
ORIGINAL RESEARCH
published: 13 August 2015

doi: 10.3389/fpls.2015.00590

Edited by:
Raúl Alvarez-Venegas,

Centro de Investigación y de Estudios
Avanzados del Instituto Politécnico

Nacional, Mexico

Reviewed by:
Serena Varotto,

University of Padova, Italy
Fumihiko Sato,

Kyoto University, Japan

*Correspondence:
Carlos M. Rodríguez López,

Plant Research Centre, School
of Agriculture Food and Wine, Faculty

of Sciences, University of Adelaide,
Waite Campus, Adelaide, SA 5064,

Australia
carlos.rodriguezlopez@adelaide.edu.au

†Present address:
Shedrack R. Kitimu,

Sokoine University of Agriculture,
P.O BOX 3000, Morogoro, Tanzania

Specialty section:
This article was submitted to

Plant Biotechnology,
a section of the journal

Frontiers in Plant Science

Received: 01 May 2015
Accepted: 16 July 2015

Published: 13 August 2015

Citation:
Kitimu SR, Taylor J, March TJ,

Tairo F, Wilkinson MJ
and Rodríguez López CM (2015)

Meristem micropropagation
of cassava (Manihot esculenta)
evokes genome-wide changes

in DNA methylation.
Front. Plant Sci. 6:590.

doi: 10.3389/fpls.2015.00590

Meristem micropropagation of
cassava (Manihot esculenta) evokes
genome-wide changes in DNA
methylation
Shedrack R. Kitimu1†, Julian Taylor2, Timothy J. March3, Fred Tairo4, Mike J. Wilkinson1

and Carlos M. Rodríguez López1*

1 Plant Research Centre, School of Agriculture Food and Wine, Faculty of Sciences, University of Adelaide, Adelaide, SA,
Australia, 2 Biometry Hub, School of Agriculture Food and Wine, Faculty of Sciences, University of Adelaide, Adelaide, SA,
Australia, 3 School of Agriculture Food and Wine, Faculty of Sciences, University of Adelaide, Adelaide, SA, Australia,
4 Mikocheni Agricultural Research Institute, Dar es Salaam, Tanzania

There is great interest in the phenotypic, genetic and epigenetic changes associated
with plant in vitro culture known as somaclonal variation. In vitro propagation
systems that are based on the use of microcuttings or meristem cultures are
considered analogous to clonal cuttings and so widely viewed to be largely free from
such somaclonal effects. In this study, we surveyed for epigenetic changes during
propagation by meristem culture and by field cuttings in five cassava (Manihot esculenta)
cultivars. Principal Co-ordinate Analysis of profiles generated by methylation-sensitive
amplified polymorphism revealed clear divergence between samples taken from field-
grown cuttings and those recovered from meristem culture. There was also good
separation between the tissues of field samples but this effect was less distinct
among the meristem culture materials. Application of methylation-sensitive Genotype
by sequencing identified 105 candidate epimarks that distinguish between field cutting
and meristem culture samples. Cross referencing the sequences of these epimarks to
the draft cassava genome revealed 102 sites associated with genes whose homologs
have been implicated in a range of fundamental biological processes including cell
differentiation, development, sugar metabolism, DNA methylation, stress response,
photosynthesis, and transposon activation. We explore the relevance of these findings
for the selection of micropropagation systems for use on this and other crops.

Keywords: methylation sensitive GBS, genotyping by sequencing, micropropagation, cassava, somaclonal
variation, DNA methylation, epigenetics, methylation-sensitive amplified polymorphisms

Introduction

Epigenetic control of gene expression plays an important role in development (Meyer et al.,
2013). Indeed, normal development in complex higher organisms is dependent upon both spatial
and temporal control of gene expression (Zhang et al., 2010), much of which is facilitated
by dynamic operation of various epigenetic regulatory systems (Morgan et al., 2005). DNA
methylation, and more specifically cytosine methylation (i.e., the incorporation of a methyl group
to carbon 5 of the cytosine pyrimidine ring to form 5-methylcytosine) is present across many
eukaryotic phyla, including plants, mammals, birds, fish, and invertebrates and provides an
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important source of epigenetic control for gene expression
(Su et al., 2011). In plants, cytosine methylation can occur
in three motif contexts (CG, CHG, or CHH, where H = a
nucleotide other than G; Rodríguez López and Wilkinson,
2015). DNA methylation occurring within promoters or coding
regions typically act to repress gene transcription and can be
evoked by small interfering RNA-directed DNA Methylation
(RdDM; see Matzke et al., 2007; Verdel et al., 2009). De novo
DNA methylation directed by RdDM has been implicated
in various types of plant stress responses (e.g., Agorio and
Vera, 2007; Tricker et al., 2012, 2013) and developmental
progression (e.g., Ruiz-García et al., 2005; Kinoshita et al.,
2007).

The vegetative multiplication of elite genotypes to generate
the large numbers of plants necessary for commercial production
is an essential element for the commercial cultivation of all
clonal crops and also of many perennial seed crops. The
deployment of in vitro propagation methods rather than more
traditional propagation approaches (such as field cuttings)
can greatly increase the clonal multiplication throughput
(Robert et al., 1992; Quiroz-Figueroa et al., 2006) and so
accelerate the time to production. However, some in vitro
multiplication techniques are associated with high levels of
(usually) unwanted variability; known collectively as ‘somaclonal
variation’ (e.g., Peraza-Echeverria et al., 2001). These aberrant
regenerated plants can arise from both genetic and/or epigenetic-
mediated alterations to gene expression and have sometimes
led to significant economic losses. For example, around 5%
of commercial oil palm (Elaeis oleifera) plants regenerated
via somatic embryogenesis bore somaclonal abnormalities that
included the mantled inflorescence syndrome (Jaligot et al.,
2000). The appearance of these off-types was later associated
with changes to their global DNA methylation status (Matthes
et al., 2001) and linked to the use of specific plant hormones,
growth regulators and nutrients in the culture media (Varga
et al., 1988; Morcillo et al., 2006). The nature of the in vitro
propagation system used to produce regenerated plants can have
a profound effect on the likelihood of producing significant
quantities of somaclonal variant plants. In vitro propagation
systems that pass through an intermediate callus phase (such
as in somatic embryogenesis) and so rely on a two stage
process to generate new plants, are especially prone to evoking
genetic and epigenetic change among the regenerated plants
(Miguel and Marum, 2011). First, cells from the explant
material must de-differentiate to form unspecialized callus cells.
Second, some of these callus cells must re-differentiate in a
manner that allows for the creation of the specialized cells
needed to form tissues and organs. It appears that in some
cases at least, one or both of these processes is incomplete.
Certainly, Rodríguez López et al. (2010a) showed that the
C-methylation profiles of leaves from plants recovered from
somatic embryogenesis in cocoa (Theobroma cacao) retained
many of the features of the explant tissue (staminoids) as well
as only some of those found in the leaves of the mother
plant. This finding suggests that at least the epigenetic DNA
methylation landscape (and therefore the global gene regulation
patterns) had not been entirely wiped (de-differentiated) in the

callus cells prior to the formation of new adventitious plant
tissues.

Induced changes to DNA methylation and associated
perturbations to gene expression has been reported for
genes associated with organogenesis (De-La-Peña et al.,
2012) and other developmental processes in plants (Nic-Can
et al., 2013). In comparison, in vitro regeneration protocols
that preserve meristem anatomy and function, and which
generate new plants from the activation of previously dormant
meristems are known as micropropagation systems and
are widely viewed as being genetically analogous to field
cuttings. These systems are thought to generate daughter
ramet plants that are morphologically and genetically faithful
replicates of the original explant material (Kahn, 2012). To
date, however, little is known about the degree to which
the epigenetic profiles (and so associated cell regulatory
processes) of regenerated plants from micropropagation
represent faithful replicates of the original mother plant.
In this study we combine methylation-sensitive amplified
polymorphism (MSAP) and methylation-sensitive genotype by
sequencing (msGBS; Xia et al., 2014) to assess the epigenetic
fidelity of meristem micropropagation and to seek specific
methylation signatures associated to in vitro propagation in
cassava (M. esculenta).

Materials and Methods

Plant Material
Five varieties of cassava (M. esculenta Crantz) namely Kiroba,
Kizimbani, Kibandameno, Mfaransa, and Mzungu were
used in this study. In vitro micropropagated samples were
obtained from the tissue culture facility of the Mikocheni
Agriculture Research Institute (MARI) Dar es Salaam,
Tanzania and were propagated as described by (Konan et al.,
1997). Field samples of the same genotypes were grown at
the Sugarcane Research Institute-Kibaha (SRI-KIBAHA),
Tanzania. Samples were collected from young leaves (last
leaf emerged from bud), newly mature leaves (first fully
expanded leaf) and primary root tips from three individual
plants representing each cassava variety both from field cutting
and meristem culture samples. All samples were kept in dry
ice in the field and stored at −80◦C until required for DNA
extraction.

DNA Isolation
DNA was extracted from all samples at MARI using a
DNeasy plant mini kit (Qiagen) according to the manufacturers’
instructions. DNA concentration and quality was estimated using
a Nano-Drop 1000 Spectrophotometer (Thermo Scientific). DNA
was lyophilised prior to transport to the Plant Research Centre
in Adelaide, Australia for use in subsequent MSAP or msGBS
analyses. Upon arrival, all DNA samples were re-suspended
in nuclease free water (Sigma), and re-quantified using the
Thermo Scientific NanoDropTM 1000 Spectrophotometer. DNA
concentrations were standardized to produce working solutions
of 10 or 20 ng/ul.
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Methylation-Sensitive Amplification
Polymorphism Procedure
A modification of the MSAP technique (Reyna-Lopez et al.,
1997) was used as described by Rodríguez López et al. (2012).
In brief, genomic DNA was digested with a combination of
the methylation insensitive restriction enzyme EcoRI and one
of two isoschizomer enzymes that exhibit differential sensitivity
to DNA methylation (HpaII and MspI; Table 1). Adapters were
ligated to the digested gDNA and then used as template for the
first of two consecutive selective PCR amplifications in which
the primers were complementary to the adaptors but possessed
unique 3′ overhangs (Table 1). HpaII/MspI selective primers
were end labeled using a 6-FAM reporter molecule for fragment
detection using capillary electrophoresis. A total of six primer
combinations (Table 1) were tested in a pilot study using eight
randomly selected DNA samples.

Sample Fractionation by Capillary
Electrophoresis
Single base resolution separation of the MSAP products was
achieved by capillary electrophoresis on an ABI PRISM 3130
(Applied Biosystems, Foster City, CA, USA) housed at the
Australian Genome Research Facility Ltd, Adelaide South
Australia. Sample fractionation was performed as follows: 2 μl
of the labeled MSAP products were combined with 15 μl of
HiDi formamide (Applied Biosystems, Foster City, CA, USA) and
mixed with 0.5 μl of GeneScanTM 500 ROXTM Size Standard
(Applied Biosystems, Foster City, CA). Samples were heat-
denatured at 95◦C for 5 min and snap-cooled on ice for 5 min.
Samples were fractionated at 15 kV for 6 s and at 15 kV for 33min
at 66◦C.

Methylation Sensitive Genotyping by
Sequencing
We performed the methylation-sensitive modification of the
genotype by sequencing (GBS) technique (Poland et al., 2012) as
described by Xia et al. (2014). In brief, a two-enzyme approach
was used to generate restriction products. In this experiment,
only one enzyme combination was used (MspI with EcoRI). The

TABLE 1 | Primer sequences used for MSAP.

Oligo name Function Sequence

Ad HpaII/MspI Reverse Adaptor GACGATGAGTCTAGAA

Ad. HpaII/MspI Forward Adaptor CGTTCT AGACTCATC

Ad. EcoRI Reverse Adaptor AATTGGTACGCAGTCTAC

Ad EcoRI Forward Adaptor CTCGTAGACTGCGTACC

Pre. EcoRI Preselective primer GACTGCGTACCAATTCA

Pre. HpaII/MspI Preselective primer GATGAGTCCTGAGCGGC

EcoRI5∗ Selective primer GACTGCGTACCAATTCACA

EcoRI10 Selective primer GACTGCGTACCAATTCAGC

HpaII 2.2∗ Selective primer GATGAGTCCTGAGCGGCC

HpaII 2.3 Selective primer GATGAGTCCTGAGCGGCG

HpaII 2.4 Selective primer GATGAGTCCTGAGCGGCT

∗ Indicates the selective primers used to analyze all samples.

selected enzyme combination was based on the results obtained
using the MSAP approach. Two hundred nanogram of genomic
DNA from each of the 86 selected samples [comprising three
replicate per tissue/variety and growing condition (i.e., in vitro
or field) see Supplementary Table S1] were used in a reaction
volume of 20 μl containing 2 μl of NEB Smart cut buffer, 8 U
of HF-EcoRI (High-Fidelity) and 8 U of MspI (New England
BioLabs Inc., Ipswich, MA, USA). Reactions were prepared
in a 96 well plate containing 87 reactions (86 DNA samples
plus one Negative control water sample) and conducted on a
BioRad 100 thermocycler at 37◦C for 2 h and then 65◦C for
20 min for enzyme inactivation. A set of 96 barcoded adapters
with an MspI overhang and a common Y adapter with an
EcoRI overhang were designed for the ligation reaction using
barcode script made by Thomas P. van Gurp1. Adapters were
annealed prior to ligation as described by Poland et al. (2012).
A full list of adapters for MspI (with corresponding barcodes
and cassava samples) and EcoRI is listed in Supplementary
Table S1. The ligation reaction (40 μl) was carried out on the
same PCR plate adding to the restriction products T4 Ligase
(200 U) and T4 Ligase buffer (NEB T4 DNA Ligase #M0202),
0.1 pmol of the respective barcoded MspI adapter and 15 pmol
of the common Y-adapter. Ligation was completed at 22◦C
for 2 h followed by an enzyme inactivation step of 20 min at
65◦C. Five micro liter from each ligation reaction were pooled
into a single tube and then divided into two equal volumes
for column clean-up using PureLink

R©
PCR Purification Kit

(Life Technologies) according to manufacturer’s instructions.
Samples were re-suspended in 60 μl of nanopure water. Both
clean-ups were then combined and divided again into eight
samples for PCR amplification. Each 25 μl PCR consisted
of 10 μl of DNA digested/ligated library), 5 μl of 5x NEB
MasterMix, 2 μl of 10 uM Forward and Reverse primers at
10 uM (Supplementary Table S1). Reactions were performed
in a BioRad T100 thermocycler for eight cycles consisting of
95◦C (30 s), 62◦C (30 s), 68 ◦C (30 s). All eight PCR products
were pooled and then purified first using a PureLink

R© PCR
Purification Kit (Life Technologies) according to manufacturer’s
instructions (resuspended in 30 μl). Excess adaptor was finally
removed using Ampure XPmagnetic beads (Beckman) bymixing
30 μl of the pooled PCRs with 22.5 μl of beads. Captured
fragments were eluted in 30 μl of water. Next, 125 bp paired-end
sequencing was performed in one Illumina HiSeq 2000 v4lane
(Illumina Inc., San Diego, CA, USA) by QBI Centre for Brain
Genomics.

Statistical Analysis
Analysis of Genetic/Epigenetic Variability using MSAP
The MSAP technique uses MspI or HpaII as isoschizomers;
both can cleave the motif CCGG in the absence of methylation.
MspI can also cleave hemi-methylated dsDNA (mC in one
DNA strand only) or fully methylated DNA sequences where
the internal cytosine is methylated CmCGG. However, it cannot
digest hemi-methylated and fully methylated at the external
cytosine site, viz: mCCGG and mCmCGG motifs (Walder

1www.deenabio.com/gbs-adapters
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et al., 1983; Reyna-Lopez et al., 1997). In contrast, HpaII is
more sensitive to methylation but can cleave hemimethylated
DNA at the external cytosine position (mCCGG; Mann and
Smith, 1977; Reyna-Lopez et al., 1997). Direct comparison of
MspI profiles with those generated by the more methylation-
sensitive HpaII therefore does not provide a definitive contrast
between genetic variation and that attributable to changes in
methylation (Fulneček and Kovařík, 2014). For these reasons,
simple comparisons were made between profiles generated
from various tissues of plants grown in the two settings
(micropropagation and field cuttings) under the reasonable
assumption that consistent differences will arise from differential
methylation (driven by RdDM) rather than by repeated chance
mutations.

MSAP profiles were visualized using GeneMapper Software
v4 (Applied Biosystems, Foster City, CA, USA). Two matrices
containing allelic information were generated. First, a qualitative
analysis was carried out in which epiloci were scored as
“present” (1) or “absent” (0) to form a presence/absence binary
matrix. In this case, the selection of MSAP fragments was
limited to allelic sizes between 100 and 580 bp to reduce the
potential impact of size homoplasy (Caballero et al., 2008).
Profile polymorphisms between DNA samples from the same
cassava variety but extracted from different tissues (young leaves,
newly mature leaves, and primary root tips) were retained
as inter-tissue methylation differences. Polymorphisms between
DNA samples from in vitro culture plants and from field
grown plants were considered as in vitro culture induced
methylation differences. Second, a matrix containing peak
heights of fragments with allelic size between 50 and 550 bp
was created for quantitative analysis (Rodríguez López et al.,
2012). In both cases, different levels of hierarchy were generated
to group the samples. Samples were first grouped according to
cassava variety. Then, samples were divided into field grown
and in vitro grown. Finally, samples were separated into the
three different tissues of origin (young leave, mature leave, and
roots).

For the analysis of the MSAP qualitative data, GenAlex v6.4
software (Peakall and Smouse, 2006) was used to infer pairwise
epigenetic PhiPT distances (estimation of genetic/epigenetic
distances) between different cassava samples. Analysis of
molecular variance (AMOVA) was then performed using the
same software to test the significance of the estimated PhiPT
between tissues (Michalakis and Excoffier, 1996). An allele
frequency table was generated using GenAlex 6.4 to find
in vitro/field specific qualitative markers for each cultivar and for
all cultivars. Finally, the visualization of the patterns of tissue
epigenetic variations in this study was done by constructing a
Principal Coordinates Analysis (PCoA).

For each variety, the peak height intensities of the epiloci
generated using MSAP were compared between field grown
and in vitro tissue samples as well as compared between
samples from different tissue origins within field and in
vitro groups. Preceding comparative analysis the data was
filtered by removing epicloci containing excessively low peak
height intensities across the complete set of samples. From
this reduced set of epiloci the peak height libraries were

normalized using the model based weighted trimmed mean
method derived in Robinson and Oshlack (2010). For each
pair of tissue groups being investigated, the normalized peak
heights were extracted and compared using the approach
described in Robinson and Smyth (2007, 2008). This approach
initially assumes the normalized peak heights are distributed
as a negative binomial with a common dispersion calculated
across the complete set of epiloci for the two groups. From
this, individual epiloci dispersions were calculated using the
empirical Bayes methods of Robinson and Smyth (2007). An
exact statistical test was then conducted for each epiloci to
determine differences in peak heights between the two groups
(Robinson and Smyth, 2008). The p-values obtained from these
tests were then appropriately adjusted for multiple comparisons
using the false discovery rate (FDR) method of Benjamini
and Hochberg (1995). All analyses were performed using the
differential expression analysis R package edgeR (Robinson et al.,
2010) available in the R statistical computing environment
(R Development Core Team Foundation, 2015).

Analysis of Genetic/Epigenetic Variability using GBS
Data
For the processing of Illumina HiSeq 2000 v4 data, the sequences
from the unfiltered fastq Illumina output were separated into
samples using the barcode sequence and trimmed to 64 bp
using the software TASSEL (sourceforge.net/projects/tassel/).
Only sequences with one of the exact used barcodes followed by
the expected sequence of three nucleotides remaining from an
MspI cut-site (5′-CGG-3′) were retained for analysis. Sequences
present in the negative water control were also removed from the
analysis. Finally only sequences present in three or more different
samples were kept for analysis. A matrix of sequence abundance
of was then generated for further analysis.

Using the differential expression analysis procedure outlined
in Section “Analysis of Genetic/Epigenetic Variability Using
MSAP,” the sequence abundances were compared between field
grown and in vitro tissue samples and also compared between
samples from different tissue origins within field and in vitro
groups. Sequences presenting significantly different number of
reads between all in vitro and all field grown samples for
each variety were isolated. Finally, only those sequences that
presented the same variation (increase or reduction of number
of reads in all varieties when comparing in vitro against field
grown samples) in at least four of the five studied varieties
were considered micropropagation induced markers. Due to
the extremely low probability of a mutational event leading to
the generation of these markers happening in all plants from
all varieties during culture we can consider that such markers
are differentially methylated regions (DMRs) induced by the
micropropagation procedure. Detected DMRs were then selected
for blast analysis against the cassava (BLASTN, nucleotide
query to cassava nucleotide database genome blast tool in
Phytozome. Top hits indicating differential methylation of a
genic region were sought by comparing exons, introns, and
flanking sequences (5 kb upstream of the Transcription Start
Site and 5 kb downstream of the Transcription Termination
Site).
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Results

Analysis of Genetic/Epigenetic Variability using
MSAP
Estimation of Genetic/Epigenetic Differences Based
on Qualitative Analysis
Methylation-sensitive amplified polymorphism profiles
generated a total of 164 loci (13 unique to HpaII, 22 unique to
MspI, and 129 common to both enzymes) for the 86 samples
of five cassava cultivars used in this study. PCoA analysis
created from a simple presence/absence similarity matrix of
the combined MSAP profiles revealed clear separation between
in vitro propagated cultivars and their field counterparts
for all cultivars (Figure 1). Calculated genetic/epigenetic
distances between field and in vitro samples were significant
for all cultivars (Table 2). In general, calculated distances
between in vitro and field samples where higher for samples
restricted using MspI (Table 2). All pairwise PhiPT between
in vitro-grown samples and those grown in the field tissues
were significant for all varieties using both HpaII and MspI
(Table 2). In general, genetic/epigenetic distances were higher
between tissues recovered from plants grown in the field than
between those taken from in vitro-grown plants (Table 3).
The reduced divergence between tissues taken from in vitro-
grown material was also evident from the PCoA analysis,
with samples from different tissues of in vitro propagated
plants occupying less eigen space than those of the same
tissues obtained from field grown plants (Figure 1). However,
the level of variability observed within tissue types did not
differ significantly between in vitro-grown and field-grown
material.

We further analyzed the differences existing between each
tissue derived from the field grown plants and all samples
from plants grown in vitro. The aim here was to investigate
which of the in vitro-grown tissues generated MSAP profiles
were most similar to the field samples. Distance estimates were
significant for all pairs, but it was consistently smaller between
young leaves from field grown plants and bulked in vitro tissues
(Table 4).

Estimation of Genetic/Epigenetic Differences Based
on Quantitative Analysis
We selected 106 markers for quantitative analysis of MSAP
profiles based on peak height data. In general, both enzymes,
yielded more markers separating between tissues from field-
grown plants than those taken from in vitromaterial (62 vs. 44 for
MspI and 44 vs. 42 for HpaII; Table 5; For a list of all fragments
and their levels of significance see Supplementary Table S2 for
MspI and Supplementary Table S3 for HpaII). However the
number and scale of these differences varied between cultivars.

A total of 14 and 15 markers for MspI and HpaI respectively
were found to be significantly different (p < 0.005) between all in
vitro- and field-derived material. Two of these markers generated
using HpaII, epiloci 55 and 101 bp, were able to diagnose in vitro
from field samples of three varieties, Kiroba, Kibandameno, and
Kizimbani (Figure 2). The epilocus 55 bp generated using MspI

was also significantly different between propagation systems for
the same varieties but not epilocus 101 bp (Figure 2).

Analysis of Epigenetic Variability using GBS
Data
In total, we generated 236,624,193 raw reads from the HiSeq
2000 v4 lane, of which 71,723,843 (32.3%) passed quality filter
and contained the expected exact matches to sequences of the
barcode adapter, MspI restriction product site and the EcoRI
adapter, and which appeared in at least three biological samples
but were absent from the negative (water) control. On average,
754,980 high quality reads were produced per DNA sample.
Collectively, this included 357,271 unique sequence tags across all
samples. The number of these markers that differed significantly
in abundance between in vitro-grown and field-grown samples
varied considerably between varieties: 3,298 for Kiroba; 25,683
for Kizimbani; 2,029 for Mfaransa; 34,098 for Mzungu and 17,702
for Kibandameno. Most of these sequences were more abundant
in the field-grown samples (Table 6) and the overwhelming
majority was variety-specific responses. We next sought to
identify candidate generic epimarks that differentiate between
propagation systems across all varieties. When the most stringent
filter for differential abundance was applied (i.e., reads with an
FDR lower than 0.05; the phase of differential abundance being
conserved across all genotypes and tissues, and the absence of
variety-specific SNPs) just 105 (0.03%) of unique differential
sequences featured in the profiles of all varieties and showed a
common pattern of phasing (Supplementary Table S4). There was
also a marked difference in the phase of these marks, with just
four tags being more abundant among in vitro-grown samples
compared with 101 that were more numerous in the field-grown
plants.

When compared against the cassava nucleotide database
genome using the blast tool in Phytozome2, 102 differentially
methylated sequences generated one or multiple hits against
the cassava genome. Eighty nine top hits were associated
to a gene (i.e., mapped within a window of 5 kb from
the gene). BLAST results indicate that the homologs of
these genes are involved in many processes, including cell
differentiation, plant development, sugar metabolism, nucleic
acid methylation, stress response, photosynthesis, signaling
and transposon activation (Supplementary Table S5). Of the
89 differentially methylated genes 45 have been previously
mentioned in the literature as having homologous genes that
are: regulated by DNA methylation (14) or other epigenetic
mechanisms (10), methylated or differentially methylated under
different growing conditions (4), implicated in the regulation of
DNA methylation (9) or other epigenetic mechanisms (1) and
DNA binding proteins affected by methylation of their target
sequences (3).

Discussion

Micropropagation via nodal cuttings relies on the regeneration
of pre-existing meristems and so is widely considered to be

2http://www.phytozome.net
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FIGURE 1 | Principal component analysis showing tissue separation
in five cassava varieties using generated epigenetic profiles. Effects
of tissue culture and field environment on epigenetic variation. Principal
coordinate diagrams based on the Euclidean analysis of methylation-
sensitive amplified polymorphism (MSAP) distances obtained from three

different tissues of Kiroba (A) and Mzungu (B), Kizimbani (C), Mfaransa
(D) and Kibandameno (E) varieties (in vitro and field cuttings) using
primer combination HpaII2.2/EcoRI5. Green, field young leaves; Red, field
mature leaves; Purple, field roots; Yellow, in vitro young leaves; Blue,
in vitro mature leaves; and Brown, in vitro roots.
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TABLE 2 | Summary of calculated genetic/epigenetic distance (PhiPT)
between in vitro- and field-grown samples.

HpaII MspI

PhiPT p-value PhiPT p-value

Mzungu 0.159 0.006 0.188 0.001

Kiroba 0.130 0.002 0.310 0.001

Kibandameno 0.273 0.001 0.374 0.001

Mfaransa 0.577 0.001 0.541 0.002

Kizimbani 0.160 0.003 0.243 0.001

Pairwise genetic/epigenetic distance between samples grown in vitro and those
grown in the field from each variety were calculated using MSAP profiles obtained
by restricting gDNA from five cultivars of cassava with EcoRI and HpaII or
MspI using GenAlex 6.5.1 AMOVA. p-values were calculated based on 1000
permutations.

TABLE 3 | Effect of in vitro culture on epigenetic differentiation between
tissues.

Tissues HpaII MspI

Cultivar Field In vitro Field In vitro

Ylv-Mlv Kibandameno 0.208 0.070 0.237 0.000

Mzungu 0.000 0.042 0.239 0.192

Mfaransa – 0.112 – 0.209

Kizimbani 0.171 0.000 0.114 0.071

Kiroba 0.259 0.178 0.260 0.118

Average 0.1595 0.0804 0.2125 0.118

Ylv-Rt Kibandameno 0.447 0.296 0.308 0.197

Mzungu 0.000 0.162 0.461 0.178

Mfaransa 0.401 0.260 0.538 0.148

Kizimbani 0.142 0.272 0.654 0.286

Kiroba 0.264 0.098 0.250 0.090

Average 0.2508 0.2176 0.4422 0.1798

Mlv-Rt Kibandameno 0.196 0.301 0.049 0.362

Mzungu 0.108 0.344 0.459 0.386

Mfaransa – 0.408 – 0.375

Kizimbani 0.263 0.139 0.550 0.250

Kiroba 0.357 0.201 0.344 0.212

Average 0.231 0.2786 0.3505 0.317

Calculated pairwise PhiPT values (epigenetic distances) between tissues from field
cuttings and in vitro propagated lines. Distances were calculated using GenAlex
6.5.1 AMOVA on MSAP profiles obtained by restricting genomic DNA with MspI
and HpaII. Ylv, young leaves, Mlv, mature leaves, Rt, roots.

analogous to field cuttings because they do not pass through
a state of disorganized (dedifferentiated) tissue state (Dale
and McPartlan, 1992). Nevertheless, ramets recovered from
nodal micropropagation can still exhibit signs of increased
morphological variability (somaclonal variation) when compared
to those recovered from field cuttings (Debnath, 2005).
Us-Camas et al. (2014) suggested that such observations might be
explained by the stressful environment experienced by in vitro-
grown plants (i.e., high relative humidity, low ventilation rate,
high concentrations of sugars and plant growth regulators, and
low light availability). Under these conditions, cultured plants
cells are also forced to change their molecular make ups in
order to generate different cell types. Cell division to generate
tissues and organs require a precise coordination of genetic

and epigenetic processes (Miguel and Marum, 2011; Smulders
and de Klerk, 2011). For micropropagation systems that rely
on dedifferentiation and de novo organogenesis, in vitro culture
can often yield occasional regenerants that are phenotypically
off-type (e.g., Lakshmanan and Taji, 2000; Rout et al., 2000; Da
Silva et al., 2015). In contrast, those recovered from meristem
micropropagation are widely reported to remain more faithful
to the phenotype of the parental plant in range of species (e.g.,
Villordon and LaBonte, 1996) including cassava (e.g., Santana
et al., 2009). There is nevertheless a large body of evidence
indicating that changed growing conditions often induces
moderations in global methylation patterns in culture (for review
see Pastor et al., 2013) and this leads to the plausible expectation
of epigenetic divergence between plants cloned by meristem
micropropagation and field cuttings. Evidence supporting this
assertion came from a study by Baranek et al. (2010), who
used MSAP profiles to compare daughter plants recovered from
field cuttings and micropropagated nodal segments of two grape
vine varieties. The authors found consistent differences between
the two systems in their clustering on resultant dendrogams.
However, the work failed to further characterize the variation
in terms of tissue type or to provide sequence identity for the
differential epimarks. Characterizing such epigenetic differences
may prove useful not only for the mere detection of putative
somaclonal variants (Causevic et al., 2006) but for use in
epiallele discovery, and as a tool for directed crop epigenetic
improvement. In this study we combine MSAP and msGBS (Xia
et al., 2014) to survey for C-methylation perturbations associated
with the micropropation of elite clones of cassava (M. esculenta).

Analysis of Genetic/Epigenetic Variability using
MSAP
Both quantitative (Figure 1) and qualitative analysis (Table 5)
of MSAP generated profiles showed clear separation of all
tissues in all five varieties studied. Higher levels of diversity
and divergence were observed when using MspI than HpaII
(Tables 2 and 4). Care should be exercised before tentatively
assigning this variability as likely to have arisen through genetic
or epigenetic causes. Moreover, polymorphic markers between
propagation systems that appear in the profiles generated of both
isoschizomer restriction enzymes (HpaII and MspI; Figure 2)
could be caused by either a genetic or an epigenetic change.
Conversely, a polymorphic marker detected by only one of
the enzymes can only be epigenetic in nature (Pérez-Figueroa,
2013). Application of this reasoning implies that variation at the
propagation system diagnostic 55 epilocus could be explained by
both genetic and epigenetic changes whereas that of epilocus 101
was due to differential methylation arising from the tissue culture
conditions (Figure 2). However, since the chance of a genetic
mutation occurring at exactly the same location on more than
one occasion is extremely low (Rodríguez López et al., 2010b)
combined with the fact that these two markers polymorphic
were found in three different cultivars implies that both markers
probably have an epigenetic origin rather than one caused by
genetic mutation.

The variability in MSAP profiles seen between DNA extracted
from the same tissue type was both modest and consistent,
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TABLE 4 | Epigenetic distance between field cutting tissues and all tissues from in vitro conditions.

Kizimbani Mzungu Kiroba Mfaransa Kibandameno

Young lv 0.236∗ (0.007) 0.276∗ (0.004) 0.308∗ (0.006) 0.559∗ (0.026) 0.502∗ (0.007)

Mature lv 0.350 (0.001) 0.286 (0.003) 0.423 (0.007) �λ 0.521 (0.004)

Root 0.528 (0.005) 0.398 (0.006) 0.389 (0.007) 0.655 (0.006) 0.576 (0.007)

Calculated pairwise tissue PhiPT values (epigenetic distances) obtained from MSAP profiles obtained by restricting genomic DNA from ten cultivars of cassava with MspI
using GenAlex 6.5.1 AMOVA. The values show the distance between individual tissues of field cutting lines from bulks of all tissues of in vitro propagated lines. Young lv:
distance between field derived young leaves and bulked in vitro tissues, Mature lv: distance between field derived mature leaves and bulked in vitro tissues, and Root:
distance between field derived root and bulked in vitro tissues. Probability values based on 9999 permutations are shown in parenthesis. Asterisks indicate lower PhiPT
values.

TABLE 5 | Number of significantly different quantitative epimarkers across all cultivars.

Cultivar MspI HpaII

Field vs.
in vitro

Tissues
(in vitro)

Tissues
(Field)

Field vs.
in vitro

Tissues
(in vitro)

Tissues
(Field)

Mfaransa 6 10 7 6 9 2

Mzungu 0 9 19 1 9 7

Kizimbani 3 1 27 2 7 7

Kiroba 8 13 8 3 12 11

Kibandameno 6 11 1 7 5 17

Quantitative markers were generated from MSAP profiles peak heights obtained by restricting genomic DNA from five cultivars of cassava (in vitro and in the field) with
MspI and HpaII. Column Field vs. in vitro shows the number of significantly different (p > 0.005) epimarkers between samples of the same cultivar grown in vitro or in the
field. Columns Tissues (in vitro) and Tissues (Field) show the number of significantly different (p > 0.005) epimarkers between tissues grown either in the field or in vitro.

regardless of the propagation system used to produce the plants
(Figure 1). This finding suggests that these DNA methylation
changes induced by micropropagation are not random, as would
be expected for genetic somaclonal variation (Bairu et al., 2011)
and so more likely to be associated with methylation events
associated with cell and tissue differentiation. Circumstantial
evidence in support of this inference can be taken from the PhiPT
distance estimate, which showed that samples from in vitro nodal
micropropagation ramets were always (epigenetically) closer to
young leaves of their field counterparts (Table 4).

Genetic variation induced during in vitro nodal
micropropagation cannot be ruled out in this study. However,
our results suggest that the majority, if not all, the variability
detected using MSAPs is epigenetic in nature. This is supported
by the lack of higher levels of variation between micropropagated
samples than in field grown samples and the fact that the
observed variability seems to be conserved between different
plants and between different varieties (Figure 1) and also by
previous studies that show that micropropagated plants using
this approach present high levels of genetic stability (Lata et al.,
2010) but measurable levels of epigenetic variability (Baranek
et al., 2010).

Our MSAP results suggest that (1) in vitro nodal
micropropagation introduces de novo variability in the global
methylation patterns; (2) micropropagation induced epigenetic
variability does not seem to be random.

Analysis of Epigenetic Variability using GBS
Data
Most studies of the epigenetic basis of somaclonal variation
have used MSAPs to characterize culture-induced epigenetic

variation. This technique is reliable and does not require
previous knowledge of the studied organism. Conversely, it
presents the disadvantage that the generated markers are
anonymous. It is possible to isolate and sequence the differential
markers (Massicotte et al., 2011), although the process can
be cumbersome, expensive and time-consuming (Schrey et al.,
2013), especially when many markers and samples are involved.
The use of Next-generation sequencing can significantly reduce
the cost of epiallele sequence characterization. The recent
development of GBS (Elshire et al., 2011; Poland et al., 2012)
and its methylation-sensitive version (ms-GBS; Xia et al.,
2014) has allowed for a simple, time and cost effective
system for the sequencing of multiple DMRs in non-model
organisms.

Our study uncovered 105 unique sequences (Supplementary
Table S4; 0.03% of those generated) with different levels
of methylation between propagation systems. Although total
sequence reads were similar between systems, the vast majority
of differential tags (101/105) were more abundant among ramets
recovered from field cuttings, suggesting again lower global levels
of methylation in field grown plants. This is in contradiction with
previous evidence suggesting that in vitro culture is related to low
DNA methylation (Valledor et al., 2007). However, deciphering
global hyper/hypomethylation from restriction products is not a
reliable approach (Fulneček and Kovařík, 2014). What is more,
other studies have shown that methylation levels during in
vitro propagation are related to the donor tissue (Fang et al.,
2009; Wang et al., 2012), to the length of the culture (Diaz-
Sala et al., 1995; Rodríguez López et al., 2010a,b), and the
media components (LoSchiavo et al., 1989; Arnholdt-Schmitt,
1993).
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FIGURE 2 | Differential peak intensity of informative epiloci (55
and 101 bp) between in vitro tissues and field tissues for
three cassava cultivars (Kibandameno, Kiroba, Kizimbani). Peak
intensities were obtained from MSAP profiles generated restricting
genomic DNA from three different tissues (i.e., young leaf, mature

leaf, and roots) in three plants grown either in vitro or in the field
with MspI (A) and HpaII (B) and amplifying using primer
combination HpaII2.2/EcoRI5. Box plots show the average normalized
intensity scores for a 55 and a 101 bp MSAP fragment selected
using. Asterisk indicates p < 0.005.

TABLE 6 | Number of significantly different msGBS sequences between in
vitro and field grown samples.

Cultivar In vitro Field Total

Mfaransa 185 1844 2029

Mzungu 16021 17888 34098

Kizimbani 2245 23438 25683

Kiroba 1918 1380 3298

Kibandameno 5068 12634 17702

“In vitro” and “Field” columns indicate the number of sequences with a higher
number of reads from samples grown under each condition.

BLAST analysis against the cassava genome of the
micropropagation induced DMRs generated in this study
yielded significant hits for 102 sequences of which the 89

top hits were each associated to a gene (i.e., mapped within
a window of 5 kb from the gene; Supplementary Table S5).
BLAST results indicate that the homologs of these fragments are
involved in many processes, including cell differentiation, plant
development, sugar metabolism, nucleic acid methylation,
stress response, photosynthesis, cell wall modifications,
signaling and transposon activation (Supplementary Table
S5). However, it is important to remember that the mere
presence of differential methylation in or around a gene is not
sufficient evidence to infer that expression of the gene is actually
regulated by methylation. There are nevertheless enticing
hints to suggest that these candidate methylation markers for
propagation system may indeed also play a role in metabolic
divergence between field cuttings andmeristemmicropropagated
plants.
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A series of studies have implicated DNA methylation in the
regulation of genes controlling pathways in plant developmental
progression or tissue differentiation (Messeguer et al., 1991),
during embryogenesis, seed formation (Xiao et al., 2006), apical
dominance regulation, flowering, and floral and leaf formation
(Finnegan et al., 1996). Several differentially abundant loci
identified in the present study showed high sequence homology
to loci in cassava that have been previously implicated in
cell differentiation and development: CWF19, XPMC2, EXO70,
TAP42-like, Sterile alpha motif (SAM) domain-containing
protein, AP3M, Enhancer of polycomb-like transcription factor
protein, cassava protein containing a transcription factor UCC1,
GFS9, GT-2, EMB71, and ARF2 (Supplementary Table S5). Even
if it were shown that the changes in methylation among loci
identified are causally linked to changes in gene expression,
further work would still be required to establish whether
such changes are sufficient to cause a biological meaningful
change in cell metabolism and phenotype. Once again, however,
there are some grounds to reason that at least some loci
might.

A number of studies have shown that DNA methylation
plays a central role in gene expression and plant development
under stress (for extensive reviews see Chinnusamy and Zhu,
2009; Kinoshita and Seki, 2014). Not surprisingly perhaps, abiotic
stresses like those encountered under in vitro culture conditions
have been found to impose an effect on DNA methylation
and have been correlated with subsequent organogenesis
(Us-Camas et al., 2014). However, the comparative paucity of
marks that appear at higher abundance in meristem culture (just
4 of the 105 generic marks; Supplementary Table S4) suggests
that changes of this type lay in the minority. Explanation is
therefore required for the far more commonly encountered
appearance of marks among the field cutting samples only.
Perhaps the most plausible hypothesis for this divergence lay
in the more variable living environment experienced by field
cutting plants when compared with the more homogeneous
environment in culture. Field-grown plants are continuously
exposed to pathogens throughout their lifetime and their DNA
epigenetic patterns become altered by infection (Alvarez et al.,
2010; De-La-Peña et al., 2012). It is therefore, not difficult
to presume that in vitro grown plants will not experience
the same pathogen or abiotic stress-induced DNA methylation
marks as will those grown exposed to pathogens in the field.
In our study, 13 of the 105 differentially methylated loci
mapped to locations of the cassava genome associated to known
stress response genes [i.e., Calcium-dependent lipid-binding
(CaLB domain) family protein, Plastocyanin-like domain,
Leucine-Rich Repeat Receptor-Like Protein Kinase (LRR-
RK), Disease resistance protein (TIR-NBS-LRR class) family,
ATBCB, ATHCHIB, ATTTM2, MLP-Like Protein 28, ATMGL,
ATBZIP1, XTH1, Peroxidase superfamily protein, ATATG18F
and HT1; Supplementary Table S5]. Plants have evolved two
different strategies involving LRR proteins to perceive microbial
pathogens. LRR-RKs are transmembrane host-encoded pattern-
recognition receptors that directly recognize pathogens while
NBS-LRR indirectly recognize pathogen effectors by sensing
their effects on plant target proteins (Yu et al., 2013). The

latest has been shown to be regulated by DNA methylation (Yu
et al., 2013). Previous studies have shown that overexpression
of NBS-LRRs induces a severe drop in fitness (Tao et al., 2000).
Our results show several of the 105 candidate loci associated
to both types of LRRs, so it would be tempting to speculate
that the agronomic performance of micropropagated plants
could be potentially affected if the observed changes on DNA
methylation led to the overexpression of such genes. Calcium
lipid-binding domain (CaLB domain) proteins are repressors
of abiotic stress response in plants (de Silva et al., 2011) and
have been shown to be regulated by environmental conditions
through DNA methylation (Dubin et al., 2015). Curiously,
our results showed one differentially abundant sequence
matched to the xyloglucan endotransglucosylase/hydrolase1
(XTH1) gene. Previous studies have shown that XTHs have
a function on cell wall modifications and that changes on
their DNA methylation levels are associated to colonization
of potato plants by beneficial bacterial endophytes (Da et al.,
2012).

In all, 45 of the 89 differentially abundant sequences
matched to genes that have been previously reported to
be: regulated by DNA methylation (14) or other epigenetic
mechanisms (10), methylated or differentially methylated under
different growing conditions (4), associated to the regulation
of DNA methylation (9) or other epigenetic mechanisms (1)
and DNA binding proteins affected by methylation of their
target sequences (3) (For references see Supplementary Table
S5). Which (if any) of these genes is playing a role in a
possible divergence in cell metabolism and phenotype between
plants replicated by meristem-propagation and field cutting
warrants further attention. Looking further ahead, identifying the
developmentally important genes whose expression is sensitive
to culture growth conditions may ultimately allow for the
development of new culture regimes that yield regenerants with
the lowest possible incidence of off-types. In the shorter term,
however, the provision of methylation marks that consistently
diverge in abundance between plants propagated by meristem
culture and those recovered by field cuttings could have utility in
the optimization of in vitro meristem propagation protocols and
also in the diagnosis of the origin of clonal stocks.
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