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Importance of Iron in Plant

Iron (Fe) is an essential micronutrient and its deficiency is a serious nutritional problem for all
living organisms. This is because Fe is not only a basic requirement in cellular functions such as the
redox reactions in photosynthesis and respiration, but is also required in the enzymatic processes
like DNA replication, lipid metabolism, and nitrogen fixation in plants (Lan et al., 2011; Briat et al.,
2015). As the photosynthetic apparatus contains much Fe, involved in many metabolic reactions in
plastids, it becomes an important factor for survival of green plants. In plants, Fe deficiency can be
observed by the development of chlorosis, which reduces the photosynthetic activity (Spiller and
Terry, 1980; Terry, 1980; Straus, 1994; Briat et al., 2015).

Proteomics Studies Related to Iron Deficiency

Proteomics is being increasingly used to expand our understanding of plant growth and
development under both normal and stressful environmental conditions (Agrawal and Rakwal,
2008). Proteomic technology has also been employed as a powerful tool in the elucidation
of metabolic rearrangements caused by Fe deficiency (López-Millán et al., 2013). Recently,
quantitative proteomics approach was applied to understand the impact of Fe deficiency on plant
metabolism; combined with physiological studies, the impact of Fe deficiency on photosynthesis
was discerned (Zargar et al., 2013, 2015). Fe deficiency is known to alter both chloroplast structure
and photosynthetic rate in higher plants as it alters the chlorophyll synthesis (Briat et al., 2015).
The comparative proteome analysis of chloroplast thylakoids explains the plasticity of thylakoid
membranes in response to Fe deficiency (Andaluz et al., 2006). A phosphoproteomic study of
the thylakoid membrane proteome, from Fe-sufficient and Fe-deficient plants identified several
proteins with post-translational modifications, that included, the doubly phosphorylated form of
the photosystem II oxygen evolving complex, PSBH, ascorbate peroxidase, peroxiredoxin Q, and
two major LHC IIb proteins (LHCB1 and LHCB2) (Laganowsky et al., 2009). Lan and coworkers
have used the iTRAQ method to examine protein regulations involved in Fe homeostasis in
Arabidopsis shoots (Lan et al., 2011). The abundance of 45 phosphoproteins was significantly
changed upon Fe deficiency, which includes kinase A/calcium calmodulin-dependent kinase II,
casein kinase II, and proline-directed kinase, indicating a possible critical function of these kinase
classes in Fe homeostasis (Lan et al., 2012).
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Recently, we applied the iTRAQ-OFFGEL method for
understanding impact of Fe deficiency on photosynthesis and
to unravel the proteome underlying the cross-talk between Fe
deficiency and excess Zn in Arabidopsis (Zargar et al., 2015).
Results revealed that Fe deficiency might lead to disruption of
sugar synthesis and utilization.

Iron Deficiency Influences the
Photosynthetic Machinery and Sugar
Levels: Proteomic Insights

The impact of Fe deficiency on photosynthesis in Arabidopsis has
been very well documented (Zargar et al., 2013). Here we will
majorly focus on the role of sugar in decreasing photosynthetic
activity due to Fe deficiency. Two sugar transporters, major
facilitator super family protein (STP13; AT5G26340) and sugar
transporter 4 (STP4; AT3G19930) that have shown higher
expression levels under Fe-deficient conditions were identified.
STP13 and STP4 protein expressions were increased to 8.179- and

FIGURE 1 | Metabolic pathway showing role of different proteins

involved in synthesis and utilization of sucrose via some

proteins with high and low expressions. G6P, Glucose 6

phosphate; 6PG, 6 phosphogluconate; F6P, Fructose 6 phosphate;

F1,6BP, Fructose 1,6 biphosphate; F1P, Fructose 1 phosphate; GA,

Glyceraldehyde; DHAP, Dihydroxy acetone phosphate; G3P,

Glyceraldehyde 3 phosphate; G1P, Glucose 1 phosphate; UDP-G,

UDP-Glucose; SA, Salicylic acid; Red dotted circles show, up

regulated proteins (in brackets fold values of proteins in 0-Fe

conditions compared to control are demarked); Blue dotted circles

show down regulated proteins (in brackets fold values of proteins in

0-Fe conditions compared to control are demarked).

1.968-fold in Fe-deficient condition (Zargar et al., 2015). STP13 is
known to be involved in transport of sucrose, glucose, and hexose
(Saier et al., 1999; Lemoine, 2000; Norholm et al., 2006), while
STP4 is a monosaccharide transporter (Fotopoulos et al., 2003).
Further, we observed that the concentration of sucrose, fructose,
and glucose were significantly increased in 2-weeks-old shoots of
Arabidopsis grown on Fe deficient conditions compared to the
control condition (Zargar et al., 2015). Thus, under Fe deficiency,
a higher expression of sugar transporters as well as higher sugar
concentration in shoots was observed. As such, Fe deficiency
leads to accumulation of sugars in shoots, as synthesis and
utilization of these sugars were not properly managed.

Past evidences have shown that root glycolytic (Zocchi,
2006; Jelali et al., 2010) and fermentation (Thimm et al.,
2001) processes are enhanced under Fe deficiency, leading
to sugar accumulation that derives from starch degradation
and/or reorientation of photo-assimilate partitioning probably
via sorbitol or sucrose (Loescher et al., 1990). Since these two
sugar transporters are mainly expressed in roots and vascular
bundle in shoots, these transporters may contribute to the
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transport of sugars from mesophyll cell to vascular bundle for
photosynthesis. Fe deficiency decreases photosynthetic activity,
and as such sugar synthesis decreases. Therefore, the plant might
need higher sugar levels to maintain fundamental metabolisms;
hence sugars might be translocated from roots to shoots. Since
STP13 was induced under stress condition, and involved in
reabsorption of sugars from roots (Yamada et al., 2011), we
presume that higher expression of sugar transporters might
have a role in increasing sugar levels in shoots to maintain
fundamental processes.

Sensing the Role of Sugar

The down-regulated proteins due to Fe deficiency mostly include
proteins involved in photosynthesis or ribosomal proteins.
It has been well known that Fe deficiency largely affects
protein synthesis in chloroplasts as compared to the cytoplasm,
because chloroplastic mRNA and rRNA levels are significantly
reduced (Spiller et al., 1987). In addition, the expression
of various genes involved in different metabolic processes
including photosynthesis is regulated by the sugar-driven signals
(Sheen, 1990; Oswald et al., 2001). The negative correlation
between sugar concentration and photosynthetic activity, and
photosynthetic genes expression has also been reported earlier
(Foyer, 1988; Sheen, 1990; Oswald et al., 2001). Therefore, the

lower expression of photosynthetic genes under Fe-deficient
conditions may be partly affected by high sugar concentration.

Aforementioned and other key proteins identified in
our study were mapped onto metabolic and biological
pathways as depicted in (Figure 1), and that explains the
possible role of sugars in decreasing photosynthetic activity in

Arabidopsis. Based on our results we believe that sugar might
have a role in decreasing photosynthetic activity under Fe
deficiency conditions. Further, we presume that Fe deficiency
in Arabidopsis might lead to reduction in phloem unloading
in sink tissues due to which sugars get accumulated in the
shoots. Moreover source tissues load solutes into the phloem,
but the restricted unloading under Fe deficiency may lead to
sugar accumulation, which in turn has a negative effect on
the expression levels of proteins involved in photosynthesis.
There is also a possibility of sugar signaling involvement in
the inhibition of photosynthesis. For example, cells under
Fe-deficient conditions lead to decrease in photosynthesis by
inducing sugar signaling, which might have role in decreasing
expression of proteins involved in photosynthesis. Despite the
above evidences and discussion therein, we are of the opinion
that further intensive studies will be required linking physiology,
biochemical processes with sugar signaling and regulation of
genes involved in carbohydrate metabolism, transport, and
partitioning.

Funding

This work was supported by a Grant-in-Aid for Organelle
Differentiation as the Strategy for Environmental Adaptation in
Plants for Scientific Research of Priority Areas (No. 19039022
to YF) from the Ministry of Education, Culture, Sports, Science
and Technology of Japan; a Grant-in-Aid for Scientific Research
from Nara Institute of Science and Technology supported by The
Ministry of Education, Culture, Sports, Science and Technology,
Japan. SZ acknowledges the DBT, New Delhi, India for award of
CREST, Overseas fellowship to undertake this research.

References

Agrawal, G. K., and Rakwal, R. (2008). Plant Proteomics: Technologies, Strategies,

and Applications. Hoboken, NJ: Wiley & Sons.

Andaluz, S., López-Millán, A. F., De las Rivas, J., Aro, E. M., Abadía, J., and Abadía,

A. (2006). Proteomic profiles of thylakoid membranes and changes in response

to iron deficiency. Photosynth. Res. 89, 141–155. doi: 10.1007/s11120-006-

9092-6

Briat, J. F., Dubos, C., and Gaymard, F. (2015). Iron nutrition, biomass

production, and plant product quality. Trends Plant Sci. 20, 33–40. doi:

10.1016/j.tplants.2014.07.005

Fotopoulos, V., Gilbert, M. J., Pittma, J. K., Marvier, A. C., Buchanan, A. J., Sauer,

N., et al. (2003). The monosaccharide transporter gene, AtSTP4, and the cell-

wall invertase, At_fruct1, are induced in Arabidopsis during infection with

the fungal biotroph Erysiphe cichoracearum. Plant Physiol. 132, 821–829. doi:

10.1104/pp.103.021428

Foyer, C. H. (1988). Feed-back inhibition of photosynthesis through

source-sink regulation in leaves. Plant Physiol. Biochem. 26,

483–492.

Jelali, N., Wissal, M. S., Dellorto, M., Abdelly, C., Gharsalli, M., and Zocchi,

G. (2010). Changes of metabolic responses to direct and induced Fe

deficiency of two Pisumsativum cultivars. Environ. Exp. Bot. 68, 238–246. doi:

10.1016/j.envexpbot.2009.12.003

Laganowsky, A., Gómez, S. M., Whitelegge, J. P., and Nishio, J. N.

(2009). Hydroponics on a chip: analysis of the Fe deficient Arabidopsis

thylakoid membrane proteome. J. Proteomics 72, 397–415. doi:

10.1016/j.jprot.2009.01.024

Lan, P., Li, W., Wen, T. N., and Schmidt, W. (2012). Quantitative

phosphoproteome profiling of iron-deficient Arabidopsis roots. Plant

Physiol. 159, 403–417. doi: 10.1104/pp.112.193987

Lan, P., Li, W., Wen, T. N., Shiau, J. Y., Wu, Y. C., Lin, W., et al. (2011).

iTRAQ protein profile analysis of Arabidopsis roots reveals new aspects

critical for iron homeostasis. Plant Physiol. 155, 821–834. doi: 10.1104/pp.110.

169508

Lemoine, R. (2000). Sucrose transporters in plants: update on function

and structure. Biochim. Biophys. Acta 1465, 246–262. doi: 10.1016/S0005-

2736(00)00142-5

Loescher, W. H., McCamant, T., and Keller, J. D. (1990). Carbohydrate

reserves, translocation, and storage in woody plant roots. Hort. Sci. 25,

274–281.

López-Millán, A. F., Grusak, M. A., Abadía, A., and Abadía, J. (2013). Iron

deficiency in plants: an insight from proteomic approaches. Front. Plant Sci.

4:254. doi: 10.3389/fpls.2013.00254

Norholm, M. H. H., Nour-Eldin, H. H., Brodersen, P., Mundy, J., and Halkier,

B. A. (2006). Expression of the Arabidopsis high-affinity hexose transporter

STP13 correlates with programmed cell death. FEBS Lett. 580, 2381–2387. doi:

10.1016/j.febslet.2006.03.064

Oswald, O., Martin, T., Dominy, P. J., and Graham, I. A. (2001). Plastid redox

state and sugars: interactive regulators of nuclear-encoded photosynthetic

gene expression. Proc. Natl. Acad. Sci. U.S.A. 98, 2047–2052. doi:

10.1073/pnas.98.4.2047

Saier, M. H. Jr., Beatty, J. T., Goffeau, A., Harley, K. T., Heijne, W. H., and Huang,

S. C. (1999). The major facilitator superfamily. J. Mol. Microbiol. Biotech. 1,

257–279.

Frontiers in Plant Science | www.frontiersin.org 3 August 2015 | Volume 6 | Article 592

http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org
http://www.frontiersin.org/Plant_Science/archive


Zargar et al. Sugars decrease photosynthetic activity

Sheen, J. (1990). Metabolic repression of transcription in higher plants. Plant Cell

2, 1027–1038. doi: 10.1105/tpc.2.10.1027

Spiller, S., and Terry, N. (1980). Limiting factors in photosynthesis. II. Iron stress

diminishes photochemical capacity by reducing the number of photosynthetic

units. Plant Physiol. 65, 121–125. doi: 10.1104/pp.65.1.121

Spiller, S. C., Kaufman, L. S., Thompson, W. F., and Briggs, W. R. (1987). Specific

mRNA and rRNA Levels in greening pea leaves during recovery from iron

stress. Plant Physiol. 84, 409–414. doi: 10.1104/pp.84.2.409

Straus, N. A. (1994). Iron Deprivation: Physiology and Gene Regulation. Dordrecht:

Kluwer Academic Publisher.

Terry, N. (1980). Limiting factors in photosynthesis. I. Use of iron stress to

control photochemical capacity in vivo. Plant Physiol. 65, 114–120. doi:

10.1104/pp.65.1.114

Thimm, O., Essigmann, B., Kloska, S., Altmann, T., and Buckhout, T. J. (2001).

Response of Arabidopsis to iron deficiency stress as revealed by microarray

analysis. Plant Physiol. 127, 1030–1043. doi: 10.1104/pp.010191

Yamada, K., Kanai, M., Osakabe, Y., Ohiraki, H., Shinozaki, K., and Yamaguchi-

Shinozaki, K. (2011). Monosaccharide absorption activity of Arabidopsis

roots depends on expression profiles of transporter genes under high

salinity conditions. J. Biol. Chem. 286, 43577–43586. doi: 10.1074/jbc.M111.

269712

Zargar, S. M., Kurata, R., Inaba, S., and Fukao, Y. (2013). Unraveling the iron

deficiency responsive proteome in Arabidopsis shoot by iTRAQ-OFFGEL

approach. Plant Signal Behav. 9:e26892. doi: 10.4161/psb.26892

Zargar, S. M., Kurata, R., Inaba, S., Oikawa, A., Fukui, R., Ogata, Y., et al. (2015).

Quantitative proteomics of Arabidopsis shoot microsomal proteins reveals a

cross-talk between excess zinc and iron deficiency. Proteomics 15, 1196–1201.

doi: 10.1002/pmic.201400467

Zocchi, G. (2006). “Metabolic changes in iron-stressed dicotyledonous plants,” in

Iron Nutrition in Plants and Rizhospheric Microorganisms, eds L. L. Barton and

J. Abadía (Dordrecht: Springer), 359–370.

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2015 Zargar, Agrawal, Rakwal and Fukao. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) or licensor are credited and that the original publication in this

journal is cited, in accordance with accepted academic practice. No use, distribution

or reproduction is permitted which does not comply with these terms.

Frontiers in Plant Science | www.frontiersin.org 4 August 2015 | Volume 6 | Article 592

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org
http://www.frontiersin.org/Plant_Science/archive

	Quantitative proteomics reveals role of sugar in decreasing photosynthetic activity due to Fe deficiency
	Importance of Iron in Plant
	Proteomics Studies Related to Iron Deficiency
	Iron Deficiency Influences the Photosynthetic Machinery and Sugar Levels: Proteomic Insights
	Sensing the Role of Sugar
	Funding
	References


