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Dissection of drought response of
modern and underutilized wheat
varieties according to Passioura’s
yield-water framework
Alireza Nakhforoosh, Heinrich Grausgruber, Hans-Peter Kaul and Gernot Bodner *

Department of Crop Sciences, University of Natural Resources and Life Sciences, Vienna, Austria

Trait-based breeding is essential to improve wheat yield, particularly when stress

adaptation is targeted. A set of modern and underutilized wheat genotypes was

examined in a 2-year field experiment with distinct seasonal water supply. Yield formation

and drought response strategies were analyzed in relation to components of Passioura’s

yield-water framework based on phenological, morphological, physiological, and root

characteristics. Limited water supply resulted in 60% yield loss and substantially lower

water use (37%), water use efficiency (32.6%), and harvest index (14%). Phenology and

root length density were key determinants of water use. Late flowering underutilized

wheat species with large root system and swift ground coverage showed greatest

water use. Leaf chlorophyll concentration and stomata conductance were higher in

modern cultivars, supporting their high biomass growth and superior water use efficiency.

While, lower chlorophyll concentration and stomata conductance of underutilized wheats

indicated a water saving strategy with an intrinsic limitation of potential growth. Harvest

index was strongly dependent on phenology and yield components. Optimized flowering

time, reduced tillering, and strong grain sink of modern cultivars explained higher

harvest index compared to underutilized wheats. Cluster analysis revealed the consistent

differentiation of underutilized and modern wheats based on traits underlying Passioura’s

yield-water framework. We identified physiological and root traits within modern cultivars

to be targeted for trait-based crop improvement under water-limited conditions. High

capacity of water use in underutilized genetic resources is related to yield-limiting

phenological and morphological traits, constraining their potential role for better drought

resistance. Still some genetic resources provide adaptive features for stress resistance

compatible with high yield as revealed by high harvest index under drought of Khorasan

wheat.
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Introduction

Grain yield is the product of numerous developmental processes during crop growth.
It is a trait governed by multiple genes and highly influenced by environmental
conditions. Yield improvement in water-limited environments is complex and depends
strongly on the drought regime, i.e., drought duration, intensity, and time of occurrence
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(van Ginkel et al., 1998; Blum, 2011). This complexity becomes
evident when attributes contributing to yield loss mitigation in a
given environment are not equally useful in other water-limited
environments (Richards, 2006). Despite these difficulties, wheat
yield was remarkably increased over the second half of the 20th
century in all wheat growing environments (Calderini and Slafer,
1998; Fischer et al., 2014) as a result of genetic improvement,
enhanced input of production factors, particularly water and
nitrogen (Sinclair and Rufty, 2012), and a synergy between them
(Richards et al., 2014). However, in the last decades, rates of yield
improvement in wheat have declined to less than what would be
required to meet projected demands for 2050 (Hall and Richards,
2013). Particularly in dry regions, yield increase was below
breeding progress registered for high yielding environments
(Trethowan et al., 2002; Graybosch and Peterson, 2010).

Hitherto, only limited yield gains were realized using
physiological traits for selection in drought prone environments
(Richards, 2006; Reynolds et al., 2009). This is probably due to
incomplete understanding of the physiological and genetic basis
of drought resistance (Salekdeh et al., 2009) as well as insufficient
consideration of drought environments when defining target
traits for stress resistance (Rebetzke et al., 2013a). Also the
upscaling of relevant drought defense mechanisms from the
cellular level (e.g., dehydrins, Hassan et al., 2015; aquaporins,
Maurel and Chrispeels, 2001) to the whole plant and stand
level is challenging when searching for key traits in crop
improvement.

The conceptual framework of Passioura (1977, 2006)
facilitates the dissection of drought-adaptive mechanisms
for trait-based breeding under drought-prone environments
(Richards, 2006; Salekdeh et al., 2009). The framework relates
yield under water limited conditions to (i) crop water use (WU),
(ii) water use efficiency (WUE), and (iii) harvest index (HI). In
the past, wheat grain yield improvement has largely been driven
by improvements in HI rather than biomass (BM). Thus, HI is
already close to its theoretical limit (Perry and D’Antuono, 1989;
Shearman et al., 2005; Sadras and Lawson, 2011).

An option for yield improvement under drought stress is
maximizing transpiration, i.e., better WU (Blum, 2009). This
necessitates genotypes showing drought avoidance via uptake
optimization, termed “water spenders” by Levitt (1980). In that
respect, enhanced plant root systems are considered to be a
promising approach (Wasson et al., 2012).

WUE as target trait was critically discussed by Blum (2009)
because (i) WUE defined as BM/WU is not independent of
WU, and (ii) it might go along with reduced crop transpiration
and hence yield under moderate stress conditions. Passioura
(2006), however, pointed to the single leaf scale of gas exchange
as a key for WUE. Thereby, WUE can be considered (scale)
independent from the whole plant WU within the original yield-
water framework. High WUE of crops can be conferred by both
stomata conductance and photosynthetic capacity. Udayakumar
et al. (1998) suggested that only in those cases where high WUE
is achieved via photosynthetic capacity, consistent yield increase
could be expected. Condon et al. (2002) revealed that low stomata
conductance as a reason for superior WUE generally expresses a
conservative WU and leads to lower yields except for very dry

environments where crop growth strongly relies on stored soil
moisture.

Underutilized wheat species are valuable genetic resources
for secondary drought-adaptive traits (Reynolds et al., 2007;
Trethowan and Mujeeb-Kazi, 2008). Nakhforoosh et al. (2014)
revealed significant genotypic diversity for root traits as well as
for root functionality in terms of soil water depletion. Khazaei
et al. (2010) demonstrated an essential influence of ploidy level
on stomata size in Iranian wheat landraces.

Here we provide a comprehensive comparative analysis of
modern and underutilized wheat germplasm based on their
phenology, morphology, physiology, and root characteristics.
The main objective is a trait based dissection of drought stress
response strategies. We apply Passioura’s yield-water framework
and relate our investigated traits to the components of this
analytical approach. Based on the identification of distinct
strategies to cope with limited water supply, we will highlight
strengths and weaknesses of underutilized wheat germplasm for
trait-based breeding under water-limited conditions.

Materials and Methods

Plant Material
Wheat genotypes of different ploidy levels, origins, and breeding
intensities were examined in a 2-year field experiment. In
2011 seven durum wheat (Triticum turgidum subsp. durum
(Desf.) Husnot), two Khorasan wheat (T. turgidum subsp.
turanicum (Jakubz.) Á. Löve and D. Löve), two einkorn wheat
(T. monococcum L. subsp.monococcum), and one Zanduri wheat
(T. timopheevii (Zhuk.) Zhuk. subsp. timopheevii) were tested.
In 2012, six contrasting genotypes from the previous year were
examined along with two common wheat (T. aestivum L. subsp.
aestivum) and one Persian wheat (T. turgidum subsp. carthlicum
(Nevski in Kom.) Á. Löve and D. Löve) (Table 1). The six
genotypes which were tested in both years are hereinafter referred
to as “core set.”

Experimental Conditions
Field experiments were carried out under rainfed conditions in
Raasdorf (48◦14′N, 16◦35′E, 156m) in the Pannonian plains of
Austria. Long-term (1981–2010) annual precipitation and mean
temperature are 516mm and 10.3◦C, respectively. Daily weather
data were obtained from a weather station located at the trial site.
According toWRB (IUSS, 2014) soil is a chernozemwith silt loam
texture (sand 0.21 kg kg−1; silt 0.57 kg kg−1; clay 0.22 kg kg−1)
with high water holding capacity (water content at field capacity:
0.286 cm3 cm−3, water content at wilting point: 0.118 cm3 cm−3).

Hydrological site conditions were characterized using the
HYDRUS 1D software package (Šimůnek et al., 2013). The
objectives of model based environmental characterization were
(i) to define moisture conditions during the study years in
relation to longtime site hydrology, and (ii) to provide a
hydrological basis for the analysis of trait based stress response.

The field experiments were sown on 8th March 2011 and
20th March 2012 in a four replicate randomized complete block
design following a shallow seedbed preparation using a rotary
harrow. Sowing was carried out by a plot seeder (Wintersteiger,
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TABLE 1 | Characteristics and origin of the wheat germplasm used in the

experiment.

Year/Genotype Origina Donor/Breeder Ploidy/ Species

Genome

2011

SZD3146 AT Saatzucht Donau, AT 4×, BAu durum

Clovis FR GIE Eurodur, FR 4×, BAu durum

7060; 7063; 7094b MX CIMMYT, MX 4×, BAu durum

TRI5254 ? IPK Gatersleben, DE 4×, BAu Khorasan

2011–2012

QK-77 (Kamut® ) US AGES, Vienna, AT 4×, BAu Khorasan

Floradur AT Saatzucht Donau, AT 4×, BAu durum

Matt US Arizona Plant Breeders,

US

4×, BAu durum

PI428154; PI428165 TR NSGC, Aberdeen, US 2×, Am einkorn

W9 GE GSAU, Tbilisi, GE 4×, GAm Zanduri

2012

W13 GE GSAU, Tbilisi, GE 4×, BAu Persian

Tabasi IR IFA Tulln, AT 6×, BAuD common

Taifun DE KWS Lochow GmbH,

DE

6×, BAuD common

a AT, Austria; DE, Germany; FR, France; GE, Georgia; IR, Iran; MX, Mexico; TR, Turkey;

US, United States.
b Entry codes of the 40th IDSN (International durum wheat screening nursery).

Ried, Austria) with a seeding rate of 400 seeds per m2. Plot size
was 7.5m2 with 10 rows spaced 12.5 cm apart. The site has high
availability of P and K and was fertilized with 100 kg ha−1 N to
exclude nutrient limitation.

Phenotypic Measurements
Yield and Yield Components
After full ripening (BBCH 92), plants were hand harvested from
a 0.25 m2 area from the center of each plot. Total aboveground
biomass, seed yield (oven dried at 60◦C for 48 h), number of
fertile tillers, and number of seeds per ear were measured and
expressed per unit area. Thousand grain weight was determined
by weighing 400 seeds.

Sensitivity of genotypes to water limitation was characterized
by relative stress response (RSR) of traits between the two
experimental years which differed strongly in seasonal water
supply. RSR of yield and its components was calculated as:

RSR =
Traitwet − Traitdry

Traitwet

where Traitwet is the trait value under high water availability
(i.e., 2011) and Traitdry is the value under low water availability
conditions (i.e., 2012).

Water use Traits
Water use was calculated as a simplified water balance from soil
water depletion (1S̄) and cumulative rainfall. 1S̄ was defined as
the difference in soil water storage between sowing and harvest.
Soil water content (θ) was measured weekly every 10 cm down to

90 cm soil depth by a capacitance probe (Diviner 2000 R©, Sentek
Pty Ltd., Stepney, Australia). Surface runoff can be neglected at
the present experimental site. Deep drainage can’t be quantified
from soil water content measurements. From lysimeter studies
at the site, however, it is known that due to low amount of
rainfall and high soil water holding capacity, the amount of
seepage water during the growing season is negligible (Nolz
et al., 2014). The term WUET is used to indicate that water use
includes both plant transpiration as well as soil evaporation. In a
water balance approach these two components can’t be measured
separately.

Phenology was assessed using the BBCH decimal code
(Lancashire et al., 1991). Time to any developmental stage
was expressed in cumulative thermal time (CTT), measured
in degree-days (◦C d) as described by Salazar-Gutierrez et al.
(2013) and assuming a constant base temperature (Tb) of 0

◦C as
no information was available on possible Tb differences among
genotypes.

Ground cover by leaf area was measured by digital imaging
twice at early emergence and when canopy almost closed
using a Canon EOS20D (Canon Inc., Tokyo) digital camera at
1.5m height above the canopy. Digital images were analyzed
individually by SigmaScan Pro Vers. 5.0 software (SystatSoftware
Inc., Chicago) to identify green leaves and calculate the
percentage of green ground cover as described by Richardson
et al. (2001). Ground cover rate as an indicator of early vigor
was calculated as the difference in ground cover between the
two measurements divided by the CTT of the corresponding
period. Ground cover rate could be hypothesized as a water use
driver because of (i) higher early demand due to quicker leaf area
development, (ii) possibly a related higher early rooting vigor,
and (iii) higher allocation of available water to plant transpiration
than soil evaporation.

Root morphological traits were measured from soil cores and
subsequent image analysis. In this study we will only refer to
selected root data (i.e., root length density and root-to-shoot
ratio). Details on root sampling and root system characterization
are given in Nakhforoosh et al. (2014).

Water Use Efficiency Traits
Following Blum (2009), water use efficiency was dissected
into biomass and water use, i.e., water use efficiency for
biomass (WUEb) equals BM/WUET. Investigated traits related to
WUEb were photosynthetic capacity and stomata conductance.
Photosynthetic capacity was approximated by leaf chlorophyll
content measured at heading (BBCH 50) using a SPAD-502 Plus
chlorophyll meter (Konica Minolta Holdings, Inc., Tokyo). Ten
plants were randomly selected in each plot and SPAD values of
the flag and/or penultimate leaf of the main stem were recorded
at 5 points along the proximal-distal axis of the leaf. Stomatal
conductance was measured using an AP4 porometer (Delta-T
Devices Ltd., Burwell, Cambridge, UK) in parallel with SPAD
measurements at BBCH 50.

Statistical Analysis
Analyses of variance for single years and combined analyses
across years were performed using the MIXED procedure of
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SAS 9.2 software (SAS Institute, Inc., Cary, NC). Genotypes
were treated as fixed effects, block, block (year), year, and/or
genotype by year interaction as random effects. The best linear
mixed models were selected according to the corrected Akaike
information criterion (AICC).

To study direct and indirect relations of observed traits with
the components of Passioura’s framework regression analysis was
applied via the REG procedure of SAS. Procedure CLUSTER
was applied to determine similar groups of genotypes based on
yield components, components of Passioura’s framework and the
underlying phenological, morphological, and physiological traits
(Bodner et al., 2013).

Results

Rainfall Pattern and Soil Water Availability
Hydrological conditions at the experimental site are displayed
in Figure S1 (Supplementary Material). Longtime rainfall during
the vegetation period of spring cereals is 237mm, while plant
available water (PAW) in the soil from stored winter moisture
at time of sowing is 170mm, i.e., 42% of total seasonal crop
water supply (Figure S1A). Monthly in-season rainfall increases
toward summer, resulting in a favorable balance between climatic
demand and supply. Therefore, the site can be described as
predominantly supply driven.

The two experimental years showed distinct hydrological
conditions (Figures 1A,B). Although annual mean temperature
and precipitation were similar (2011: 10.5◦C, 395mm; 2012:
10.9◦C, 402mm), in-season rainfall distribution and stored soil
moisture at sowing differed strongly. During May and June, i.e.,
time of stem elongation, heading, anthesis, and early grain filling,
rainfall was significantly lower in 2012 (77mm) than in 2011
(113mm). Differences in previous autumn precipitations (2010:
308mm; 2011: 49mm) resulted in substantially lower simulated
PAW on 1st March in 2012 compared to 2011.

Based on the simulated long-term site hydrology and the
measured soil moisture pattern during the experiment, we
determined the number of stress days using a threshold of ≤50%
PAW and calculated the probability of occurrence of the two
experimental years compared to the last 25 year average (1988–
2013) (Figure 1C). Seasonal water availability revealed that in
2011 hydrological conditions in May were among the wetter half
of years, while June water availability was similar to 65% of years.
Contrary, 2012 was a particularly dry year with a low probability
of occurrence in 25 years. Due to low water storage over winter
and reduced rainfall in spring, prolonged dry periods with water
contents below 50% PAW were observed in May and June. The
probability of occurrence of dry conditions of similar intensity as
in 2012 is 8% for May and 32% for June, respectively.

Thus, site hydrology revealed that only limited water stress
occurred in June 2011, whereas 2012 was a particularly dry
year with high stress incidence. Consequently, changes in crop
performance between the 2 years can be interpreted in terms of
drought response.

Yield and Yield Components
Significant (P < 0.001) genotypic variation was observed for
grain yield and all other yield components. Combined ANOVA
of the core set revealed also significant variation for year and
genotype× year interaction (Supplementary Table S1).

Grain yield varied from 209.2 (TRI5254) to 541.3 g m−2

(7060) and 37.9 (PI428154) to 237.7 g m−2 (“Floradur”)
in 2011 and 2012, respectively (Table 2). Mean drought-
induced grain yield loss in 2012 was 60.6% for the core
set. Adapted durum “Floradur” showed the highest grain
yield among core set genotypes followed by early flowering
“Matt” and Khorasan wheat “QK-77” (Kamut R©), whereas
T. monococcum and T. timopheevi accessions were lowest
yielding. Yield reduction in 2012 was lowest for Khorasan
(20.5%), intermediate for “Matt” and “Floradur” (51.2 and 54.7%,

FIGURE 1 | (A,B) Daily rainfall and potential evapotranspiration (ET0) at the

experimental site over 2011–2012 (Modified after Nakhforoosh et al., 2014),

and (C) cumulative frequency of occurrence of days with <50% plant

available water (PAW) over 1m soil profile depth during growing season.

Calculation based on annual vs. longtime soil water content simulation.

Triangles indicate the number of days observed in 2011 and 2012 with

<50% PAW. Dotted line exemplifies interpretation for June 2011: 6 stress

days with <50% PAW means that 56% of years have ≥6 stress days, while

44% of years have <6 stress days, that means June 2011 is within the

wetter half of years for this site.
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TABLE 2 | Genotypic mean values of grain yield and yield components in

2011 and 2012.

Year/ YLDa BM HI TILf SPE TGW PH

Genotype (g m−2) (g m−2) (n m−2) (n) (g) (cm)

2011

7060 541.3 1171.2 0.46 354.3 36.5 41.8 66.3

7063 472.5 1087.5 0.43 324.0 29.2 50.8 73.8

7094 404.1 939.4 0.43 310.1 29.8 44.8 68.8

Clovis 413.9 941.4 0.43 296.7 25.9 54.0 73.8

Floradur 525.0 1165.4 0.45 383.3 28.1 48.7 72.5

Matt 365.9 810.6 0.45 286.7 26.3 48.4 60.0

SZD3146 395.9 908.6 0.44 302.1 25.6 51.9 72.5

Kamut 254.2 856.3 0.29 227.6 17.1 67.2 105.0

TRI5254 209.2 615.1 0.34 248.6 16.8 52.5 107.5

W9 256.4 1001.9 0.26 530.8 17.5 27.8 70.0

PI428154 240.5 909.6 0.26 759.6 12.7 25.2 67.5

PI428165 247.5 926.0 0.27 994.8 11.4 21.8 71.3

s.e.d.b 55.8 111.7 0.016 56.2 2.8 2.5 2.2

d.f. 33 33 36 33 33 33 33

2012

Tabasi 141.3 348.9 0.40 276.9 13.2 38.2 70.3

Taifun 126.4 387.6 0.33 325.0 11.2 35.3 61.0

Floradur 237.7 504.4 0.47 362.5 18.1 36.1 63.3

Matt 178.9 402.4 0.44 295.2 14.5 42.5 50.0

Kamut 202.1 481.7 0.42 261.6 15.7 49.4 79.8

W13 152.0 373.2 0.41 345.2 17.5 25.2 78.8

W9 37.9 368.2 0.11 355.8 4.2 25.7 74.8

PI428154 37.9 326.7 0.12 447.1 4.2 20.7 73.3

PI428165 49.3 328.8 0.15 527.9 4.7 20.1 69.0

s.e.d. 21.2 49.4 0.022 37.8 1.5 1.4 3.8

d.f. 27 27 27 27 27 24 24

a YLD, grain yield; BM, shoot biomass; HI, harvest index; TILf , number of fertile tillers;

SPE, seeds per ear; TGW, thousand grain weight; PH, Plant height.
bs.e.d., standard error of differences; d.f., degrees of freedom.

respectively) and highest for the einkorn and Zanduri wheat
(80.1–85.2%).

Einkorn and Zanduri wheat showed a significantly higher
number of fertile tillers, whereas Khorasan wheat had the
lowest tillering capacity. Number of seeds per ear varied
from 11.4 (PI428165) to 36.5 (7060) and 4.2 (PI428154) to
18.1 (“Floradur”) in 2011 and 2012, respectively. Elite durum
germplasm had a significantly higher number of seeds per
ear compared to underutilized wheats, showing that seed
number is a key component for high yielding cultivars.
T. turanicum and T. monococcum showed the largest and
smallest seed weight, respectively. Particularly for Khorasan
wheat, seed weight was the component ensuring a relatively high
yield.

When analyzing the sensitivity of the core set genotypes
for yield components in response to low water availability, it
is evident that seed number per ear and tillering were highly
sensitive, especially for the neglected species einkorn and Zanduri
wheat with a RSR of 68.5 and 41.8%, respectively, while they

had a relatively stable seed weight (11%). Durum varieties had
high sensitivity for seeds per ear (40%) followed by seed weight
(19.1%). Khorasan wheat responded to drought stress mainly
with seed weight loss (26.5%) along with plant height reduction
(Table 2).

Components of Passioura’s Yield-water
Framework and Related Traits
Figure 2 shows the components of the yield-water framework
according to Passioura (1977) and relations to traits that
we hypothesized to constitute the crops’ phenological,
morphological and physiological drivers of WU, WUE, and
HI. Beside direct relations of traits with Passioura’s components,
we also provide some secondary inter-trait relations suggesting
hierarchical dependences among traits.

Water use varied significantly between genotypes in each year
and ranged from 223.2 (7063) to 277.8mm (W9) and from 145.9
(“Matt”) to 177mm (PI428165) in 2011 and 2012, respectively
(Table 3).

For all phenological and physiological traits (Table 3) a
significant (P < 0.05) difference between genotypes was
observed. Water shortage in 2012 resulted in a 37% reduction
in average WUET among core set genotypes (i.e., from 256.9 in
2011 to 161.9mm in 2012). Einkorn wheat PI428165 (226.3mm)
and durum cv. “Matt” (185.1mm) showed the highest and
lowest WUET over the 2 years. With respect to flowering the
genotypes can be classified into three groups (Figure 3, Table 3):
(i) early flowering durum cv. “Matt,” (ii) intermediate flowering
group incl. “Floradur” and other tetraploid and hexaploid wheat
genotypes, and (iii) very late flowering underutilized wheats
T. monococcum and T. timopheevi.

In the core set, flowering hastened in 2012 (2011: 91.9 d;
1173.5◦Cd; 2012: 81.7 d, 1104.8◦Cd). This was more evident
with respect to early growth stages, i.e., from emergence to
stem elongation. Late flowering wheat relatives inevitably showed
shorter grain filling periods than durum wheat over 2 years.

The relation of time to flowering withWUET was significant in
2011, when wetter soil profile alongside with in-season rainfalls
provided appropriate conditions for longer root water uptake of
late flowering genotypes. However, in 2012, low water availability
in May and June obviously restricted prolonged water extraction
by late flowering varieties and hence reduced variation in WUET.

Early vigor, as determined by ground cover rate, was
significantly higher for the core set in 2012 than 2011 (0.171
vs. 0.156% ◦C d−1, respectively) with a significant genotype by
year interaction (Table S1). Despite an initial lag phase, which
was especially evident for T. timopheeviW9, underutilized wheat
relatives closed their canopy more swiftly than durum and
Khorasan wheat, particularly in 2012.

In both years a strong relationship between root length density
and WUET was observed. This indicates that roots are key
determinant for the WUET component in Passioura’s framework.
Differences in root length density and other root parameters are
presented in detail in Nakhforoosh et al. (2014).

Water use efficiency (WUEb) showed significant differences
among the germplasm in both years. “Floradur” along with
durum lines 7060 and 7063 had highest WUEb in 2011.
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FIGURE 2 | Phenological, morphological, physiological, and root

traits underlying the components of Passioura’s yield-water

framework. Figures on gray background indicate secondary inter-trait

associations. (Closed triangles: 2011; open diamonds: 2012; regression lines

indicate significant relations). Units are: Ground cover rate % Cd−1, Root

length density cm cm−3, Time to flowering ◦Cd, Water useET mm, Stomata

conductance mmol m−2 s−1, Biomass g m−2, SPAD dimensionless,

Harvest index g g−1, Plant height cm, Root:Shoot ratio g g−1.

“Floradur” remained superior in WUEb also in 2012. Genotypes
with lowest WUEb were Khorasan wheat TRI5254 in 2011
and einkorn wheat along with Iranian wheat “Tabasi” in 2012.
Average WUEb of the core set dropped from 3.7 to 2.5 g m−2

mm−1. “QK-77” was the most stable genotype of the core set in
sustaining WUEb (15.4%) while “Floradur” (31.5%) and “Matt”
(25.6%) had an intermediate response. Underutilized wheats
were most susceptible to drought stress (41.4%).

Stomatal conductance declined substantially for the core set in
response to water scarcity in 2012 (i.e., from 457.0 to 166.6mmol
m−2 s−1). In 2011 Khorasan wheat (TRI5254, Kamut R©) along
with durum cv. “Matt” showed highest stomatal conductance
while einkorn and Zanduri wheat were characterized by the
lowest stomatal conductance. In 2012, “Matt” and T. carthlicum
W13 had highest stomatal conductance whereas, like in 2011, the
underutilized species T. monococcum and T. timopheevii showed
the lowest stomatal conductance.

Chlorophyll concentration, as an indicator for photosynthetic
capacity measured by SPAD, showed a significant decrease for the
core set in 2012 which was more evident for underutilized wheat
species. In 2011, durum wheats SZD3146 and “Clovis” were the
genotypes with highest chlorophyll content followed by “QK-
77” and “Floradur,” while in 2012 “Floradur” was the superior
genotype. Accessions of einkorn and Zanduri wheat constantly
had the lowest SPAD values in both years.

Both WUEb components (biomass, water use) were
influenced by the measured physiological leaf traits. Water use
showed a negative association with both stomatal conductance
and chlorophyll content, being significant in 2011 only. Water

use of late-maturing einkorn and Zanduri wheat was higher,
in spite of lower stomatal conductance. Biomass showed a
significant relation with leaf chlorophyll content in the dry year
2012, suggesting this measurement as an appropriate indicator
for WUEb under limited water condition. Similar to stomatal
conductance, leaf chlorophyll content was positively related to
earliness in both years.

In 2011 the highest harvest index (HI) values were observed
for durum wheat (mean 0.42), followed by Khorasan wheat
(0.32) and the underutilized wheat species T. monococcum and
T. timopheevii (0.26). In 2012 HI of the latter underutilized
wheat species decreased significantly (0.13) in response to
drought, while “Floradur” and “Matt” almost retained their HI.
Interestingly, Khorasan wheat “QK-77” showed even an increase
in HI. With respect to plant height T. turanicum was significantly
taller than the other wheat species. Significant genotypic variation
for root-to-shoot was observed only in the dry year 2012
(Nakhforoosh et al., 2014). HI was negatively associated with
root-to-shoot ratio in this year.

Trait Based Grouping of Genotypes
Association between genotypes (and years) based on (i) yield
components, (ii) Passioura components (WUET, WUEb, HI), (iii)
phenological, morphological, and physiological traits related to
Passioura’s components, and (iv) all traits was revealed by cluster
analysis (Figure 4). Including all genotypes reveals the strength
of group linkage driven by genotypic similarity (constitutive)
and environmental influence (adaptive), respectively. Using
different clustering variables shows which group of traits
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TABLE 3 | Genotypic mean values of phenological and physiological traits

in 2011 and 2012.

Year/ WUETa ANTH1 ANTH2 GCR SPAD SC WUEb

Genotype (mm) (◦Cd) (d) (% ◦Cd−1) (mmol (g m−2

m−2 s−1) mm−1)

2011

7060 247.8 1045.3 85.5 0.148 48.2 420.8 4.78

7063 223.2 1065.0 86.5 0.159 50.4 547.8 4.92

7094 258.0 1096.6 88.0 0.165 50.0 418.2 3.76

Clovis 234.7 1035.6 85.0 0.154 52.2 522.9 4.17

Floradur 242.9 1096.6 88.0 0.154 51.0 457.5 4.86

Matt 224.3 972.3 81.5 0.158 48.0 569.3 3.67

SZD3146 238.2 1106.5 88.5 0.152 53.4 544.7 3.84

Kamut 248.6 1106.5 88.5 0.151 51.5 625.1 3.51

TRI5254 260.1 1116.5 89.0 0.156 49.2 603.7 2.39

W9 277.8 1331.4 100.0 0.156 41.2 287.0 3.63

PI428154 272.0 1269.4 97.0 0.152 38.7 362.4 3.39

PI428165 275.7 1264.6 96.8 0.164 44.9 440.9 3.41

s.e.d.b 20.7 7.9 0.4 0.004 1.8 60.1 0.65

d.f. 33 36 36 36 36 36 33

2012

Tabasi 173.3 1007.5 76.0 0.177 45.0 219.5 2.03

Taifun 161.4 1014.7 76.5 0.167 47.8 190.2 2.48

Floradur 156.3 1018.4 76.8 0.165 54.0 184.5 3.33

Matt 145.9 983.5 74.8 0.156 48.9 275.2 2.73

Kamut 163.5 1037.4 78.0 0.163 48.6 185.2 2.97

W13 162.6 1056.3 79.0 0.168 44.2 233.4 2.33

W9 167.2 1219.4 88.0 0.180 38.2 86.6 2.21

PI428154 161.7 1208.3 87.5 0.182 34.8 128.0 2.03

PI428165 177.0 1161.7 85.0 0.180 37.0 140.5 1.87

s.e.d. 12.6 13.2 0.7 0.005 1.9 29.3 0.40

d.f. 24 27 27 27 27 24 24

a WUET , water use; ANTH1, anthesis (BBCH 65) based on cumulative thermal time (CTT);

ANTH2, anthesis based on calendar time (days after flowering); GCR, ground cover rate

(between emergence and almost closed canopy); SPAD, leaf chlorophyll content (SPAD

values); SC, stomatal conductance; WUEb, Water use efficiency for biomass;
b s.e.d., standard error of differences; d.f., degrees of freedom.

mainly expresses constitutive or adaptive linkage between
genotypes.

The distinction between underutilized einkorn and Zanduri
wheat and the other genotypes appeared at the highest hierarchy
with the exception of Passioura components. In this case the
first grouping was according to years, which is explained by the
strong water dependence of these traits. At a lower hierarchical
level four clusters can be distinguished, subdividing the whole
sample according to years and/or wheat species. For clustering
based on yield components a differentiation at a lower level
is even obvious between durum and Khorasan wheat. With
respect to Passioura components only four main clusters can be
distinguished. Interestingly, Khorasan wheat “QK-77” changes
the group between years: in 2011 (high water availability) “QK-
77” is grouped together with the other underutilized wheat
species T. monococcum and T. timopheevii, while in 2012
(low water availability) it joins the group of modern durum

FIGURE 3 | Genotypic variation in phenological growth development of

core set genotypes in 2011 and 2012. In each year the cumulative thermal

time (CTT) was calculated from the day of sowing onwards.

cultivars. The most meaningful grouping at high and low
distances is provided when considering all traits. Here, in
2011 T. durum and T. turanicum are grouped in different
clusters. Among the 2012 clusters, hexaploid wheats are next
to each other, while einkorn and Zanduri wheat form distinct
groups.

Discussion

Drought Environment Characterization
Understanding crop response to drought and relevant
traits conferring better stress resistance requires a precise
environmental characterization (Blum, 2011). Simulation
models have been shown to be an appropriate tool for a proper
description of the target environment for crop management
and breeding activities (Chauhan et al., 2013). Continental
climates as found in central-eastern Europe are distinguished
by a higher proportion of in-season rainfall compared to stored
soil moisture as source of crop water supply. Thereby, they differ
essentially from storage driven Mediterranean winter rainfall
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FIGURE 4 | Hierarchical clustering of wheat genotypes based on yield components, components of Passioura’s yield-water framework, phenological,

morphological, physiological, and root traits related to components of Passioura’s yield-water framework, and all traits.

climates or subtropical sites where dry season crops grow on
residual soil moisture. Still stored water can be essential to buffer
temporary dry periods affecting crop yield particularly when
their occurrence coincides with sensitive growth stages.

The substantial change of crop performance due to low stored
soil moisture together with low precipitation around flowering
in our experiment clearly reveals that average climate variables
(e.g., annual or seasonal rainfall sum) are insufficient to provide
an appropriate picture on crop water stress.

According to Blum (2009) an efficient use of available soil
water should be targeted as selection criteria. In this regard site
hydrology determines which plant traits support most effective
water uptake. Generally rooting depth is considered the key trait
for superior plant water supply (e.g., Wasson et al., 2012; Lynch,
2013). However, Nakhforoosh et al. (2014) demonstrated that
dense root systems in the upper soil layers rather than deep
rooting provide highest plant water uptake in an environment
with high in-season rainfall and high storage soils. This is

particularly valid for dry years with a lack of subsoil moisture
from off-seasonwinter rainfalls, when investing into deep rooting
is of limited value to sustain high transpiration. Also Tron
et al. (2015) in a modeling study could show that in strongly
supply driven environments, rooting density can become more
important for plant water acquisition compared to rooting depth.
These findings are in agreement with results from an ecological
study by Sperry and Hacke (2002) in a desert environment with
soils of different storage capacity revealing that exploitative root
traits (e.g., rooting density, root xylem cavitation resistance)
allowed better adaptation than exploitative traits (e.g., deep
rooting) when soil water availability was higher in the top soil
compared to deep soil layers. There appear two keys to a water
efficient root system: (i) spatio-temporal synchronization of root
distribution with the distribution of available soil water (Schenk
and Jackson, 2002) and (ii) high root hydraulic functionality to
efficiently exploit available water in accordance with crop needs
(Vadez, 2014).
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Plasticity of Yield Components
Trait based strategies for better drought resistance in cereal
crops require downscaling yield reduction under stress to the
sensitivity of single yield components. In our study for example,
“QK-77” (Kamut R©) stabilized its grain yield at the cost of shoot
biomass via a significant decrease in plant height, resulting in an
increased HI, suggesting a potential for partitioning of biomass
to seeds as an important stress adaptive trait frequently found
for cereals (Blum, 1998; Shearman et al., 2005; Dreccer et al.,
2009). Reduction of competition from alternative sinks (stem
and infertile tillers) is hypothesized as an opportunity to increase
the partitioning to spikes and further increase HI beyond its
current limit (Foulkes et al., 2011). Although “QK-77” can be
considered a water stress tolerant genotype, it does not show
high yield potential under favorable water condition. Contrary,
T. monococcum and T. timopheevi significantly reduced the
number of fertile tillers, their main yield component, in response
to suboptimum water availability. Number of seeds per ear
and seed weight, which are both related to grain sink strength
(Miralles and Slafer, 2007; Acreche and Slafer, 2009), are very
low in these species, resulting in significantly lower HI despite
reasonable biomass production. Restricting tillering capacity is
considered beneficial where water limitation requires a more
conservative uptake strategy over the growing season to provide
the crop with enough water during grain filling (Richards
et al., 2010). The main yield component of durum varieties
was number of seeds per ear followed by seed weight, whereas
number of fertile tillers showed no plasticity. Slafer et al. (2014)
recommended a balanced dependence of grain yield on single
components to ensure both high yield potential and sufficient
plasticity in response to water limitation.

Shoot and Root Traits Underlying Passioura’s
Yield-water Framework
Clustering genotypes based on Passioura’s components
revealed a clear distinction between tetraploid T. turgidum
and underutilized T. monococcum and T. timopheevi, which
was also demonstrated by their mean performances (Table S2).
On the other hand, Khorasan wheat, a turgidum subspecies
genetically similar to durum wheat but with lower breeding
intensity, was more variable between and within clusters
(Figure 4).

Water use Traits
Phenology was a major distinction among genotypes and a
key driver of other morphological and physiological traits.
The prolonged vegetative development of T. monococcum
and T. timopheevi is obviously genetically determined. But
also breeding history and origin can result in significant
different phenology, e.g., “Matt” vs. “Floradur” (Figure 3). Beside
the constitutive differences among genotypes, there is also
phenological plasticity in response to water availability. In 2012
the transition from vegetative into reproductive phase was
obviously stimulated by water stress. Plasticity of early growth
stages until stem elongation is well-known in wheat while later
growth stages are generally more stable (e.g., McMaster and
Wilhelm, 2003).

Flowering is themost sensitive stage to water shortage (Farooq
et al., 2012). Progress has been achieved by breeding for earliness
allowing crops to escape terminal drought stress and access
enough soil water during flowering and grain filling (Salekdeh
et al., 2009). However, vigorous growth and sufficient biomass
prior to flowering is also critical for yield potential. In the present
in-season rainfall environment yield limitation due to earliness
was clearly demonstrated by low grain yields of early maturing
cv. “Matt” compared to other advanced varieties and/or breeding
lines. Grain yield of early maturing genotypes is largely limited by
the potential number of grains per unit area which is determined
between stem elongation and post-anthesis (Slafer et al., 2014).
Among other factors, an overall lower water use seems to limit
yield potential of very early cultivars, which can be attributed to
a reduced rooting intensity (Mitchell et al., 1996).

The dominant morphological difference within the
investigated germplasm was the number of fertile tillers.
T. monococcum and T. timopheevii exhibited a high number,
T. turgidum subsp. durum an intermediate number and
T. turgidum subsp. turanicum a low number. In 2012 water
stress resulted in a reduced number of tillers. Highest plasticity
with respect to number of tillers was found for genotypes of
the “high tillering” group. In regard to water use, tillering is
relevant due to the secondary nodal root system developing
from tillers (Zobel and Waisel, 2010). Thus, a shortened period
between emergence and stem elongation with limited tillering
can also limit the development of nodal roots, resulting in lower
water use. The consistent association between water use and
root length density confirms this relationship (Figure 2). On
the other hand, the high tiller number of underutilized wheats
is evidently limiting yield as revealed by its negative correlation
to harvest index. Therefore, optimization of tiller, related to
nodal rooting, for high water uptake is constraint within tight
limits. Other root system traits such as increased fine rooting
in response to drought might provide alternatives to improve
water use (Nakhforoosh et al., 2014). Such an adaptive response
is more compatible to high yields than alteration of assimilate
allocation between roots and shoots.

An interesting trait promoting water use under conditions
of limited availability was early vigor. Rapid ground cover can
reduce evaporation losses by shading the soil (López-Castañeda
and Richards, 1994), increase total photosynthesis by extending
the duration of light capture (Parry et al., 2011) and enhance weed
competitiveness of the crop (Bertholdsson, 2005). Our results
showed a significant association of early vigor with water use
only in the dry year 2012, suggesting secondary associations of
this trait with phenology and root length density (Figure 2).
With respect to inter-trait relations, however, results should be
treated with caution if the data are concentrated at the two ends
of the regression line. The associations might be a consequence
of constitutive differences between underutilized wheat species
and modern varieties rather than expressing causal inter-trait
relations.

Water Use Efficiency Traits
Crop growth depends on acquiring CO2 through open stomata,
which in turn results in water loss through transpiration.
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Although upscaling from stomata gas exchange (intrinsic
WUE) to whole plant WUE is complex (Hsiao et al., 2007),
suitability of stomatal conductance as selection criterion has
been demonstrated under both drought stress and well watered
conditions (Rebetzke et al., 2013b). In both years the early
maturing durum “Matt” was among the genotypes with
highest stomatal conductance, suggesting an association between
earliness and/or crop growth rate with stomatal conductance.
Araus et al. (2002) pointed to higher stomatal opening as
a consequence of crop earliness and lower leaf area index
(LAI). Also in our study stomatal conductance was significantly
and negatively correlated with LAI in the dry year 2012
(r = −0.75, p < 0.05; data not shown). Contrary, late
maturing T. monococcum and T. timopheevii had the lowest
values of stomatal conductance. An influence of ploidy level
on stomata characteristics with diploid species, having the
smallest stomata, was demonstrated by Khazaei et al. (2010). Low
stomata conductance of einkorn and Zanduri wheat suggested
a conservative gas exchange strategy. Their comparatively high
water use is, therefore, explained rather by prolonged duration
of transpiration than a high rate of water extraction due to
conductive stomata.

Stomatal conductance and photosynthetic capacity, traits
underlying intrinsic WUE (Condon et al., 2002), seem to
be strongly related to constitutive differences resulting from
different breeding intensities. Similar to other studies, we found
a significant association between stomata conductance and
photosynthetic capacity (2011: r = 0.73, p < 0.01; 2012: r =

0.65, p = 0.058). This indicates a tight functional link between

stomata opening ensuring high CO2 inflow and photosynthetic
capacity providing efficient fixation of available carbon in
modern high yielding varieties. It also confirms the challenge
of improving intrinsic WUE by lower stomata conductance
without compromising crop productivity (Blum, 2005; Lawson
et al., 2012). Fischer et al. (1998) demonstrated the association
of leaf photosynthetic rate and stomatal conductance with yield
progress in CIMMYT wheat genotypes. Also Reynolds et al.
(1994) reported a significant association between photosynthetic
rate and stomatal conductance with grain yield. Combining
stomata conductance and leaf chlorophyll content measurements
could allow the identification of germplasm combining improved
WUE and productivity under both well watered or water limited
conditions (Rebetzke et al., 2013b).

Harvest Index Traits
Genetic variation in harvest index within our germplasm
was largely determined by distinct differences in yield
components and phenology (Figure 2). Unlike modern cultivars,
underutilized wheat species were more dependent on alteration
of assimilate allocation between root and shoot in response to
drought (Nakhforoosh et al., 2014). The observed association
between harvest index and root to shoot in the second year
most probably results from an intrinsic low harvest index of the
underutilized wheat species resulting from their high allocation
to roots under limited water availability.

Dissecting the investigated germplasm according to
Passioura’s yield-water framework resulted in two contrasting
patterns (Figure 5). Underutilized wheat species can be

FIGURE 5 | Distinctive behavior of wheat genetic resources and/or underutilized wheat species vs. modern varieties within Passioura’s yield-water

framework. (Root trait differentiation is based on Nakhforoosh et al., 2014).
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considered as maximization types in terms of water use. Their
phenology and morphology allows an intensive water extraction
as a basis for pronounced vegetative growth. This seems to be
a safety strategy based on a high number of tillers. Although
the vegetative apparatus may suffer a high reduction of tillers in
case of later water limitation, still the crop will avoid complete
failure. Contrary, modern varieties are optimized with respect
to effective water use which is well balanced between vegetative
and generative demand. This strategy is most appropriate to
sustainably supply less but still highly demanding generative
sinks. In case of high water stress, this strategy may be risky and
result in total crop failure if not sufficient water for their main
yield components is available.

In terms of WUE underutilized wheat species can be defined
as conductance types and modern varieties as capacitance types.
The high conductance, however, does not refer to the stomata
scale but to the whole plant scale. The intense vegetative
apparatus with high leaf area results in a high transpiring surface.
This goes along with a low stomatal conductance and low
photosynthetic capacity, both limiting assimilation potential. In
modern varieties high stomatal conductance is linked to high
photosynthetic capacity which ensures an efficient supply of
assimilates. Water losses are controlled by an optimized total
leaf area, ensuring sufficient light interception while avoiding
unnecessarily high transpiring surface.

Differences in harvest index between old andmodern varieties
are well documented. We characterized the distinctive pattern as
source types for underutilized wheat with an extensive vegetative
apparatus and as sink type for modern varieties where available
resources are efficiently allocated to a strong generative sink.

Conclusion

Our study demonstrated that underutilized wheat species with
low or no breeding intensity show serious limitations as source

of novel traits of potential interest for wheat improvement. Their
main strength is an efficient root water extraction linked to
high assimilate translocation to roots, high tillering capacity,
and long vegetative growth. In modern high yielding cultivars
physiological traits such as stomata conductance combined with
leaf chlorophyll concentration are responsible for their superior
performance in well watered and stress conditions. The high
yield stability of T. turanicum provides evidence that, despite
limited yield potential, also some underutilized genetic material
can be a source of interesting adaptive processes for future trait
based breeding with respect to drought tolerance. Passioura’s
yield-water framework provides an appropriate conceptual
model to guide such trait based analysis of breeding material.
Our overall results suggest that crop improvement in water
limited environments will likely profit more from making
use of unexploited secondary traits in modern varieties than
relying on wide crosses. Khorasan wheat, however, demonstrated
that landraces or landrace selections of wheat subspecies of
the same ploidy level may reveal promising drought stress
response strategies that are currently not present in modern
varieties.
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