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Biodegradable plastics, mainly polyhydroxybutyrate (PHB), which are traditionally
produced by bacterial cells, have been produced in the cells of more than 15 plant
species. Since the production of biodegradable plastics and the synthesis of oil in
plants share the same substrate, acetyl-coenzyme A (acetyl-CoA), producing PHB
in oil bearing crops, such as oil palm, will be advantageous. In this study, three
bacterial genes, bktB, phaB, and phaC, which are required for the synthesis of PHB
and selectable marker gene, bar, for herbicide Basta resistant, were transformed into
embryogenic calli. A number of transformed embryogenic lines resistant to herbicide
Basta were obtained and were later regenerated to produce few hundred plantlets.
Molecular analyses, including polymerase chain reaction (PCR), Southern blot, and real-
time PCR have demonstrated stable integration and expression of the transgenes in the
oil palm genome. HPLC and Nile blue A staining analyses confirmed the synthesis of
PHB in some of the plantlets.

Keywords: oil palm, monocot, transgenic, biolistics, biodegradable plastics

Introduction

Oil palm is a major economic crop for Malaysia. Area planted with oil palm has increased from
55,000 hectares in 1960 to 5.39 million hectares by end of 2014 (Anon, 2015). However, lately the
area cultivated with oil palm has been almost stagnant due to unavailability of arable lands as well
as Malaysia’s desire to keep its forest and maintain its reputation as one of the 12 mega biodiversity
countries. Since 2007, palm oil has become the largest source of edible oil in the world. World
palm oil is mainly produced from plantations in Malaysia and Indonesia. In order to maintain its
premier position and to remain competitive, threats such as shortage of labor and arable land and
fluctuation in commodity price need to be overcome by increasing yield per unit area as well as
producing novel high value products using approaches such as genetic engineering (Parveez et al.,
2015). From previous experience, it was estimated that 4–5 years are required to produce transgenic
oil palm plantlets from tissue culture explants (Parveez et al., 2000).

The world’s first transgenic plant, tobacco (Fraley et al., 1983) was produced more than
30 years ago. Since then, the number of transgenic plant species developed has been increasing.
Recent report by the International Service for Acquisition of Agri-biotech Applications (ISAAA)
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shows that the areas commercially planted with transgenic plants
worldwide have been increasing annually, from 1.7 million
hectares in 1996 to 181.5 million hectares in 2014 (James, 2014).
The acreage reported is contributed by 28 countries and involves
mainly soybean, maize, and cotton. Nevertheless, other crops
such as papaya, squash, canola, sugar beet, sweet pepper, and
alfalfa are also actively being planted and contribute to the
statistics.

Genetic modification, is a method for the production
of environmentally adaptive crops, higher value metabolites
and economical important traits such as oils and industrial
feedstock. Biodegradable plastics, or bioplastics, are one such
product which has great potential and high demand. One
example of biodegradable plastics is polyhydroxybutyrate (PHB),
which is also the most common polyhydroxyalkanoate or
PHA. PHB is normally produced by bacteria as a storage
material under restricted growth conditions (Senior and Dawes,
1973). Even though PHA was discovered ∼90 years ago,
only in the recent decades it has been recognized for its
thermoplastic and elastomeric properties (Poirier, 2002). Due
to its inherent characteristics, bioplastics can be completely
degraded, under optimal conditions, to CO2 and H2O (Lőssl
et al., 2003). It is a useful polymer which could be exploited
to produce a wide range of environmentally friendly industrial
polymers. PHB is a stiff and relatively brittle polymer in nature
(Holmes, 1988) and it has been reported to have chemical
and physical properties similar to polypropylene (Steinbüchel,
1991).

In depth understanding of the PHB synthesis process, has
led to commercial production of PHB. Bacterial fermentation
was initially used in 1980s to commercially produce PHA
from Ralstonia eutropha. However, the commercialization was
on limited scale due to high cost of production, especially
the need to supply costly substrates (Anderson and Dawes,
1990). It was recently reported that PHA produced by a
US based company was marketed at USD 4.96–6.06/kg as
compared to propylene which has comparable properties but
non-biodegradable and selling at USD 1.65/kg (Agnew and
Pfleger, 2013). The high cost of production of PHA has forced
scientists to explore alternative approaches to produce it at a
lower price. Poirier (2002) has proposed plants as potential
system as plants are capable of producing millions of tons
of oils and starch at a lower cost of between USD 0.25 and
1.0/kg.

It was shown that in bacterial system, PHB is synthesized
from acetyl-CoA following three enzymatic reactions. The first
enzyme, 3-ketothiolase (phaA or bktB), catalyzes the reversible
condensation of two acetyl-CoA moieties to form acetoacetyl-
CoA. Acetoacetyl-CoA reductase (phaB) subsequently reduces
the acetoacetyl-CoA to D-(-)-3-hydroxybutyryl-CoA, which is
then polymerized by PHB synthase (phaC) to produce PHB
(Anderson and Dawes, 1990) (Figure 1). In plant system acetyl-
CoA are found in the following organelles: cytosol, plastid,
mitochondria, and peroxisome. Therefore, Poirier (2002) has
postulated that theoretically, PHB could also be synthesized
in any of those sub-cellular compartments in plants. First
demonstration of PHB production in plant was in Arabidopsis

FIGURE 1 | Biosynthesis pathway of polyhydroxybutyrate (PHB) from
acetyl-CoA. Adapted from Poirier (2002).

cytoplasm with a maximum of 0.1% dry weight (dwt) of PHB
(Poirier et al., 1992). Judging from low level of PHB synthesis in
cytoplasm, plastid was later targeted for accumulating PHB as it
is the organelle for fatty acid synthesis and has the highest flux of
acetyl-CoA, also the substrate of PHB synthesis (Nawrath et al.,
1994a). When all the PHB genes (on individual plasmids and
involving crosses) were targeted into the plastid of Arabidopsis,
up to 14% dwt of PHB was reported (Nawrath et al., 1994b).
When all the PHB genes were fused onto a single plasmid,
up to ∼40% dwt PHB was produced, the downside being
that the plants were extremely stunted and chlorotic (Bohmert
et al., 2000). Later, when the PHB genes were induced by a
chemical, methoxyfenozide, up to 14.3% dwt PHB was produced
without any deleterious effects on the plants (Kourtz et al.,
2007). Targeting PHB into plastid of poplar tree and induced
by ecdysone resulted in around 3.69% dwt PHB. However, it
was observed that plants with 1% dwt PHB and higher showed
negative growth characteristics (Dalton et al., 2011). In rapeseed
around 3–7% dwt of PHB was obtained when PHB genes were
targeted to the plastid (Houmiel et al., 1999). In potato, when
the phaA gene was induced chemically, PHB was synthesized
in leaves at a rate of up to 0.009% dwt (Bohmert et al., 2002).
Recently, up to 13.7% dwt of PHB was synthesized in T4 seeds
of camelina when the PHB genes were targeted to the plastid and
driven by seed-specific promoter (Malik et al., 2015).
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In sugarcane, when the PHB genes were targeted into the
cytosol, mitochondria or plastid, synthesize was observed only
in plastid at up to 1.88% dwt, with no agronomic penalty
(Petrasovits et al., 2007; Purnell et al., 2007). Testing different
promoters resulted in up to 4.8% dwt PHB being produced
in sugarcane but with reduced biomass and slight chlorosis
(Petrasovits et al., 2012).

Besides cytosol and plastid, PHB was also reported to be
synthesized in other organelles such as peroxisomes in Black
Mexican Sweet maize [2% fresh weight (FW)], leucoplasts of
sugar beet hairy root (5.5% dwt); stem of flax (0.005% FW)
and in seed coat/vacuole of soybean (0.36% dwt; Hahn et al.,
1999; Menzel et al., 2003; Wrobel-Kwiatkowska et al., 2007;
Schnell et al., 2012). It was also reported that when the PHB
genes were transformed using plastid transformation method
into tobacco, up to 18.8% dwt of PHB was reported (Bohmert-
Tatarev et al., 2011). However, even though for the plants which
were fertile and produced viable seed, delayed flowering was
observed.

As oil palm is an oil bearing crop, acetyl-CoA pool is expected
to be high and potential target for synthesizing PHB. In this
paper, we describe the transformation of oil palm embryogenic
calli with PHB genes driven by maize ubiquitin promoters and
targeting it to plastid. The three genes used for synthesizing
PHB were from the bacteria Alcaligenes eutrophus H16 (Peoples
and Sinskey, 1989a,b,c). The research was carried out at the
laboratory scale and regenerated transgenic oil palms are planted
in a fully contained biosafety greenhouse for evaluation. This
is the first report demonstrating the successful synthesis of
PHB in transgenic oil palm plantlets. Even though there were
earlier reports on the attempt to produce transgenic oil palm
carrying PHB genes (Parveez et al., 2008; Ismail et al., 2010),
however, none of them provide any evidence that PHB was
synthesized in the transgenic plantlets. At the same time efforts
to produce newer transformation vectors with combination of
various constitutive promoters as well as specifically targeting the
PHB genes into oil palm leaves has also been reported (Yunus
et al., 2008; Masani et al., 2009).

Materials and Methods

Oil Palm Embryogenic Calli Transformation
One micron sized gold microcarriers were precipitated
with pME22 plasmid (Willis et al., 2008) according to the
manufacturer’s instructions (Bio-Rad Laboratories for Biolistics
PDS/He 1000). Bombardment was carried out as described by
Parveez et al. (1997, 1998). After bombardment, the embryogenic
calli were maintained on solid MS macro and micronutrients
supplemented with 2.2 mg/l 2,4-D and 30 g/l sucrose (pH 5.7)
and cultured at 28◦C, in the dark, and subcultured every 30 days
onto fresh medium.

Regeneration of Transformed Embryogenic
Callus
Transformed embryogenic calli were selected from non-
transformed cells by exposing them to a selection medium

containing 50 mg/l Basta (Parveez et al., 1996, 2007) for
3 weeks post-bombardment. The transformed embryogenic calli
were subcultured onto fresh medium containing the same
concentration of selection agent at monthly intervals. The
selected cultures were later regenerated into polyembryogenic
cultures, small plantlets, and finally producing roots on various
media following the procedure described by Parveez et al. (2000).
The fully regenerated and hardened plantlets were transferred
into polybags and grown in a biosafety screenhouse.

Plant Total DNA Isolation
Large scale plant total DNA extraction was carried out according
to the modified CTAB method (Doyle and Doyle, 1987). Ten
grams of leaves were ground in liquid nitrogen and later added
with 10 ml CTAB extraction buffer (100 mM Tris-HCl; pH
8.0; 20 mM EDTA; 1.4 M NaCl; 2% CTAB; 1% PVP; and
0.2% 2-mercaptoethanol) and incubated for 1 h at 65◦C. Ten-
milliliters of chloroform: isoamyl alcohol (24:1) were added after
cooling for 20 min at room temperature, and centrifuged at
4◦C, 20,000 g for 5 min. Aqueous extract was cleaned twice
with 5 ml of chloroform: isoamyl alcohol (24:1) prior to DNA
precipitation by adding 6 ml of chilled isopropanol. The extract
was centrifuged at 20,000 g for 5 min after precipitation for
20 min at room temperature. Pellet was suspended (76% ethanol,
1 mM ammonium acetate), incubated for 20 min at room
temperature and centrifuged at 20,000 g for 5 min. Final pellet
was dissolved in 500 μl TE Buffer.

Polymerase Chain Reaction (PCR)
Amplification of bar, bktB, phaB, and phaC gene was carried
out using standard or touch-down PCR protocols (Sambrook
et al., 1989). Fifty-nanograms of oil palm DNA and 1 ng of
plasmid DNA were used in the PCR reactions. The following
amplification condition was used in the standard procedure: 30
cycles at 92◦C (50 s), 60◦C (50 s), and 72◦C (60 s). For the
bar gene specifically, the touchdown procedure, 10 cycles 92◦C
(45 s), 70◦C (45 s; −0.5 C per cycle), 72 C (60 s), and 20 cycles
92 C (45 s), 65 C (45 s), and 72 C (60 s) was used. Amplified
PCR fragments were resolved by electrophoresis on 1.4% agarose
gels in 0.5X TBE (45 mM Tris-Borate; 1 mM EDTA, pH 8.0)
buffer.

Southern Blot Hybridization
Twenty-micrograms of undigested and overnight EcoRI digested
transformed and untransformed oil palmDNAwere separated on
1.0% agarose gels and later transferred onto nylon membranes
(Hybond-N, Amersham) using a vacuum pump at 55 mbar
pressure. Bar gene fragment (361 bp) was labeled with DIG
(Roche Molecular Biochemicals) according to the manufacturer’s
instructions. Labeled probes were then hybridized to the
membrane at 65◦C. The membranes were washed twice with
2X washing solution (5 min each) and twice with 0.5X washing
solution (15 min each at 65◦C). The membranes were later
blocked with a blocking reagent and incubated with anti-DIG
to bind the antibody conjugates to the labeled DNA. The
bound antibody was detected by using a chemiluminescent
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assay (CSPD). The membranes were exposed to film at room
temperature for 1–2 h.

Total RNA Extraction
A method modified from Zeng and Yang (2002) was used to
isolate RNA from transgenic samples. Ten grams of frozen leaf
tissues were ground into powder in a mortar in the presence
of liquid nitrogen and later transferred to a 30 mL extraction
buffer [0.05 M Tris-HCl (pH 8.5), 0.15 M LiCl, 5 mM EDTA, 5%
SDS, 0.1 M aurin tricarboxylic acid, 0.4% β-mercaptoethanol] in
50 mL centrifuge tube (SS34). Fifteen-milliliters each of phenol
(pH 8.0) and chloroform were added to the homogenate and
the phases were separated by centrifugation (20,000 g, 25◦C, and
30 min). The aqueous layer was removed to new centrifuge tubes
and re-extracted with addition of 15 mL each of phenol (pH
8.0) and chloroform. The aqueous layer was later added with
equal volume of chloroform:isoamylalcohol (24:1), vortexed and
centrifuged at 20,000 g for 30 min at 25◦C. Eight molar LiCl
was added to the aqueous layer to make a final concentration
of 2 M. The mixture was mixed by inversion and incubated
overnight at 4◦C to precipitate the RNA. The RNA was pelleted
by centrifugation at 20,000 g (4◦C) for 30 min and resuspended
in 1.5 ml of 2 M LiCl. After another round of centrifugation at
20,000 g for 30 min, the pellet was dissolved in 5 ml of RNase-
free water. Eight molar of LiCl was again added to the mixture to
a final concentration of 2 M, mixed and stored at 4◦C overnight
to precipitate the RNA. The RNA was pelleted by centrifugation
at 20,000 g (4◦C) for 30 min, rinsed with 4 ml of 2 M LiCl, and
resuspend in 1 ml RNase-free water prior to centrifugation at
12,000 g for 5 min to pellet insoluble materials. The supernatant
was transferred to a new SS34 tubes and 1/19 volumes of 3 M
sodium acetate (pH 5.2) and 2.5 volumes of absolute ethanol
were added to the mixture. The mixture was mixed and stored
at −80◦C for at least 2 h to precipitate the RNA. The RNA was
pelleted by centrifugation at 20,000 g (4◦C) for 10 min. The
supernatant was discarded and the pellet was rinsed two times
in 1 ml 70% cold ethanol and dried under vacuum. The RNA
was dissolved in RNase-free water and stored at −80◦C until
required.

Real Time PCR
Total RNA clean-up was carried out using the Qiagen RNase-
free DNase kit according to the manufacturer’s protocol to
remove DNA and other impurities. Concentration and purity
of the RNA were determined using the NanoDrop ND-1000
Spectrophotometer. Three-hundred nanogram per microliters of
cleaned total RNA was subjected to integrity analysis using the
Agilent 2100 Bioanalyzer (RNA 6000 Nano Assay Kit). Intact
RNA was converted to cDNA by using the High Capacity
cDNA Archive Kit (Applied Biosystems). Real-time PCR was
carried out with 10 μl 2x TaqMan Universal PCR Master Mix,
1 μl 20x Assay Mix (containing specific primers and probe)
and 9 μl cDNA (diluted in RNase-free water). Gene fragment
was used as a control of the specificity of primers and probes
used in the amplification. PCR cycling parameters were 50◦C
for 2 min, 95◦C for 10 min, and 40 cycles of 95◦C for 15 s
and 60◦C for 1 min. Real-time detection of fluorescence was

performed on the ABI PRISM 7000 Sequence Detection System
(Applied Biosystems, USA). To determine the relative expression
level of the transgenic lines, the average Cq value of the
transgene was normalized to the average Cq value of GAPDH
(endogenous control) and then compared to the calibrator.
For this experiment, untransformed oil palm was used as the
calibrator. Relative quantification (RQ) of the gene expression
was calculated using the RQStudyApplication in the 7000 System
SDS Software version 1.2.3 (Applied Biosystems, USA) which was
based on the comparative ddCT method (Livak and Schmittgen,
2001).

The efficiency of the TaqMan reaction was determined by
the method described by Toplak et al. (2004). A five serial
10-fold dilutions of a positive control template was carried
out and the Cq values was plotted as a function of log10
concentration of template. The slope of the resulting line is a
function of the PCR efficiency. The PCR efficiency was calculated
by putting the slope (S) value into the following equation: PCR
efficiency (%) = {[10(1/−S)]−1} × 100. cDNAs generated from
the R. eutropha were used to generate standard curve for all
the PHB genes while cDNAs generated from untransformed oil
palm were used to generate the standard curve for the GAPDH
gene.

High Performance Liquid Chromatography
Analysis
Detection of PHB in the transformed oil palm was carried out
using HPLC. The presence of the PHB in the samples was
measured using an acidic methanolysis and hydrolysis method
according to Karr et al. (1983). Two gram leaf samples were dried
in an 80◦C oven. The dried samples were ground to powder
in liquid nitrogen. The powdered samples were transferred into
glass tubes and 1 ml concentrated H2SO4 was added prior
to incubation at 90◦C for 30 min. This acid-treatment step
depolymerized the PHB by elimination of water to yield crotonic
acid (trans 2-butenoic acid). After incubation, the reaction
mixture was cooled on ice. This was followed by addition of
4 ml 0.014 N H2SO4. After thorough mixing, the sample was
filtered into a new glass tube through a LC 13 PVDF 0.2 μm
membrane. Then, 15 μl of the filtered sample were transferred
into appropriate vials containing 135μl 0.014NH2SO4 for HPLC
analysis. Detection of crotonic acid was performed at 210 nm.

Nile Blue A Staining Method
Nile blue A staining was carried out using a protocol by Ostle
and Holt (1982) with some modifications. A 1% (v/v) aqueous
solution of Nile blue A (Sigma) was prepared by heating at 50◦C
to dissolve the stain, and then filtered before use. Leaf samples
were cut into small square sections and were stained with 500 μl
Nile blue A solution at 55◦C for 10 min on slide. The slides were
washed with sterile water and then with 8% (v/v) aqueous acetic
acid. The slides were washed again with sterile water, blotted
dry with 3 MM whatman paper, and then covered with a glass
cover slip. The stained samples were viewed under an excitation
wavelength of 460 nm by using Leica stereomicroscope (Model
MZ12.5). A fluorescence Plus filter module (Leica) was used to
reduce autofluorescence from chlorophyll.
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Results and Discussions

Regeneration of Transgenic Oil Palm Plantlets
Oil palm embryogenic calli were transformed with the plasmid
pME22, carrying bar, bktB, phaB, and phaC genes using
microprojectile bombardment based on optimized parameters
(Parveez et al., 1997, 1998). A schematic representative of plasmid
pME22 is given in Figure 2. Embryogenic calli bombarded
without DNA was used as a negative control. All the three genes
for synthesizing PHB were individually inserted with a transit
peptide of the small subunit of rubisco from pea (Nawrath et al.,
1994b). Maize ubiquitin promoter and its intron (Christiensen
et al., 1992) was used to drive all the PHB genes and selectable
marker gene (bar) as it has been proven to be the best promoter
for expressing transgenes in oil palm (Chowdhury et al., 1997).
All the four genes used in this study were fused together into
one vector sequence because it was shown in Arabidopsis that it
could result in higher accumulation of PHB (Valentin et al., 1999;
Bohmert et al., 2000; Mitsky et al., 2000). This could also help
ensure that all the genes are closely integrated into the genome
and allow for higher gene expression and reduce gene silencing
(Mitsky et al., 2000).

Oil palm embryogenic calli were initially cultured on a
medium without selection agent for ∼3 weeks. This was followed
by a step-by-step (two stages) selection approach with the
hope of producing a higher number of transformants and
also overcoming the regeneration difficulties. The transformed
embryogenic calli were subcultured onto fresh medium
containing selection agent, once a month. Initial selection was
carried out by exposing the bombarded embryogenic calli to half
strength of selection agent (25 mg/l). The selected transgenic
embryogenic calli were later subcultured onto fresh medium
containing full strength of the selection agent (50 mg/l). It was
observed that upon transfer to fresh medium containing Basta,
untransformed embryogenic calli began to die and allowing only
resistant embryogenic calli to proliferate selectively. Generally,
Basta resistant embryogenic callus colonies started emerging
after 6–8 months on selection medium.

The freshly emerged Basta resistant embryogenic calli were
proliferated on the same medium containing selection agent

until the size of colony became bigger and turned into
embryoids. The transgenic embryoids began to regenerate on
the selection medium where the whitish embryoids became
greenish (polyembryogenic) after 3–5 months of culture on
polyembryogenic inducing medium. After 2–3 months, some
of these polyembryogenic cultures started to produce shoots.
Once these shoots were big enough, they were individually
isolated from the polyembryoids cultures and transferred onto
conical flasks or test tubes containing shoot inducing medium
for shoot elongation. After ∼2–3 months the elongated shoots
were transferred into test tubes containing root inducing
liquid medium for further development and root initiation.
After ∼2 months in liquid root inducing medium, individual
plantlets, with good rooting system were obtained. The plantlets
were transferred onto soil in small polybags and grown in a
biosafety screenhouse (Figure 3). These plantlets were fertilized
and maintained according to standard nursery practices for
oil palm. All plantlets showed normal phenotype and growth
characteristics.

The initial culturing of bombarded tissues on embryogenic
calli medium in the absence of selection agent for 3–4 weeks
is to allow transformed cells to divide several times prior to
selection. The cell division process will result in a critical mass
of transformed cells which is important for the survival of cells
under selection pressure (Ozias-Akins et al., 1993). Selection
using a lower concentration of Basta is preferable as there is some
evidences in other systems suggesting that regeneration capacity
of stably transformed embryogenic calli increases under these
conditions. It was reported earlier that selection of transformed
rice at a lower concentration of hygromycin (50mg/l as compared
to 100 mg/l) resulted in a higher number of transformed calli
and transgenic plants (Christou and Ford, 1995). This two-
step selection was also successfully used in producing transgenic
sugarcane, rye, wheat, and Triticale plants (Bower and Birch,
1992; Vasil et al., 1992; Castillo et al., 1994; Zimny et al., 1995).

Polymerase Chain Reaction (PCR)
Recovering resistant embryogenic callus and regenerating
transgenic plants on selection medium are not sufficient proof
to demonstrate stable integration of transgenes into the plant

FIGURE 2 | Schematic diagram of plasmid pME22 carries bar, phaC,
bktB, and phaB genes driven by maize ubiquitin promoter. All the phaC,
bktB, and phaB genes were fused at the 5′ end with a transit peptide of small
subunit of rubisco from pea. The full size of the pME22 plasmid is 17,586 bp.

UbiPro, maize ubiquitin promoter; BAR, gene for phosphinothricin
acetyltransferase; poly A, 7S 3’ beta conglycinin transcriptional termination
sequence; TP, transit peptide of small subunit of rubisco; bktB, β-ketothiolase;
phaB, acetoacetyl-CoA reductase; phaC, PHA synthase.
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FIGURE 3 | Regeneration process of oil palm plantlets. (A) Embryogenic
calli before bombardment; (B) Transformant calli surviving on selection media;
(C) Shoot development on selection media; and (D) Transformed plantlets
with roots.

genome. Molecular analyses are necessary to further confirm
stable integration of transgenes in plant genome. In this study,
DNA from a number of plantlets (originating from few different
resistant embryogenic calli clumps) were obtained and subjected
to PCR analyses. DNA from untransformed plants was also
isolated and used as negative controls. PCR amplification of an oil
palm internal control fragment was carried out prior to the PCR
amplification of transformed genes. Based on previous report,
the use of a specific pair of primers (POR12 and POR38) will
specifically amplify a ∼1.1 Kb size fragment of the oil palm
genomic DNA (Nurfahisza et al., 2014). As such all samples used
in this study, including the negative controls, were tested for
their ability to amplify the 1.1 Kb fragment. Samples failing to
amplify were further purified or DNA was re-extracted prior to
the amplification of the transgenes.

All transgenic plantlets regenerated were derived from
embryogenic calli which were selected on herbicide Basta
after being bombarded with the plasmid carrying bar gene.
Therefore, amplification of the bar gene was used to verify the
transformants. Using the bar gene primers and a touchdown
protocol, a 460 bp amplicon was expected. More than 90% of
the transgenic samples tested showed the amplification of the
expected size band indicating the presence of the bar gene.
Samples that were positive for bar gene were considered to be
putative transgenic and most likely to carry the PHB transgenes.
These were therefore later subjected to amplification of the three
PHB genes. For these three genes, primers were designed to
encompass almost the entire sequence of the genes used for
transformation. For the amplification of bktB gene a fragment
size of 1185 bp was expected, while for the phaB and phaC genes,
fragment sizes 741 bp and 1770 bp, respectively, were expected

(Figure 4). Most of the tissues tested showed the amplification of
the three genes, and for the negative controls no amplification of
the genes was observed. A summary of the number of samples
analyzed and the results obtained is shown in Table 1. Overall,
77 of the bar positive samples showed co-integration of the bar
gene with the other three PHB genes which were not involved in
selection. The high frequency of co-integration is not surprising
since all genes were linked on the same transforming vector.
This high percentage of transgene co-integration is in agreement
with the findings reported for soybean and wheat (Christou and
Swain, 1990; Vasil et al., 1991). Another observation was that
not all the transgenic palms carried the three PHB genes, were
some had one or two only, while others appear to be escapes.
Similar results were also observed in transgenic rice, alfalfa and
switchgrass (Saruul et al., 2002; Endo et al., 2006; Somleva et al.,
2008).

Southern Blot Hybridization
Polymerase chain reaction analysis of the PHB and selectable
marker genes provide initial evidence of the presence of the
transgenes in the genome of putative transgenic oil palm. As
observed by Potrykus (1990), positive PCR amplifications are
not a definitive evidence of stable integration of transgenes into
the plant genome, and there are other requirements to confirm
the stable integration of a transgene. One of the requirements is
Southern blot analysis utilizing high molecular weight genomic
DNA. In this study, when restriction digested genomic DNA
from transformed oil palm samples was hybridized with the

FIGURE 4 | Polymerase chain reaction (PCR) analysis on DNA from
transformed oil palm plantlets using primers for phaC gene. The
expected size (1770 bp) is indicated by an arrow. Lane M = 1 kb plus DNA
marker; W, water (negative control); P, plasmid control (pME22); 1–11, oil palm
samples transformed with PHB genes.

TABLE 1 | Summary of polymerase chain reaction (PCR) analysis on 56
transgenic plantlets samples transformed with PHB genes.

Samples PORa Barb bktBc phaBd phaCe

pME22 56 56 52 40 49 47

Percentage (%) 100 100 93 77 94 90

aTotal number of samples analyzed by PCR and positive for internal control (POR).
bTotal number of samples that was PCR positive for bar gene.
c,d,eTotal number of samples positive by PCR for bktB, phaB, and phbC genes (%).
Percentages of samples showing the presence of bktB, phaB and phbC genes was
based on 52 samples that were PCR positive for bar gene.
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transgenes, very weak signals were obtained (data not shown).
This was probably due to non-optimization of hybridization
conditions. In cases where undigested DNA samples were
hybridized with the bar gene (361 bp), hybridization with high
molecular genomic DNA was observed (Figure 5). Hybridization
to the high molecular weight undigested genomic DNA indicates
the integration of the transgenes into the oil palm genome.
It was also observed that there was no hybridization with
undigested total DNA from untransformed sample. In this study
a shorter fragment of bar gene was used (361 bp) instead of
full length (∼600 bp) to avoid some area of the bar gene that
share some homology with oil palm genome and occasionally
resulting in false positive signals. As such, PCR and Southern
blot hybridization with undigested DNA have proven the stable
integration of the transgenes into the genome of transformed oil
palm plantlets.

Total RNA Isolation and Real-time PCR
Analysis
Total RNA from oil palm leaves was successfully isolated based
on method by Zeng and Yang (2002) which gave consistent
yield of ∼60–120 μg of total RNA from one gram of leaf
tissue. The purity of the RNA samples was also good as the
A260/280 ratios were between 1.8 and 2.0. Real-time PCR was
carried out to study the expression of bktB, phaB, and phaC
genes on 35 putative transgenic samples carrying PHB genes.
The RNA from the untransformed plant was used as the
calibrator. Removal of DNA contamination from total RNA
samples was carried out using the QIAGEN RNase-free DNase
set according to the manufacturer’s protocol. RNA integrity
is very important in gene expression studies involving real-
time PCR. Therefore, only RNA samples with RNA integrity
number (RIN) value greater than 5.0 were used to synthesize
cDNA. RIN value was determined using the Agilent 2100

FIGURE 5 | Southern hybridization on undigested genomic DNA from
transformed oil palm using bar gene fragment as the probe. Lane
M = 1 kb plus DNA ladder marker; U, untransformed oil palm (negative
control); P, plasmid control (positive control pME22), 1–16, oil palm samples
transformed with PHB genes.

FIGURE 6 | Expression of bktB, phaB, and phaC genes in transgenic
oil palm determined by real-time PCR analysis. UT represents the
untransformed oil palm (calibrator).

Bioanalyzer. The cDNA was later synthesized using the High
Capacity cDNA Archive kit (Applied Biosystems). A total of
45 ng of cDNA were used in the RT-PCR analysis. The
RQ of the genes was carried out using the comparative
ddCT method (Livak and Schmittgen, 2001). Glyceraldehyde-
3-phosphate dehydrogenase (GAPDH) gene was used as the
internal (endogenous) control.

Real-time PCR results showed that not all genes were
expressed in the samples. Lower CT (threshold cycle) values
reflected more target gene transcripts in the sample and a higher
CT indicated less target gene transcripts. Of the 35 transformed
plants tested, only seven samples expressed all the three PHB
genes.Most of the samples expressed either two or only one of the
transgenes. The expression level of all the three PHB genes in the
seven samples is shown in Figure 6. The highest expression level
for all genes was detected in transformant event no TE7-29. The
expression was 2.17, 2.42, and 1.75-fold higher than the calibrator
for the bktB, phaB, and phaC genes, respectively. Overall, these
results indicated that the genes were expressed at low levels in
the transgenic plants. It was reported that comparing to GADPH
gene as a control, a low expression level of endogenous carotenoid
genes was also observed in oil palm (Rasid et al., 2007). The
transcript level of carotenoid genes seemed to be lower than
the transcript level of the GADPH gene. It was also observed
that not all plants that were resistant to Basta also carried and
expressed the PHB genes. It is quite common in transformation
studies for such phenomenon to occur. It has been reported in
tobacco, alfalfa, and rice that not all plants with positive transgene
Southern hybridization expressed the PHB genes (Nakashita
et al., 2001; Saruul et al., 2002; Endo et al., 2006). This observation
could also be due to transgene truncation or silencing as it is
a common phenomenon in development of transgenic plants
(Meyer and Saedler, 1996).

Detection of PHB in Transgenic Oil Palm
Detection of PHB in the transformed oil palm was carried out
using HPLC. The presence of the PHB in the samples was
measured using an acidic methanolysis and hydrolysis method
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FIGURE 7 | Detection of PHB in the form of crotonic acid by HPLC. (A) PHB standard as positive control; (B) untransformed oil palm (negative control); (C–F)
transformants number TE9-4, TE7-28, TE7-29, and TE11-2, respectively, which shows crotonic acid peak at retention time of ∼23.78 min. Arrow indicates crotonic
acid retention time.
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according to Karr et al. (1983). The sulfuric acid used in the
methanolysis hydrolyzed the hydroxybutyrate into crotonic acid
and water. The crotonic acid was detected as a peak in the
HPLC chromatogram. In this experiment, standard (commercial)
crotonic acid and acid hydrolyzed commercial PHB standard
were used as positive controls. In addition, to confirm the
detection of the crotonic acid in oil palm samples, standard
crotonic acid, and commercial PHB standard were spiked into
untransformed oil palm samples. As expected, a crotonic acid
peak was detected in all of the standards (Figure 7) and spiked
samples. When transformed oil palm samples were subjected
to acid hydrolysis and HPLC analysis, PHB was detected in
11 out of 36 samples tested (Figure 7). The amount of PHB
produced in transgenic oil palm samples were calculated based
on the regression equation derived from known crotonic acid and
PHB standards used in this study. Based on the known standard
concentrations, the concentration of PHB in all samples were
calculated. The amount of PHB produced during HPLC analysis
was later used to calculate the amount of PHB produced per dwt
of oil palm leaves.

The amount of PHB obtained was quite low, the content
ranging from 0.033 to 0.058% dwt (0.33 to 0.58 mg/g dwt) with
an average of 0.043% dwt (Figure 8). The determined PHB
peak positions of the samples were based on the retention time
of crotonic acid, acid hydrolyzed PHB and spiked standards.
The results indicate that the amount of PHB obtained was
low. It is hoped that when the transgenic palms mature,
higher accumulation of PHB would likely be observed as the
substrate for PHB, acetyl-CoA, is abundant in the oil palm fruit
(mesocarp).

To further confirm the PHB content in transformed oil
palms, the leaf of TE7-27, TE7-28, and TE7-29 were stained
with Nile blue A (Figure 9). All leaf samples showed foci of
orange fluorescence with different distribution patents. Orange

fluorescence was not observed in the leaf of untransformed oil
palm stained with Nile blue A indicating that the foci of orange
fluorescence observed were due to the presence of PHB granules.
Nile blue A staining is the easiest way to visualize PHB granules
in cells which were already demonstrated in transgenic plants
producing PHB, such as Arabidopsis (Nawrath et al., 1994b)
and sugarcane (Petrasovits et al., 2007; Purnell et al., 2007).
The property of Nile blue A to bind PHB granule resulted in
the strong orange fluorescence upon excitation at wavelength
460 nm. Furthermore, cell membranes or other lipid-containing

FIGURE 9 | Accumulation of PHB granules in leaf surface of
transformants number TE7-27 (A), TE7-28 (B), and TE7-29 (C) stained
with Nile blue A. No PHB granule was observed for untransformed oil palm
leaf (D).

FIGURE 8 | Polyhydroxybutyrate content in different transformants (transformation events) measured in mg/g of dry weight.
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cell components do not absorb Nile blue A to give detectable
fluorescence.

Evaluation in the biosafety nursery did not demonstrate any
negative effects which could be attributed to the accumulations of
PHB. It is postulated that the normal appearance of the transgenic
oil palm was due to the low amount of PHB synthesized in oil
palm samples tested. It was reported in several plants that a high
amount of PHB results in detrimental effect on the growth or
morphology of the plants. In flax, it was reported that transgenic
plants that produced lower amount of PHB (0.0005–0.0046%
FW) demonstrated no negative effects on growth as compared
to plant lines producing high PHB content (up to 0.005% FW),
which show significant growth reduction and senescence soon
after reaching a height of a few centimeters (Wróbel et al., 2004).
Similarly in cotton, transgenic plants accumulating a low amount
of PHB, from 0.003 to 0.344% dwt fiber and showed normal
growth and morphology (John and Keller, 1996). Alfalfa and
sugarcane leaves which synthesized PHB up to 0.18 and 1.88%
dwt, respectively, were also shown not to have any obvious
deleterious effects (Saruul et al., 2002; Petrasovits et al., 2007).
Previously, it was shown that PHB can be synthesized up to
1.0% dwt in Arabidopsis plastids of presenescing leaves without
any negative effects on growth (Nawrath et al., 1994b). However,
in a later study, where fully expended leaves were examined,
Arabidopsis plants that accumulated 0.3% FW of PHB were
shown to have a reduction in growth (Bohmert et al., 2000). In
addition, all the plants that produced 0.3% FW PHB or higher
also showed chlorosis of their leaves. Finally, in the lines that
produced the highest amount of PHB, 3.4 and 4.2% FW, the
growth was severely stunted and the plants failed to produce any
seeds.

There are three possible reasons why the strategy utilized in
this study failed to yield high amount of PHB in oil palm leaves.
First, all the PHB and selectable marker genes were driven by
the same maize ubiquitin promoters. In alfalfa, the presence of
four CaMV 35S promoters driving the expression of the PHB and
selectable marker genes led to T-DNA rearrangements or gene
silencing, which subsequently resulted in low PHB yield (Saruul
et al., 2002). Second, the extraction method was probably not very
efficient for extracting PHB synthesized in the oil palm leaves.

Mittendorf et al. (1998) reported that ∼60–75% of the PHB
remained in the Arabidopsis plant material after the extraction
procedure. It is possible that the PHB detected in the oil palm
leaves accounted only for a fraction of PHB polymers that were
able to pass through the cell wall matrix; while PHB remaining
trapped inside the cells may have escaped HPLC detection. The
third reason why the above strategy failed to yield high PHB
in the oil palm leaves may be because the PHB was extracted
and quantified from the leaves and not from the fruit, where the
maximum pool of Acetyl-CoA is present. It was reported that
rapeseed contains up to 40% oil per dwt in its seeds. Thus, the
seeds should be the most suitable place to produce PHA. This
strategy not only avoided deleterious effects on the plant growth
but also favored PHB extraction (Liang et al., 2000). Therefore,
it is expected that when the transgenic oil palm matures, large
amounts of PHB could possibly be produced in its fruits.
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