edu/orthologs/) (Datta et al., 2009). The sequences of conserved domains with similarity over 70% and an "E" value of 0.0 were selected as queries. The selected sequences of conserved domains from different species were then used in a BLASTP search against the *V. vinifera* protein sequence database. The best hits were annotated as putative orthologous sequences (Moreno-Hagelsieb and Latimer, 2008).

Expressed sequence tags (ESTs) were identified by BLASTn of the *V. vinifera* expressed sequence tag (EST) database (http:// www.ncbi.nlm.nih.gov/dbEST). Using the sequences of all of the MAPK cascade proteins as queries. The positives sequences were then confirmed by alignment with the query ORF.

Results and Discussion

Genome-wide Identification of MAPK Cascade Genes in *Vitis vinifera*

Vitis vinifera MAPK cascade sequences were mined from the grapevine genome proteome 12x database (Jaillon et al., 2007). We identified 88 ORFs encoding putative MAPK cascade proteins containing at least MAPK domain by BLAST searches of the grapevine genome proteome $12 \times$ database with the amino acid sequences of the MAPK cascade proteins from *A. thaliana* as queries (**Table 1**). The completed *Vitis* genome contains 14 MAPKs, 5 MAPKKs, 62 MAPKKKs, and 7 MAPKKKKs (**Table 1**).

Phylogenetic Analysis

All predicted MAPK cascade family sequences were aligned using ClustalW (Thompson et al., 1994). A rooted phylogenetic tree was constructed by alignment of full length amino acid sequences using the MEGA5 program and maximum parsimony and distance with neighbor-joining methods (Saitou and Nei, 1987) (**Figure 1**). One thousand bootstrap replicates were produced for each analysis.

Vitis MAPK cascade sequences can be divided into four subfamilies on the basis of the presence of conserved threonine and tyrosine residues in the motif TxY located in the activation loop (T-loop) between kinase subdomains VII and VIII. In addition, we identified MAPKKKK subfamily with 7 members in *Vitis* genome, which has the conserved amino acid motifs TFVGTPxWMAPEV as described (Jonak et al., 2002). The members of four subfamilies clustered more tightly with each other than with members of other subfamilies (**Figure 1**).

Subfamily name	12X Vitis vinifera ID	NCBI ConBook ID	chr	Str	Genomic location	Gene length in hn	CDS length	Length of	Number	Number	٩	mW (kDa)
VvMPKs												
VvMPK1	GSVIVT01000784001	CBI31754.3	12	+	124452-133238	8787	1518	505	10	0	9.34	57.43
VvMPK2	GSVIVT01005924001	CBI35594.3	7	+	886169-898284	12116	1341	446	16	15	5.40	51.22
VvMPK3	GSVIVT01008408001	CBI15552.3	17	+	2368190-2377747	9558	1806	601	11	10	6.89	67.98
VvMPK4	GSVIVT01009766001	CBI19748.3	18	+	11125765-11129338	3574	588	195	4	ო	5.44	22.50
VvMPK5	GSVIVT01011749001	CBI26902.3	-	I	4565334-4574753	9420	1842	613	11	10	8.68	70.46
VvMPK6	GSVIVT01014081001	CBI20098.3	19	+	224299-234190	9892	1797	599	10	6	9.21	67.79
VVMPK7	GSVIVT01017873001	CBI26170.3	ŋ	I	4205509-4215917	10409	1692	563	10	6	8.59	64.03
VvMPK8	GSVIVT01018883001	CBI17457.3	4	+	18974001-19005635	31635	2310	769	10	6	5.51	87.48
VvMPK9	GSVIVT01019406001	CBI34380.3	N	Ι	380310-386888	6279	1128	375	9	Q	5.86	42.80
VvMPK10	GSVIVT01022771001	CBI37450.3	N	+	16326975-16335400	8426	1359	452	16	15	9.62	51.58
VvMPK11	GSVIVT01025091001	CBI16237.3	9	+	4580755-4584961	4207	1116	371	9	Q	4.94	42.53
VvMPK12	GSVIVT01025105001	CBI16244.3	9	I	4432854-4436338	3485	066	329	9	5	5.52	38.17
VvMPK13	GSVIVT01026984001	CBI40425.3	15	I	18821560-18826926	5367	1128	375	9	2	6.43	43.27
VvMPK14	GSVIVT01038192001	CBI24707.3	Ŋ	+	24220238-24241107	20870	993	330	9	5	5.64	38.37
VvMAPKKs												
VvMKK1	GSVIVT01008476001	CBI15608.3	17	+	1537423-1538551	1129	675	224	e	2	6.38	24.66
VvMKK2	GSVIVT01015155001	CBI27870.3	11	+	1417439-1424337	6899	1065	355	8	7	6.00	39.28
VvMKK3	GSVIVT01015283001	CBI27984.3	11	+	2377698-2381398	3701	1065	355	80	7	6.02	39.98
WMKK4	GSVIVT01016115001	CBI25274.3	Ø	+	19257788-19265261	7474	1188	396	Q	4	10.15	43.78
VVMKK5	GSVIVT01032414001	CBI34873.3	14	I	27139003-27145873	6871	1557	519	6	80	5.56	57.61
VvMAPKKKs												
VviMAPKKK1	GSVIVT01000047001	CBI36768.3	14	+	3063647-3072319	8673	1992	664	17	16	5.36	72.89
VviMAPKKK2	GSVIVT01000256001	CBI27711.3	7	+	20596048-20597073	1026	921	307	2	-	8.97	33.93
VviMAPKKK3	GSVIVT01001193001	CBI28728.3	7	+	944892–950225	5334	1215	405	9	Ð	7.03	44.92
VviMAPKKK4	GSVIVT01001690001	CBI35506.3	18	I	14296312-14329573	33262	1653	551	16	15	5.07	61.80
VviMAPKKK5	GSVIVT01002332001	CBI35719.3	Ν	+	34161697-34167622	5926	696	232	7	9	9.43	26.14
VviMAPKKK6	GSVIVT01004254001	CBI18826.3	Ч	+	37734319–37739476	5158	1158	386	10	6	9.51	43.07
WVIMAPKKK7	GSVIVT01007446001	CBI25853.3	٩	+	31988209–31995727	7519	2124	708	11	10	9.73	77.57
WiMAPKKK8	GSVIVT01007637001	CBI14941.3	17	I	10966272-10980533	14262	1464	488	6	ω	5.47	54.86
WiMAPKKK9	GSVIVT01007646001	CBI14949.3	17	+	10874999–10877438	2440	1059	353	9	2	8.13	40.08
VviMAPKKK10	GSVIVT01007762001	CBI15038.3	17	+	9308908–9314007	5100	606	303	ю	2	7.97	34.37
VviMAPKKK11	GSVIVT01007775001	CBI15048.3	17	Ι	9166428-9172256	5829	1050	350	9	Q	7.02	38.56
VviMAPKKK12	GSVIVT01008413001	CBI15555.3	17	Ι	2321687-2342403	20717	2697	899	16	15	5.24	60.66
VviMAPKKK13	GSVIVT01008728001	CBI18907.3	18	I	1477098-1491666	14569	1569	523	16	15	6.67	59.46
VviMAPKKK14	GSVIVT01008938001	CBI19081.3	18	I	3594893-3606331	11439	822	274	80	7	6.45	30.15
VviMAPKKK15	GSVIVT01009192001	CBI19282.3	18	Ι	5939861-5949524	9664	2718	906	15	14	8.41	101.48
VviMAPKKK16	GSVIVT01009575001	CBI19581.3	18	+	9549009-9561275	12267	1101	367	10	6	8.39	40.91
VviMAPKKK17	GSVIVT01012031001	CBI27127.3	-	I	2006896-2039042	32147	4191	1397	25	24	5.73	154.60
												(Continued)

Frontiers in Plant Science | www.frontiersin.org

TABLE 1 | Detailed inventory of the Vitis MAPK cascade proteins.

Subfamily name	12X Vitis vinifera ID	NCBI GenBank ID	Chr	Str	Genomic location	Gene length in bp	CDS length in bp	Length of protein in AA	Number of Exon	Number of Intron	ā	mW (kDa)
VviMAPKKK18	GSVIVT01012116001	CBI27196.3	-	+	1303636-1315494	11859	3717	1239	5	10	5.32	136.73
VviMAPKKK19	GSVIVT01012632001	CBI23172.3	10	+	222774-228777	6004	1287	429	4	С	5.48	48.37
VviMAPKKK20	GSVIVT01012686001	CBI23211.3	10	+	641937-648890	6954	3369	1123	80	7	6.09	123.96
VviMAPKKK21	GSVIVT01012895001	CBI25598.3	11	+	6576324-6581862	5539	1470	490	6	00	5.40	54.29
VviMAPKKK22	GSVIVT01015494001	CBI28162.3	11	Ι	4194704-4202353	7650	3066	1022	7	9	8.36	114.09
VviMAPKKK23	GSVIVT01017915001	CBI26208.3	Q	+	4619229-4633132	13904	2061	687	17	16	6.76	75.81
VviMAPKKK24	GSVIVT01017968001	CBI26245.3	Q	+	5145293-5148759	3467	1632	544	11	10	5.43	63.24
VviMAPKKK25	GSVIVT01018020001	CBI26291.3	Ŋ	I	5521761-5528578	6818	1371	457	7	9	8.32	51.27
VviMAPKKK26	GSVIVT01018052001	CBI26318.3	Q	+	5824109-5839208	15100	3354	1118	1	10	5.59	124.59
VviMAPKKK27	GSVIVT01019010001	CB117559.3	4	+	17821355-17829046	7692	906	302	5	4	6.66	33.93
WVIMAPKKK28	GSVIVT01019630001	CBI34567.3	0	+	2093246-2099598	6353	1791	597	16	15	6.59	68.4
VviMAPKKK29	GSVIVT01019739001	CBI34657.3	N	+	2874833-2882840	8008	2706	902	11	10	9.12	97.91
VVIMAPKKK30	GSVIVT01019821001	CBI34722.3	N	+	3631707-3639546	7840	2088	969	15	14	6.37	78.14
VviMAPKKK31	GSVIVT01020712001	CBI21988.3	12	+	2837402-2887099	49698	2454	818	11	10	5.99	91.70
VviMAPKKK32	GSVIVT01021854001	CBI34208.3	14	I	6462432-6466040	3609	1821	607	10	0	5.22	69.40
VviMAPKKK33	GSVIVT01021884001	CBI34231.3	14	I	6026347-6048725	22379	2631	877	16	15	5.50	97.14
VviMAPKKK34	GSVIVT01022098001	CBI21399.3	7	+	16573422-16578723	5302	1287	429	80	7	5.31	47.06
VviMAPKKK35	GSVIVT01022115001	CBI21414.3	7	I	16707463-16710545	3083	1233	411	80	7	4.66	44.78
VVIMAPKKK36	GSVIVT01022116001	CBI21415.3	7	+	16711209-16721450	10242	2469	823	7	9	8.72	89.41
VviMAPKKK37	GSVIVT01023037001	CBI23895.3	12	+	16524280-16552240	27961	1296	432	÷	10	7.05	48.78
VviMAPKKK38	GSVIVT01023048001	CBI23901.3	12	+	16381443-16399280	178238	525	175	5	4	8.42	20.19
VviMAPKKK39	GSVIVT01023216001	CBI29680.3	12	+	21019776-21020867	1092	1092	364	-	0	8.88	39.99
VviMAPKKK40	GSVIVT01023958001	CBI37812.3	ო	I	2141138-2162161	21024	1743	581	16	15	5.56	65.53
VviMAPKKK41	GSVIVT01024578001	CBI15829.3	9	I	8664971-8669192	4222	1896	632	7	9	6.83	71.74
VviMAPKKK42	GSVIVT01026487001	CBI37539.3	4	+	22814276-22820209	5934	1803	601	12	11	8.99	65.01
VviMAPKKK43	GSVIVT01026546001	CBI37576.3	4	+	21993962-21997860	3899	1701	567	10	6	5.52	64.16
VviMAPKKK44	GSVIVT01027189001	CBI40585.3	15	I	17151471-17154829	3359	1776	592	10	6	5.82	67.45
VviMAPKKK45	GSVIVT01028897001	CBI22687.3	16	I	17707492-17719297	11806	2679	893	11	10	9.43	95.93
VviMAPKKK46	GSVIVT01029055001	CBI33351.3	Ŋ	+	11545076-11551320	6345	2859	953	13	12	5.42	105.79
WVIMAPKKK47	GSVIVT01029147001	CBI17788.3	11	+	19186659-19204657	17999	2937	679	11	10	5.40	108.81
WVIMAPKKK48	GSVIVT01029426001	CBI35320.3	17	+	17077436-17089089	11654	555	185	4	ო	5.62	21.36
VviMAPKKK49	GSVIVT01030044001	CBI28411.3	12	I	9089290-9097431	8142	2496	832	80	7	8.80	93.29
VviMAPKKK50	GSVIVT01030194001	CBI18047.3	Ø	+	10650328-10661181	10854	1014	338	9	Q	8.85	37.96
VviMAPKKK51	GSVIVT01030202001	CBI18051.3	Ø	I	10519384-10524077	4694	1881	627	7	9	5.29	71.71
VviMAPKKK52	GSVIVT01031721001	CBI32391.3	ო	I	3812818-3816504	3687	1194	398	80	7	8.32	43.57
VviMAPKKK53	GSVIVT01032232001	CBI24046.3	11	+	13477774-13485357	7584	447	149	ю	2	5.90	16.90
VviMAPKKK54	GSVIVT01032389001	CBI34850.3	14	I	26886951-26893203	6253	1059	353	9	Q	6.90	39.53
VviMAPKKK55	GSVIVT01032487001	CBI34936.3	14	+	27812667–27819608	6942	1083	361	9	Q	6.34	40.52
												(Continued)

5

TABLE 1 | Continued

VviMAPKKK56 GSVIVT01033779001 CBI30245.3 8 - VviMAPKKK57 GSVIVT01034710001 CBI40217.3 13 - VviMAPKKK58 GSVIVT01034988001 CBI20276.3 5 - VviMAPKKK59 GSVIVT01034988001 CBI22876.3 5 -			•		protein in AA	of Exon	of Intron		
VviMAPKK57 GSVIVT01034710001 CBI40217.3 13 - VviMAPKK58 GSVIVT01034988001 CBI22876.3 5 - VviMAPKK59 GSVIVT01035409001 CBI20688.3 4 +		17884683-17902051	17369	2238	746	17	16	6.14	82.96
VviMAPKKK58 GSVIVT01034988001 CBI22876.3 5 - VviMAPKK659 GSVIVT01035409001 CBI20668.3 4 +	-	8150739-8202754	52016	2277	759	15	14	7.89	85.25
VviMAPKKK59 GSVIVT01035409001 CBI20668.3 4 +	4	694778-701765	6988	2199	733	14	13	6.42	81.58
	+	1079723-1090460	10738	2631	877	15	14	5.26	97.28
VviMAPKKK60 GSVIVT01036758001 CBI24172.3 19 -	I	22924599-22935504	10906	3138	1046	10	6	5.23	115.67
VviMAPKKK61 GSVIVT01037773001 CBI26734.3 19 -	I	7730105-7732118	2014	894	298	0	-	6.17	34.22
VviMAPKKK62 GSVIVT01038760001 CBI32969.3 12 +	+	610174-641062	30889	1476	492	œ	7	6.05	55.76
VvMAPKKKKs									
VvMAP4K1 GSVIVT01012233001 CBI27303.3 5 +	+	7076729-7078360	1632	1362	454	4	ო	5.20	88.93
VvMAP4K2 GSVIVT01013739001 CBI28527.3 9 -	I	18395010-18410644	15635	1704	568	15	14	9.31	41.78
VvMAP4K3 GSVIVT01014297001 CBI20268.3 1 -	I	8012586-8021182	8597	1107	369	6	80	6.34	78.12
VvMAP4K4 GSVIVT01016074001 CBI25246.3 14 -	I	27646939-27657107	10169	1803	601	16	15	5.58	62.83
VvMAP4K5 GSVIVT01019643001 CBl34578.3 2 -	I	2150787-2160118	9332	2190	730	22	21	6.68	81.13
VvMAP4K6 GSVIVT01027718001 CBI23577.3 1 –	I	342583–373752	31170	2430	810	19	18	5.80	50.65
VvMAP4K7 GSVIVT01032461001 CBI34913.3 19 -	I	2416077-2441445	25369	2121	707	20	19	5.81	67.08
The identified open reading frames (ORFs) are classified into four subfamilies, MAPK, MAI ID chromosome location (Chr) strand (ct) area laorth or unbear d introns and some const	, MAPK, MA	PKK, MAPKKK, and MAPKK	K. Columns 1–13 (bourder weicht and	contain the protein	acronym (Name), coc the protein (n)) for ear	ding sequence	(CDS), Vitis pro	teome 12×	ID, GenBank

MAPKs

The phylogenetic analysis showed that the VvMAPKs were devided into five distinct groups, which is higher than previous reports (Kumar and Kirti, 2010; Nadarajah and Sidek, 2010). Group V MAPKs are found only in the grapevine genome among other plant species. All of identified ORFs encoding MAPK were named VvMPK1 through 14. Hyun et al. (2010) reported 12 MAPKs based on 8x sequence coverage in grapevine genome whereas we identified a total of 14 ORFs in Vitis 12x genome coverage (Hyun et al., 2010), which may be due to the errors corrected in 12x genome sequence coverage. The grapevine genome contains less MAPKs than Arabidopsis (20 MAPKs) (Ichimura et al., 2002) and rice (17 MAPKs) (Liu and Xue, 2007). Members of the Vitis MAPK subfamily show 20-86% identity to each other. Full length MAPK proteins ranged in size from 195 to 769 amino acids (Table 1). Variation in length of the entire MAPK gene is usually due to differences in the length of MAPK domain and/or, due to the number of introns. The difference in length among MAPK genes may indicate the presence or absence of motifs which could affect functional specifity.

VvMPK12, VvMPK14 belong to the group I., which contains well-characterized *MAPK* genes including *AtMPK3*, *AtMPK6* (Figure 2). It has been demonstrated that *AtMPK3*, *OsMPK5* were activated in response to pathogens and abiotic stresses (Zhang and Klessig, 2001; Hamel et al., 2006; Rohila and Yang, 2007). *OsMPK5* plays an important role for the resistance to blast disease (Song and Goodman, 2002; Huang et al., 2011). *AtMPK6* can be activated by various abiotic and biotic stresses (Ichimura et al., 2000; Yuasa et al., 2001; Feilner et al., 2005; Huang et al., 2011). Similarly, *PtrMAPK* is involved in resistance to both dehydration and cold (Huang et al., 2011).

Group II MAPKs are involved in both abiotic stresses and cell division in *Arabidopsis*. VvMPK13, VvMPK11, and VvMPK9 are clustered with Group II., which includes AtMPK4, AtMPK5, AtMPK12, and AtMPK11. AtMPK4 and its upstream MAPKK AtMKK2 can be activated by biotic and abiotic stresses (Ichimura et al., 2000; Teige et al., 2004).

VvMPK4 and VvMPK8 belong to group III. AtMPK1 in the group III is regulated by salt stress treatment (Mizoguchi et al., 1996). In addition, AtMPK1 and AtMPK2 are activated by ABA (Ortiz-Masia et al., 2007). The group III genes, such as rice BWMK1 and alfalfa TDY1, are activated by wounding and pathogens (Nowak et al., 1997; Lynch et al., 2001).

Group IV, which includes VvMPK1, VvMPK3, VvMPK5, VvMPK6, and VvMPK7 of the *Vitis* MAPKs, have the TDY motif in their T-loop and the absence of the C-terminal CD domain, which is consistently found in members of the other MAPK groups. VvMPK2 and VvMPK10 belonging to group V were separated from other groups.

The orthology analysis program identified one hundredfourteen orthologs from various plant species for this subfamily (**Table 2**). The VvMPK3 amino acid sequence shows 83% similarity with AtMPK9, and VvMPK12 shows 84% similarity with AtMPK3 from *A. thaliana*. The members of VvMAPK subfamily share between 75.8 and 91.8% similarity to the MAPK members from *Ricius communis*,

TABLE 1 | Continued

Oryza sativa, and *A. thaliana*. The phylogenetic analysis of *A. thaliana* and *V. vinifera* MAPK subfamilies confirmed the orthologs of VvMPK14/AtMPK6, VvMPK12/AtMPK3, VvMAPK11/AtMAPK13, VvMPK13/AtMPK12, VvMPK7/AtMPK16, and VvMPK3/AtMPK9 (**Figure 2**).

All of the 14 *Vitis* MAPK proteins are represented in the Vitis ESTs database (Supplementary Table 1) and are expressed in different tissues such as fruits, berries, buds, flowers, leaves, and roots. In addition, 12 *VvMPK* genes were isolated (Wang et al., 2014a). Expression analysis of *VvMPK* genes showed that

all *VvMPK* genes are expressed during grapevine growth and development, and in biotic and abiotic stresses (Wang et al., 2014a).

MAPKKs

This subfamily consists of 10 members in *Arabidopsis* genome (Group et al., 2002), whereas *Vitis* genome contains 5 members of MAPKK subfamily. The full length VvMKK sequences range in size from 224 to 519 amino acids (**Table 1**). The members of the MAPKK subfamily in the *Vitis* genome share 29–40%

7

similarity with each other. By phylogenetic analysis, we also identified orthologs of *Vitis* MAPKKs in *Arabidopsis* such as VvMKK5/AtMKK3 (78.6% similarity), VvMKK3/AtMKK6 (83.1% similarity), and VvMKK2/AtMKK2 (70.4% similarity) supported with significant bootstrap values. The phylogenetic analysis confirmed that VvMKK3 shares 83.3% similarity with its homolog from *Arabidopsis* on the basis of orthology analysis, (**Figure 3, Table 2**).

To date, none of the *Vitis* MAPKK homologs have been cloned or characterized. However, 98 ESTs were identified for this subfamily in different tissues in response to biotic or abiotic stresses (Supplementary Table 2). A role of MAPK kinase, MKK1 in abiotic stress signaling was previously demonstrated (Matsuoka et al., 2002). Analysis of MKK1 revealed that drought, salt stress, cold, wounding activated MKK1, which in turns

activates its downstream target MPK4 (Matsuoka et al., 2002). Tobacco NtMEK2 is functionally interchangeable with two *Arabidopsis* MAPKKs, AtMKK4, and AtMKK5 in activating the downstream MAPKs (Ren et al., 2002). MdMKK1 was reported to be downregulated by ABA (Wang et al., 2010). In *Arabidopsis*, AtMKK3 is upregulated in response to ABA (Hwa and Yang, 2008). Interestingly, AtMKK1/AtMKK2 play an important role in signaling in ROS homeostasis (Liu, 2012).

MAPKKKs

With 62 members, the MAPKKK subfamily represents the largest subfamily of *V. vinifera* MAPK cascade proteins, which is smaller than those of *Arabidopsis* (80 members) and rice (75 members) (Colcombet and Hirt, 2008; Rao et al., 2010). Recently, Wang et al. (2014b) identified 45 MAPKKK genes in grapevine 12x

TABLE 2 | Orthologs of Vitis MAPK cascade proteins identified in diverse plant species.

Subfamily name	Vitis proteome 12× ID	Species	%ID	UniprotKB ID
VvMPK1	GSVIVT01000784001	Ricinus communis	82.7	B9H811_POPTR
VvMPK2	GSVIVT01005924001	Ricinus communis	75.8	B9SYK7_RICCO
VvMPK3	GSVIVT01008408001	Populus trichocarpa	84.0	B9I2G2_POPTR
		Brassica napus	82.0	Q5XU40_BRANA
		Arabidopsis thaliana	81.8	MPK9_ARATH
		Arabidopsis lyrata subsp. Lyrata	81.2	D7L7Z0_ARALL
		Oryza sativa subsp. Indica	77.6	B3GCL0_ORYSI
		Ricinus communis	76.6	B9T7E7_RICCO
		Zea mays	75.7	B4F907_MAIZE
		Oryza sativa subsp. Japonica	75.6	MPK16_ORYSJ
VvMPK6	GSVIVT01014081001	Ricinus communis	80.1	B9SR58_RICCO
		Populus trichocarpa	78.7	B9GGZ4_POPTR
VvMPK7	GSVIVT01017873001	Ricinus communis	90.9	B9RSS7 RICCO
		Populus trichocarpa	90.2	B9HY78 POPTR
		Arabidopsis Ivrata subsp. Lvrata	84.7	D7LYJ6 ARALL
		Arabidopsis thaliana	84.5	MPK16 ARATH
		Orvza sativa subsp. Japonica	83.6	MPK15 ORYSJ
		Orvza sativa subsp. Indica	83.2	B3GCK9 OBYSI
		Zea mays	79.9	Q6TAR9 MAIZE
		Triticum aestivum	77.9	A9RAR1 WHEAT
WMPK9	GSVIVT01019406001	Populus trichocarpa	91.4	B9GWV0 POPTR
VVMPK9 VVMPK10 VVMPK11		Papaver rhoeas	89.3	Q683Y4_9MAGN
		Ricinus communis	87.4	B9BCG7 BICCO
		Solanum tuberosum	84.8	
		Sorahum bicolor	82.7	C5YH06 SOBBI
		Medicado truncatula	81.9	B7EK53 MEDTR
	GS\/I\/T01022771001	Populus trichocarpa	75.7	B9G7V6 POPTB
	GSVIVT01025091001	Nicotiana attenuate	86.6	A5H7H6 NICAT
WMPK11	0011101020001001	Ricinus communis	86.0	B9SW68 BICCO
		Malus domestica	85.3	
		Solanum lyconersicum	83.5	E2GLN8_SOLLC
		Nicotiana benthamiana	83.5	B2NIC1 NICRE
		Medicado sativa	82.7	
		Nicotiana tahacum	82.7	
		Solanum tuberosum	82.7	
		Arabidonsis lyrata subsp. Lyrata	80.4	DZKHW6 ABAU
		Arabidopsis thaliana	70.8	
WMPK12	GS\/I\/T01025105001		90.3	
	0.5414101025105001	Populus trichocarna	90.0	ROHNK3 POPTR
			90.0	
		Cucumis sativus	89.7	
		Solanum luconersicum	86.9	
			00.9	
		Selenum peruvienum	00.0	
			00.0	AOVJET_SOLFE
		Niestiene attenuete	86.6	
		Dicious communic	00.0	
			00.4	
		Vientiana konthemiene	00.3	
			00.3	
		Nicoliana labacum	00.U	
		FISUIII SAUVUIII	0.06	QUIVIOS I_PEA

(Continued)

TABLE 2 | Continued

Subfamily name	Vitis proteome 12× ID	Species	%ID	UniprotKB ID
		Brassica napus	86.0	Q5IV18_BRANA
		Medicago sativa	85.7	O24077_MEDSA
		Petroselinum crispum	85.7	O04694_PETCR
		Glycine max	85.4	Q5K6Q4_SOYBN
		Arabidopsis thaliana	84.2	MPK3_ARATH
		Saccharum officinarum	78.2	Q4QWQ7_SACOF
		Oryza sativa subsp.iÝndica	77.6	MPK5_ORYSI
		Avena sativa	77.3	Q43379_AVESA
VvMPK13	GSVIVT01026984001	Nicotiana attenuate	90.7	A5H7H4_NICAT
		Ricinus communis	90.5	B9RDW5_RICCO
		Glycine max	89.9	C6TEP0_SOYBN
		Populus trichocarpa	89.2	B9GQC1_POPTR
		Malus hupehensis	89.2	B1N8Y5 9ROSA
		Petroselinum crispum	89.0	Q84XZ6_PETCR
		, Nicotiana tabacum	88.5	Q3C254_TOBAC
		Solanum lycopersicum	88.2	D7R517_SOLLC
		Thellungiella halophile	87.4	E4MW58 THEHA
		Brassica napus	87.3	E3US78 BRANA
		, Arabidopsis thaliana	87.2	 MPK4_ARATH
		Arabidopsis Ivrata subsp. Lvrata	86.9	D7M4W5 ARALL
		Malus micromalus	86.4	Q8GZR5 MALMI
		Medicago sativa	86.3	MMK2 MEDSA
		Orvza sativa subsp. Ýndica	83.6	A2Z9P1 ORYSI
		Orvza sativa subsp. Japonica	83.6	MPK6 ORYSJ
		Zea mavs	83.2	B4FH09 MAIZE
		Sorahum bicolor	82.4	C5WUG0_SORBI
		Physicomitrella patens subsp. patens	80.9	A9S908 PHYPA
		Pinus tadea	78.0	C7ENI4 PINTA
VvMPK14	GSVIVT01038192001	Populus trichocarpa	95.7	B9HGK0 POPTR
		Malus domestica	95.2	D1MEM1_MALDO
		Pisum sativum	94.8	MAPK PFA
		Ricinus communis	94.5	B9SET4 BICCO
		Medicado sativa	94.2	MMK1 MEDSA
		Glycine max	94.2	O5K6N6 SOYBN
		Nicotiana tabacum	93.3	NTF4 TOBAC
		Solanum tuberosum	93.0	
		Nicotiana benthamiana	93.0	B3IWK6 NICBE
		Solanum lucopersicum	93.0	O84MI5_SOLLC
			92.7	
		Solanum peruvianum	92.7	8582H6 SOI PE
			92.7	
			92.4	
		Arabidopsis li fallaria	91.0	
		Propios papus	91.0	E1DO IS DDANA
		Sorahum bioolor	91.5	
			90.9	
		Zoo movo	90.5	NIFRI_URISJ
		Zea mays	90.9	
		Uryza sauva suusp. Inuica	6.0e	DOUCKI_UKISI
		niucum aesuvum	09.9 97 F	
MARKO		Pinus lauea	01.0	
VVIVIPAA2	GOVIVIU1010105001	Populus inchocarpa	81.7	DAIKO3-LOLI K

(Continued)

TABLE 2 | Continued

Subfamily name	Vitis proteome 12× ID	Species	%ID	UniprotKB ID
		Ricinus communis	81.2	B9RK49_RICCO
		Petroselinum crispum	79.3	Q6QMT5_PETCR
		Malus domestica	77.6	D1MFM3_MALDO
		Nicotiana tabacum	76.8	Q9M6Q9_TOBAC
		Solanum lycopersicum	76.3	O48616_SOLLC
		Arabidopsis thaliana	75.6	C0Z2L0_ARATH
		Glycine max	75.1	Q5JCL0_SOYBN
VvMKK3	GSVIVT01015283001	Ricinus communis	89.0	B9RKG0_RICCO
		Solanum lycopersicum	88.7	Q66MH7_SOLLC
		Nicotiana tabacum	88.1	Q9AYN9_TOBAC
		Nicotiana benthamiana	87.3	B2NIC2_NICBE
		Origanum onites	86.1	A7U0S8_9LAMI
		Arabidopsis thaliana	83.3	M2K6_ARATH
		Arabidopsis lyrata subsp. Lyrata	83.1	D7MLT9_ARALL
		Oryza sativa subsp. Japonica	77.3	M2K1_ORYSJ
		Oryza sativa subsp. Ýndica	77.3	Q0Z7Z4_ORYSI
		Zea mays	77.1	049975 MAIZE
		Sorghum bicolor	76.8	C5XIE1 SORBI
VvMKK5	GSVIVT01032414001	Ricinus communis	86.3	B9S641 RICCO
		Populus trichocarpa	84.6	B9GI57 POPTR
		Nicotiana tabacum	82.8	Q40542 TOBAC
		Suaeda salsa	79.0	Q8L8I2_SUASA
		Arabidopsis thaliana	78.6	080396 ABATH
WiMAPKKK3	GSVIVT01001193001	Populus trichocarpa	85.5	B9GSK4 POPTR
		Ricinus communis	77.8	B9SEH0 BICCO
VviMAPKKK4	GSVIVT01001690001	Populus trichocarpa	82.2	B9GTK7 POPTR
		Ricinus communis	80.7	B9T446 BICCO
WiMAPKKK8	GSVIVT01007637001	Populus trichocarpa	80.5	B913F6 POPTB
		Ricinus communis	79.3	B9BAT5 BICCO
		Glucine max	78.7	COMOP4 SOYBN
		Medicado sativa	78.0	084BS1_MEDSA
WiMAPKKK9	GSVIVT01007646001	Ricinus communis	88.3	B9BAU4 BICCO
		Glucine may	84.7	CATAD3 SOVEN
		Onza sativa	82.1	
		Zea mays	82.1	COP3M4 MAIZE
		Orvza sativa subsp. Japonica	82.1	067H81_0BYSJ
		Arabidonsis thaliana	81.8	OPEGS7 ABATH
WiMAPKKK10	GSVIVT01007762001	Populus trichocarpa	88.0	B9IE09 POPTR
	0000000000000000	Ricinus communis	84.1	B9BB33 BICCO
MiMAPKKK12	GSVIVT01008413001	Populus trichocarpa	80.8	
	GSVIVT01012031001	Ricinus communis	79.8	BOSAIS BICCO
	000000000000	Arabidonsis thaliana	79.0	
WAADKKKO5	CSV////T01019020001	Populuo trioboorno	94.0	
VVIIVIAFNN23	6300101018020001	Populus Inchocarpa	70.4	PORTM1 DICCO
		Archidopoio theliopo	79.4	
MANDERE 200	CSV////T01010720001	Arabidopsis trialiana Bioloue communio	75.1	
VVIIVIAENNN29	02414101019739001		70.3	
	CS\/\\/T01000710001	Populus Inchocarpa	70.0	BUCKGD_FUPIK
ννΙΙνΙΑΡΝΚΚ3Ι	GSVIV101020712001	Ricinus communis	84.U	
		Populus trichocarpa	82.4	
VVIIVIAPKKK34	GSVIV101022098001	Populus trichocarpa	82.7	BOLKING DOCT
VVIIVIAPKKK4U	GSVIV101023958001	Populus trichocarpa	82.2	BAHIWI POALB

(Continued)

TABLE 2 | Continued

Subfamily name	Vitis proteome 12× ID	Species	%ID	UniprotKB ID
		Ricinus communis	79.8	B9S5G6_RICCO
VviMAPKKK42	GSVIVT01026487001	Ricinus communis	77.0	B9SUR2_RICCO
VviMAPKKK45	GSVIVT01028897001	Ricinus communis	83.2	B9RIV9_RICCO
		Populus trichocarpa	82.9	B9IDA8_POPTR
VviMAPKKK50	GSVIVT01030194001	Ricinus communis	85.4	B9T3P6_RICCO
		Populus trichocarpa	84.3	B9IGR7_POPTR
		Medicago truncatula	84.0	B7FKS6_MEDTR
		Glycine max	81.6	C6TMB8_SOYBN
		Arabidopsis thaliana	80.9	Q8L6Y9_ARATH
VviMAPKKK54	GSVIVT01032389001	Populus trichocarpa	91.2	B9GI75_POPTR
		Ricinus communis	89.5	B9S662_RICCO
		Cucumis sativus	82.4	Q7XJ65_CUCSA
		Arabidopsis thaliana	81.3	Q9LT56_ARATH
VviMAPKKK55	GSVIVT01032487001	Populus trichocarpa	89.2	B9IJN5_POPTR
		Ricinus communis	88.0	B9RB44_RICCO
		Arabidopsis thaliana	86.9	Q9SSA4_ARATH
		Oryza sativa subsp. Japonica	84.6	Q6L5F3_ORYSJ
		Oryza sativa subsp. Indica	84.6	A2Y7U2_ORYSI
		Zea mays	83.3	B6U656_MAIZE
VviMAPKKK56	GSVIVT01033779001	Populus trichocarpa	80.9	B9IFS3_POPTR
		Prunus salinica	79.8	A9UAN3_9ROSA
		Ricinus communis	79.8	B9SRG7_RICCO
		Prunus persica	78.9	C4PKQ3_PRUPE
		Rosa hybrid cultivar	78.6	Q93XL9_ROSHC
		Malus domestica	78.5	A2T3V2_MALDO
		Solanum lycopersicum	77.1	Q5YKK5_SOLLC
VviMAPKKK58	GSVIVT01034988001	Ricinus communis	78.3	B9RZR2_RICCO
		Populus trichocarpa	78.0	B9HIN4_POPTR
VviMAPKKK61	GSVIVT01037773001	Ricinus communis	80.4	B9SSS7_RICCO
		Gossypium hirsutum	79.5	Q7Y236_GOSHI
		Arabidopsis thaliana	76.8	WNK11_ARATH
VvMAP4K3	GSVIVT01014297001	Ricinus communis	76.6	B9T3W4_RICCO
		Populus trichocarpa	76.1	B9N1E7_POPTR
VvMAP4K5	GSVIVT01019643001	Populus trichocarpa	79.8	B9GK86_POPTR
		Ricinus communis	79.3	B9RYT1_RICCO
VvMAP4K7	GSVIVT01032461001	Populus trichocarpa	80.0	B9GHQ7_POPTR
		Carica papaya	79.0	A7L4B0_CARPA
		Arabidopsis thaliana	75.6	Q9LER4_ARATH

Columns 1-4 contain the protein name, Vitis proteome 12× ID, GenBank ID, species, percentage identity (%ID), UniprotKB ID.

genome coverage (Wang et al., 2014b). The difference in the number of MAPKKK members in grapevine genome may be related to the "E" value > E-120 used in this report, which is more significant. In addition, domain scan using two different databases (PROSITE and CDD) can identify more sequences in the grapevine genome.

The members of the *Vitis* MAPKKK subfamily share 11– 35% identity with each other and distributed on various chromosomes (from 2 to 18) (**Table 1**). The full length *Vitis* MAPKKK sequences range from 175 (VviMAPKKK38) to 1397 (VviMAPKKK17) amino acids. The phylogenetic analysis of both *Vitis* and *Arabidopsis* MAPKKK sequences shows that this subfamily is categorized into three main groups with bootstrap values up to 93% (**Figure 4**).

The first group contains MAPKKKs whose kinase domains have similarity to MEKK subfamily members (**Figure 4**) (Jonak et al., 2002). A second group includes Raf subfamily members while a third group presents ZIK subfamily members (**Figure 4**) (Jonak et al., 2002). In total, there are 21 VviMAPKKKs in the MEKK subfamily, while there are 12 in the ZIK subfamily and 29 in the Raf subfamily among the 62 members in the *Vitis* genome.

Analysis of conserved domain of VviMAPKKKs identified a long regulatory domain in the N-terminal region and a kinase domain in the C-terminal region in most of VviMAPKKKs. It is suggested that the long regulatory domain in the N-terminal region of the Raf subfamily may be involved in protein-protein interactions and regulate or specify their kinase activity (Jouannic et al., 1999). Twenty members of the *Vitis* MAPKKK subfamily share 75.1–89.2% similarity with their orthologs from different plant species (**Table 2**).

We identified at least 640 ESTs for 59 of the *Vitis* MAPKKKs (Supplementary Table 3) indicating that MAPKKK subfamily is transcriptionally active. Expression profile of *VviMAPKKK* genes suggested that some of them are involved in response to biotic and abiotic stresses in different tissues and organs (Wang et al.,

2014b). In support of a role for some *Vitis* MAPKKKs, *AtMEKK1* expression is enhanced by drought, salt, stress (Mizoguchi et al., 1996). Recently, it was reported that AtMKK1/MKK2 and AtMEKK1 were able to negatively regulate programmed cell death (PCD) as well as immune responses (Kong et al., 2012). In tobacco, NPK1-MEK1-Ntf6 are also involved in resistance to tobacco mosaic virus (TMV) (Jin et al., 2002; Liu et al., 2004). In addition, AtEDR1, a Raf-like MAPKKK could regulate SA-inducible defense responses negatively (Frye et al., 2001).

MAPKKKKs

In non-plants, MAPKKKs are activated either through phosphorylation by MAPKKK kinase (MAPKKKK or MAP4K) (Posas and Saito, 1997; Sells et al., 1997) or by G protein and G

the roles of MAP4Ks in plants. Seven ORFs showing strong similarity with the 10 Arabidopsis MAP4Ks were identified in Vitis genome (Figure 5) and shared 18-74% similarity with each other. They have been named VvMAP4K1 through 7 (Table 1). The phylogenetic analysis of V. vinifera and A. thaliana MAP4Ks proteins identified several orthologs in the two species such as VvMAP4K4/AtMAP4K8 VvMAP4K1/AtMAP4K3 (70%) similarity), (66% similarity), VvMAP4K7/AtMAP4K4 (68% similarity), and VvMAP4K6/AtMAP4K10 (64% similarity) (Figure 5).

In addition, we identified several orthologs from different species for 3 VvMAP4Ks (Table 2). Among 7 ORFs encoding

protein-coupled receptors (Fanger et al., 1997; Sugden and Clerk,

1997). Several MAP4Ks have been identified in plant genomes based on phylogenetic analyses of their kinase domain. A

MAP4K, named MIK, was characterized from the Zea mays (Wang et al., 2014d). Recently, a new MAP4K from GCK-II subfamily named ScMAP4K1, which play important roles in ovule, seed, and fruit development was characterized (Major et al., 2009).

In fully sequenced genomes, like Arabidopsis and rice at least 10 protein kinases can be phylogenetically classified as MAP4K (Champion et al., 2004). Little is known about

Vitis MAP4Ks, all of them are transcriptionally active (Supplementary Table 4), but none of them has been cloned and characterized.

Conclusions

This report represents the first complete genome-wide analysis of MAPK cascade proteins in grapevine. The identification of *Vitis* MAPK cascade proteins and their comparative analysis with the *Arabidopsis* MAPK cascade proteins indicates that MAPK cascade genes have been conserved during evolution. In this report, we annotated 90 ORFs encoding MAPK cascade proteins in *V. vinifera* using a bioinformatics approach. Taken as a whole, our data provide significant insights into future biological and physiological analysis of MAPK cascades from *V. vinifera*.

References

- Altschul, S. F., Gish, W., Miller, W., Myers, E. W., and Lipman, D. J. (1990). Basic local alignment search tool. J. Mol. Biol. 215, 403–410. doi: 10.1016/S0022-2836(05)80360-2
- Asai, T., Tena, G., Plotnikova, J., Willmann, M. R., Chiu, W. L., Gomez-Gomez, L., et al. (2002). MAP kinase signalling cascade in *Arabidopsis* innate immunity. *Nature* 415, 977–983. doi: 10.1038/415977a
- Bergmann, D. C., Lukowitz, W., and Somerville, C. R. (2004). Stomatal development and pattern controlled by a MAPKK kinase. *Science* 304, 1494–1497. doi: 10.1126/science.1096014
- Bögre, L., Calderini, O., Binarova, P., Mattauch, M., Till, S., Kiegerl, S., et al. (1999). A MAP kinase is cctivated late in plant mitosis and becomes localized to the plane of cell division. *Plant Cell* 11, 101–113. doi: 10.1105/tpc. 11.1.101
- Bush, S. M., and Krysan, P. J. (2007). Mutational evidence that the Arabidopsis MAP kinase MPK6 is involved in anther, inflorescence, and embryo development. J. Exp. Bot. 58, 2181–2191. doi: 10.1093/jxb/ erm092
- Çakır, B., and Kılıçkaya, O. (2013). Whole-genome survey of the putative ATPbinding cassette transporter family genes in *Vitis vinifera*. *PLoS ONE* 8:e78860. doi: 10.1371/journal.pone.0078860
- Cardinale, F., Meskiene, I., Ouaked, F., and Hirt, H. (2002). Convergence and divergence of stress-induced mitogen-activated protein kinase signaling pathways at the level of two distinct mitogen-activated protein kinase kinases. *Plant Cell* 14, 703–711. doi: 10.1105/tpc.010256
- Champion, A., Picaud, A., and Henry, Y. (2004). Reassessing the MAP3K and MAP4K relationships. *Trends Plant Sci.* 9, 123–129. doi: 10.1016/j.tplants.2004.01.005
- Colcombet, J., and Hirt, H. (2008). *Arabidopsis* MAPKs: a complex signalling network involved in multiple biological processes. *Biochem. J.* 413, 217–226. doi: 10.1042/BJ20080625
- Daldoul, S., Hoefer, M. II, and Mliki, A. (2012). Osmotic Stress Induces the Expression of VvMAP Kinase Gene in Grapevine (*Vitis vinifera* L.). J. Bot. 11, 1–4. doi: 10.1155/2012/737035
- Dan, I., Watanabe, N. M., and Kusumi, A. (2001). The Ste20 group kinases as regulators of MAP kinase cascades. *Trends Cell Biol.* 11, 220–230. doi: 10.1016/S0962-8924(01)01980-8
- Datta, R. S., Meacham, C., Samad, B., Neyer, C., and Sjolander, K. (2009). Berkeley PHOG: PhyloFacts orthology group prediction web server. *Nucleic Acids Res.* 37, W84–W89. doi: 10.1093/nar/gkp373
- del Pozo, O., Pedley, K. F., and Martin, G. B. (2004). MAPKKKα is a positive regulator of cell death associated with both plant immunity and disease. *EMBO J.* 23, 3072–3082. doi: 10.1038/sj.emboj.7600283
- Edgar, R. C. (2004). MUSCLE: multiple sequence alignment with high accuracy and high throughput. *Nucleic Acids Res.* 32, 1792–1797. doi: 10.1093/nar/gkh340

Author Contributions

BÇ conceived and designed all research. OK performed the bioinformatic analyses. BÇ analyzed data and wrote the article.

Acknowledgments

This work was funded by the Department of Horticulture, Ege University, Turkey.

Supplementary Material

The Supplementary Material for this article can be found online at: http://journal.frontiersin.org/article/10.3389/fpls.2015. 00556

- Fanger, G. R., Johnson, N. L., and Johnson, G. L. (1997). MEK kinases are regulated by EGF and selectively interact with Rac/Cdc42. *Embo J.* 16, 4961–4972. doi: 10.1093/emboj/16.16.4961
- Feilner, T., Hultschig, C., Lee, J., Meyer, S., Immink, R. G. H., Koenig, A., et al. (2005). High throughput identification of potential *Arabidopsis* mitogenactivated protein kinases substrates. *Mol. Cell. Proteomics* 4, 1558–1568. doi: 10.1074/mcp.M500007-MCP200
- Fiil, B. K., Petersen, K., Petersen, M., and Mundy, J. (2009). Gene regulation by MAP kinase cascades. *Cur. Opin. Plant Biol.* 12, 615–621. doi: 10.1016/j.pbi.2009.07.017
- Frye, C. A., Tang, D., and Innes, R. W. (2001). Negative regulation of defense responses in plants by a conserved MAPKK kinase. *Proc. Natl. Acad. Sci. U.S.A.* 98, 373–378. doi: 10.1073/pnas.98.1.373
- Galletti, R., Ferrari, S., and De Lorenzo, G. (2011). Arabidopsis MPK3 and MPK6 play different roles in basal and oligogalacturonide- or flagellininduced resistance against *Botrytis cinerea*. *Plant Physiol*. 157, 804–814. doi: 10.1104/pp.111.174003
- Gray, J. E., and Hetherington, A. M. (2004). Plant development: YODA the stomatal switch. Curr. Biol. 14, R488–R490. doi: 10.1016/j.cub.2004.06.019
- Group, M., Ichimura, K., Shinozaki, K., Tena, G., Sheen, J., Henry, Y., Champion, A., et al. (2002). Mitogen-activated protein kinase cascades in plants: a new nomenclature. *Trends Plant Sci.* 7, 301–308. doi: 10.1016/S1360-1385(02)02302-6
- Hamel, L. P., Nicole, M. C., Sritubtim, S., Morency, M. J., Ellis, M., Ehlting, J., et al. (2006). Ancient signals: comparative genomics of plant MAPK and MAPKK gene families. *Trends Plant Sci.* 11, 192–198. doi: 10.1016/j.tplants.2006.02.007
- Huang, X., Luo, T., Fu, X., Fan, Q., and Liu, J. (2011). Cloning and molecular characterization of a mitogen-activated protein kinase gene from *Poncirus trifoliata* whose ectopic expression confers dehydration/drought tolerance in transgenic tobacco. J. Exp. Bot. 62, 5191–5206. doi: 10.1093/jxb/err229
- Huttly, A. K., and Phillips, A. L. (1995). Gibberellin-regulated expression in oat aleurone cells of two kinases that show homology to MAP kinase and a ribosomal protein kinase. *Plant Mol. Biol.* 27, 1043–1052. doi: 10.1007/bf00037031
- Hwa, C.-M., and Yang, X.-C. (2008). The AtMKK3 pathway mediates ABA and salt signaling in Arabidopsis. Acta Physiol. Plantarum 30, 277–286. doi: 10.1007/s11738-007-0117-3
- Hyun, T. K., Kim, J. S., Kwon, S. Y., and Kim, S. H. (2010). Comparative genomic analysis of mitogen activated protein kinase gene family in grapevine. *Genes Genomics* 32, 275–281. doi: 10.1007/s13258-010-0010-0
- Ichimura, K., Mizoguchi, T., Irie, K., Morris, P., Giraudat, J., Matsumoto, K., et al. (1998). Isolation of ATMEKK1 (a MAP kinase kinase kinase)-interacting proteins and analysis of a MAP kinase cascade in *Arabidopsis. Biochem. Biophys. Res. Commun.* 253, 532–543. doi: 10.1006/bbrc.1998.9796
- Ichimura, K., Mizoguchi, T., Yoshida, R., Yuasa, T., and Shinozaki, K. (2000). Various abiotic stresses rapidly activate *Arabidopsis* MAP kinases ATMPK4 and ATMPK6. *Plant J.* 24, 655–665. doi: 10.1046/j.1365-313x.2000.00913.x

- Ichimura, K., Shinozaki, K., Tena, G., Sheen, J., Henry, Y., Champion, A., et al. (2002). Mapk G: Mitogen-activated protein kinase cascades in plants: a new nomenclature. *Trends Plant Sci.* 7, 301–308. doi: 10.1016/S1360-1385(02)02302-6
- Jaillon, O., Aury, J. M., Noel, B., Policriti, A., Clepet, C., Casagrande, A., et al. (2007). The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. *Nature* 449, 463–467. doi: 10.1038/nature06148
- Jin, H., Axtell, M. J., Dahlbeck, D., Ekwenna, O., Zhang, S., Staskawicz, B., et al. (2002). NPK1, and MEKK1-like mitogen-activated protein kinase kinase kinase, regulates innate immunity and development in plants. *Dev. Cell* 3, 291–297. doi: 10.1016/S1534-5807(02)00205-8
- Jonak, C., Ökrész, L., Bögre, L., and Hirt, H. (2002). Complexity, Cross Talk and Integration of Plant MAP Kinase Signalling. *Curr. Opin. Plant Biol.* 5, 415–424. doi: 10.1016/S1369-5266(02)00285-6
- Jonak, C., Pay, A., Bogre, L., Hirt, H., and Heberle-Bors, E. (1993). The plant homologue of MAP kinase is expressed in a cell cycle-dependent and organspecific manner. *Plant J.* 3, 611–617. doi: 10.1046/j.1365-313X.1993.03040611.x
- Jouannic, S., Hamal, A., Leprince, A. S., Tregear, J. W., Kreis, M., and Henry, Y. (1999). Characterisation of novel plant genes encoding MEKK/STE11 and RAF-related protein kinases. *Gene* 229, 171–181. doi: 10.1016/S0378-1119(99)00012-8
- Katou, S., Yoshioka, H., Kawakita, K., Rowland, O., Jones, J. D., Mori, H., et al. (2005). Involvement of PPS3 phosphorylated by elicitor-responsive mitogenactivated protein kinases in the regulation of plant cell death. *Plant Physiol.* 139, 1914–1926. doi: 10.1104/pp.105.066795
- Kieber, J. J., Rothenberg, M., Roman, G., Feldmann, K. A., and Ecker, J. R. (1993). CTR1, a negative regulator of the ethylene response pathway in *Arabidopsis*, encodes a member of the raf family of protein kinases. *Cell* 72, 427–441. doi: 10.1016/0092-8674(93)90119-B
- Kiegerl, S., Cardinale, F., Siligan, C., Gross, A., Baudouin, E., Liwosz, A., et al. (2000). SIMKK, a mitogen-activated protein kinase (MAPK) kinase, is a specific activator of the salt stress-induced MAPK, SIMK. *Plant Cell* 12, 2247–2258. doi: 10.1105/tpc.12.11.2247
- Kishi-Kaboshi, M., Okada, K., Kurimoto, L., Murakami, S., Umezawa, T., Shibuya, N., et al. (2010). A rice fungal MAMP-responsive MAPK cascade regulates metabolic flow to antimicrobial metabolite synthesis. *Plant J.* 63, 599–612. doi: 10.1111/j.1365-313X.2010.04264.x
- Knetsch, M. L. W., Wang, M., Snaar-Jagalska, B. E., and Heimovaara-Dijkstra, S. (1996). Abscisic acid induces mitogen-activated protein kinase activation in barley aleuron protoplasts. *Plant Cell* 8, 1061–1067. doi: 10.1105/tpc.8. 6.1061
- Kong, Q., Qu, N., Gao, M., Zhang, Z., Ding, X., Yang, F., et al. (2012). The MEKK1-MKK1/MKK2-MPK4 kinase cascade negatively regulates immunity mediated by a mitogen-activated protein kinase kinase kinase in *Arabidopsis. Plant Cell* 24, 2225–2236. doi: 10.1105/tpc.112.097253
- Kovtun, Y., Chiu, W. L., Tena, G., and Sheen, J. (2000). Functional analysis of oxidative stress-activated mitogen-activated protein kinase cascade in plants. *Proc. Natl. Acad. Sci. U.S.A.* 97, 2940–2945. doi: 10.1073/pnas.97.6.2940
- Kumar, K., Rao, K. P., Biswas, D. K., and Sinha, A. K. (2011). Rice WNK1 is regulated by abiotic stress and involved in internal circadian rhythm. *Plant Signal. Behav.* 6, 316–320. doi: 10.4161/psb.6.3.13063
- Kumar, K. R., and Kirti, P. B. (2010). A mitogen-activated protein kinase, AhMPK6 from peanut localizes to the nucleus and also induces defense responses upon transient expression in tobacco. *Plant Physiol. Biochem.* 48, 481–486. doi: 10.1016/j.plaphy.2010.03.010
- Lee, J., Rudd, J. J., Macioszek, V. K., and Scheel, D. (2004). Dynamic changes in the localization of MAPK cascade components controlling pathogenesis-related (PR) gene expression during innate immunity in parsley. *J. Biol. Chem.* 279, 22440–22448. doi: 10.1074/jbc.M401099200
- Leprince, A., Jouannic, S., Hamal, A., Kreis, M., and Henry, Y. (1999). Molecular characterisation of plant cDNAs BnMAP4K alpha 1 and BnMAP4K alpha 2 belonging to the GCK/SPS1 subfamily of MAP kinase kinase kinase kinase. *Biochim. Biophys. Acta* 1444, 1–13. doi: 10.1016/S0167-4781(98)00246-2
- Liu, Q., and Xue, Q. (2007). Computational identification and phylogenetic analysis of the MAPK gene family in *Oryza sativa*. *Plant Physiol. Biochem.* 45, 6–14. doi: 10.1016/j.plaphy.2006.12.011
- Liu, Y. (2012). Roles of mitogen-activated protein kinase cascades in ABA signaling. *Plant Cell Rep.* 31, 1–12. doi: 10.1007/s00299-011-1130-y

- Liu, Y., Schiff, M., and Dinesh-Kumar, S. P. (2004). Involvement of MEK1 MAPKK, NTF6 MAPK, WRKY/MYB transcription factors, COI1 and CTR1 in N-mediated resistance to tobacco mosaic virus. *Plant J.* 38, 800–809. doi: 10.1111/j.1365-313X.2004.02085.x
- Llompart, B., Castells, E., Río, A., Roca, R., Ferrando, A., Stiefel, V., et al. (2003). The direct activation of MIK, a germinal center kinase (GCK)-like kinase, by MARK, a maize atypical receptor kinase, suggests a new mechanism for signaling through kinase-dead receptors. *J. Biol. Chem.* 28, 48105–48111. doi: 10.1074/jbc.M307482200
- Lukowitz, W., Roeder, A., Parmenter, D., and Somerville, C. (2004). A MAPKK kinase gene regulates extra-embryonic cell fate in *Arabidopsis. Cell* 116, 109–119. doi: 10.1016/S0092-8674(03)01067-5
- Lynch, M., O'Hely, M., Walsh, B., and Force, A. (2001). The probability of preservation of a newly arisen gene duplicate. *Genetics* 159, 1789–1804.
- Major, G., Daigle, C., Lafleur, E., Caron, S., and Matton, D. (2009). Characterization of ScMAP4K1, a MAP kinase kinase kinase kinase involved in ovule, seed and fruit development in *Solanum chacoense* Bitt. *Curr. Topics Plant Biol.* 10, 27–46.
- Marchler-Bauer, A., Anderson, J. B., Chitsaz, F., Derbyshire, M. K., DeWeese-Scott, C., Fong, J. H., et al. (2009). CDD: specific functional annotation with the Conserved Domain Database. *Nucleic Acids Res.* 37, D205–D210. doi: 10.1093/nar/gkn845
- Matsuoka, D., Nanmori, T., Sato, K., Fukami, Y., Kikkawa, U., and Yasuda, T. (2002). Activation of AtMEK1, an *Arabidopsis* mitogen-activated protein kinase kinase, *in vitro* and *in vivo*: analysis of active mutants expressed in *E. coli* and generation of the active form in stress response in seedlings. *Plant J.* 29, 637–647. doi: 10.1046/j.0960-7412.2001.01246.x
- Melech-Bonfil, S., and Sessa, G. (2010). Tomato MAPKKKepsilon is a positive regulator of cell-death signaling networks associated with plant immunity. *Plant J.* 64, 379–391. doi: 10.1111/j.1365-313X.2010.04333.x
- Meng, X., Wang, H., He, Y., Liu, Y., Walker, J. C., Torii, K. U., et al. (2012). A MAPK cascade downstream of ERECTA receptor-like protein kinase regulates Arabidopsis inflorescence architecture by promoting localized cell proliferation. *Plant Cell* 24, 4948–4960. doi: 10.1105/tpc.112.104695
- Mizoguchi, T., Ichimura, K., Irie, K., Morris, P., Giraudat, J., Matsumoto, K., et al. (1998). Identification of a possible MAP kinase cascade in *Arabidopsis thaliana* based on pairwise yeast two-hybrid analysis and functional complementation tests of yeast mutants. *FEBS Lett.* 437, 56–60. doi: 10.1016/S0014-5793(98)01197-1
- Mizoguchi, T., Irie, K., Hirayama, T., Hayashida, N., Yamaguchi-Shinozaki, K., Matsumoto, K., et al. (1996). A gene encoding a mitogen-activated protein kinase kinase kinase is induced simultaneously with genes for a mitogenactivated protein kinase and an S6 ribosomal protein kinase by touch, cold, and water stress in *Arabidopsis thaliana*. *Proc. Natl. Acad. Sci. U.S.A.* 93, 765–769. doi: 10.1073/pnas.93.2.765
- Moreno-Hagelsieb, G., and Latimer, K. (2008). Choosing BLAST options for better detection of orthologs as reciprocal best hits. *Bioinformatics* 24, 319–324. doi: 10.1093/bioinformatics/btm585
- Nadarajah, K., and Sidek, H. (2010). The green MAPKS. *Asian J. Plant Sci.* 9, 1–10. doi: 10.3923/ajps.2010.1.10
- Nakagami, H., Kiegerl, S., and Hirt, H. (2004). OMTK1, a novel MAPKKK, channels oxidative stress signaling through direct MAPK interaction. J. Biol. Chem. 279, 26959–26966. doi: 10.1074/jbc.M312662200
- Ning, J., Li, X., Hicks, L. M., and Xiong, L. (2010). A raf-like MAPKKK gene DSM1 mediates drought resistance through reactive oxygen species scavenging in rice. *Plant Physiol*. 152, 876–890. doi: 10.1104/pp.109.149856
- Nishihama, R., Ishikawa, M., Araki, S., Soyano, T., Asada, T., and Machida, Y. (2001). The NPK1 mitogen-activated protein kinase kinase kinase is a regulator of cell-plate formation in plant cytokinesis. *Genes Dev.* 15, 352–363. doi: 10.1101/gad.863701
- Nowak, M. A., Boerlijst, M. C., Cooke, J., and Smith, J. M. (1997). Evolution of genetic redundancy. *Nature* 388, 167–171. doi: 10.1038/40618
- Oh, C.-S., Pedley, K. F., and Martin, G. B. (2010). Tomato 14-3-3 protein 7 positively regulates immunity-associated programmed cell death by enhancing protein abundance and signaling ability of MAPKKKα. *Plant Cell* 22, 260–272. doi: 10.1105/tpc.109.070664
- Ortiz-Masia, D., Perez-Amador, M. A., Carbonell, J., and Marcote, M. J. (2007). Diverse stress signals activate the C1 subgroup MAP kinases of *Arabidopsis*. *FEBS Lett.* 581, 1834–1840. doi: 10.1016/j.febslet.2007.03.075

- Pedley, K. F., and Martin, G. B. (2005). Role of mitogen-activated protein kinases in plant immunity. *Curr. Opin. Plant Biol.* 8, 541–547. doi: 10.1016/j.pbi.2005.07.006
- Posas, F., and Saito, H. (1997). Osmotic activation of the HOG MAPK pathway via Ste11p MAPKKK: Scaffold role of Pbs2p MAPKK. Science 276, 1702–1705. doi: 10.1126/science.276.5319.1702
- Qi, M., and Elion, E. A. (2005). MAP kinase pathways. J. Cell Sci. 118, 3569–3572. doi: 10.1242/jcs.02470
- Qiu, J. L., Fiil, B. K., Petersen, K., Nielsen, H. B., Botanga, C. J., Thorgrimsen, S., et al. (2008). Arabidopsis MAP kinase 4 regulates gene expression through transcription factor release in the nucleus. *Embo J.* 27, 2214–2221. doi: 10.1038/emboj.2008.147
- Rao, K. P., Richa, T., Kumar, K., Raghuram, B., and Sinha, A. K. (2010). In silico analysis reveals 75 members of mitogen-activated protein kinase kinase kinase gene family in rice. DNA Res. 17, 139–153. doi: 10.1093/dnares/ dsq011
- Ren, D., Yang, H., and Zhang, S. (2002). Cell death mediated by MAPK is associated with hydrogen peroxide production in Arabidopsis. J. Biol. Chem. 277, 559–565. doi: 10.1074/jbc.M109495200
- Rodriguez, M., Petersen, M., and Mundy, J. (2010). Mitogen-activated protein kinase signaling in plants. Annu. Rev. Plant Biol. 161, 621–649. doi: 10.1146/annurev-arplant-042809-112252
- Rohila, J. S., and Yang, Y. (2007). Rice Mitogen-activated protein kinase gene family and its role in biotic and abiotic stress response. *J. Integr Plant Biol.* 49, 751–759. doi: 10.1111/j.1744-7909.2007.00501.x
- Saitou, N., and Nei, M. (1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. *Mol. Biol. Evol.* 4, 406–425.
- Sells, M. A., Knaus, U. G., Bagrodia, S., Ambrose, D. M., Bokoch, G. M., and Chernoff, J. (1997). Human p21-activated kinase (Pak1) regulates actin organization in mammalian cells. *Curr. Biol.* 7, 202–210. doi: 10.1016/S0960-9822(97)70091-5
- Song, F., and Goodman, R. M. (2002). OsBIMK1, a rice MAP kinase gene involved in disease resistance responses. *Planta* 215, 997–1005. doi: 10.1007/s00425-002-0794-5
- Stulemeijer, I. J. E., Stratmann, J. W., and Joosten, M. H. A. J. (2007). Tomato mitogen-activated protein kinases LeMPK1, LeMPK2, and LeMPK3 are activated during the Cf-4/Avr4-Induced hypersensitive response and have distinct phosphorylation specificities. *Plant Physiol.* 144, 1481–1494. doi: 10.1104/pp.107.101063
- Sugden, P. H., and Clerk, A. (1997). Regulation of the ERK subgroup of MAP kinase cascades through G protein-coupled receptors. *Cell Signal.* 9, 337–351. doi: 10.1016/S0898-6568(96)00191-X
- Sun, Y., Wang, C., Yang, B., Wu, F., Hao, X., Liang, W., et al. (2014). Identification and functional analysis of mitogen-activated protein kinase kinase kinase (MAPKKK) genes in canola (*Brassica napus* L.). J. Exp. Bot. 65, 2171–2188. doi: 10.1093/jxb/eru092
- Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., and Kumar, S. (2011). MEGA5: Molecular Evolutionary Genetics Analysis using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods. *Mol. Biol. Evol.* 28, 2731–2739. doi: 10.1093/molbev/msr121
- Teige, M., Scheikl, E., Eulgem, T., Doczi, R., Ichimura, K., Shinozaki, K., et al. (2004). The MKK2 pathway mediates cold and salt stress signaling in *Arabidopsis*. *Mol. Cell* 15, 141–152. doi: 10.1016/j.molcel.2004. 06.023
- Thompson, J. D., Higgins, D. G., and Gibson, T. J. (1994). CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence

weighting, position-specific gap penalties and weight matrix choice. *Nucleic Acids Res.* 22, 4673–4680. doi: 10.1093/nar/22.22.4673

- Wang, G., Lovato, A., Liang, Y. H., Wang, M., Chen, F., Tornielli, G. B., et al. (2014a). Validation by isolation and expression analyses of MAPK gene family in grapevine (*Vitis vinifera*). Aust. J. Grape Wine Res. 20, 255–262. doi: 10.1111/ajgw.12081
- Wang, G., Lovato, A., Polverari, A., Wang, M., Liang, Y. H., Ma, Y. C., et al. (2014b) Genome-wide identification and analysis of mitogen activated protein kinase kinase kinase gene family in grapevine (*Vitis vinifera*). BMC Plant Biol. 14:219 doi: 10.1186/s12870-014-0219-1
- Wang, J., Pan, C., Wang, Y., Ye, L., Wu, J., Chen, L., et al. (2015). Genomewide identification of MAPK, MAPKK, and MAPKKK gene families and transcriptional profiling analysis during development and stress response in cucumber. *BMC Genomics* 16:386. doi: 10.1186/s12864-015-1621-2
- Wang, L., Liu, Y., Cai, G., Jiang, S., Pan, J., and Li, D. (2014d). Ectopic expression of ZmSIMK1 leads to improved drought tolerance and activation of systematic acquired resistance in transgenic tobacco. J. Biotechnol. 20, 18–29. doi: 10.1016/j.jbiotec.2013.11.006
- Wang, L., Su, H., Han, L., Wang, C., Sun, Y., and Liu, F. (2014c). Differential expression profiles of poplar MAP kinase kinases in response to abiotic stresses and plant hormones, and overexpression of PtMKK4 improves the drought tolerance of poplar. *Gene.* 15, 141–148. doi: 10.1016/j.gene.2014.04.058
- Wang, X. J., Zhu, S. Y., Lu, Y. F., Zhao, R., Xin, Q., Wang, X. F., et al. (2010). Two coupled components of the mitogen-activated protein kinase cascade MdMPK1 and MdMKK1 from apple function in ABA signal transduction. *Plant Cell Physiol.* 51, 754–766. doi: 10.1093/pcp/pcq037
- Wang, Y., Liu, K., Liao, H., Zhuang, C., Ma, H., and Yan, X. (2008). The plant WNK gene family and regulation of flowering time in *Arabidopsis. Plant Biol.* 10, 548–562. doi: 10.1111/j.1438-8677.2008.00072.x
- Wilson, C., Voronin, V., Touraev, A., Vicente, O., and Heberle-Bors, E. (1997). A developmentally regulated MAP kinase activated by hydration in tobacco pollen. *Plant Cell* 9, 2093–2100. doi: 10.1105/tpc.9.11.2093
- Yang, K.-Y., Liu, Y., and Zhang, S. (2001). Activation of a mitogen-activated protein kinase pathway is involved in disease resistance in tobacco. *Proc. Natl. Acad. Sci.* U.S.A. 98, 741–746. doi: 10.1073/pnas.98.2.741
- Yuasa, T., Ichimura, K., Mizoguchi, T., and Shinozaki, K. (2001). Oxidative stress activates ATMPK6, an *Arabidopsis* homologue of MAP kinase. *Plant Cell Physiol.* 42, 1012–1016. doi: 10.1093/pcp/pce123
- Zaïdi, I., Ebel, C., Touzri, M., Herzog, E., Evrard, J.-L., Schmit, A., et al. (2010). TMKP1 is a novel wheat stress responsive MAP kinase phosphatase localized in the nucleus. *Plant Mol. Biol.* 73, 325–338. doi: 10.1007/s11103-010-9617-4
- Zhang, S., and Klessig, D. F. (1997). Salicylic acid activates a 48-kD MAP kinase in tobacco. *Plant Cell* 9, 809–824. doi: 10.1105/tpc.9.5.809
- Zhang, S., and Klessig, D. F. (2001). MAPK cascades in plant defense signaling. *Trends Plant Sci.* 6, 520–527. doi: 10.1016/S1360-1385(01)02103-3

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2015 Çakır and Kılıçkaya. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.