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As a preliminary step in the phosphoproteome analysis of germinating seeds (0 and
24 h after seed imbibition) and early grown seedlings (216 h after seed imbibition)
from a non-orthodox sp. Quercus ilex, a multiplex (SYPRO-Ruby and Pro-Q DPS)
staining of high-resolution 2-DE gels was used. By using this protocol it was
possible to detect changes in protein-abundance and/or phosphorylation status. This
simple approach could be a good complementary alternative to the enrichment
protocols used in the search for phosphoprotein candidates. While 482 spots were
visualized with SYPRO-Ruby, 222 were with Pro-Q DPS. Statistically significant
differences in spot intensity were observed among samples, these corresponding to 85
SYPRO-Ruby-, 20 Pro-Q-DPS-, and 35 SYPRO-Ruby and Pro-Q-DPS-stained spots.
Fifty-five phosphoprotein candidates showing qualitative or quantitative differences
between samples were subjected to MALDI-TOF-TOF MS analysis, with 20 of them
being identified. Identified proteins belonged to five different functional categories,
namely: carbohydrate and amino acid metabolism, defense, protein folding, and
oxidation-reduction processes. With the exception of a putative cyclase, the other 19
proteins had at least one orthologous phosphoprotein in Arabidopsis thaliana, Medicago
truncatula, N. tabacum, and Glycine max. Out of the 20 identified, seven showed
differences in intensity in Pro-Q-DPS but not in SYPRO-Ruby-stained gels, including
enzymes of the glycolysis and amino acid metabolism. This bears out that theory the
regulation of these enzymes occurs at the post-translational level by phosphorylation
with no changes at the transcriptional or translational level. This is different from the
mechanism reported in orthodox seeds, in which concomitant changes in abundance
and phosphorylation status have been observed for these enzymes.
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Introduction

Holm oak (Quercus ilex L. subsp. ballota [Desf.] Samp.) is
the dominant tree species in natural forest ecosystems over
large areas of the Western Mediterranean Basin (Pulido et al.,
2001). Nowadays, forest restoration and reforestation are high
priority objectives, with Q. ilex being one of the major tree
species for such a purpose (MAPA, 2006), this requiring its
nursery production at a high scale. Q. ilex forest maintenance
and sustainability are facing important problems and challenges
related to seed viability/conservation and mortality of adult trees
and plantlets after field transplantation resulting from adverse
environmental conditions like drought and the so-called decline
syndrome (Gallego et al., 1999). As natural, non-domesticated,
plant species with a great plasticity and phenotypic variability,
a key challenge prior to massive clonal propagation is the
establishment of techniques for the cataloging and selection of
genotypes among provenances with a high survival percentage
and productivity under adverse environmental conditions. In our
group, a Proteomics Research Program with Q. ilex has been
carried out in order to study variability of holm oak populations
and response to stresses, and to select elite individuals to be used
in reforestation programmes (Jorge et al., 2006; Valero Galván
et al., 2011, 2012a,b).

Holm oak is a recalcitrant plant species whose germination
and viability loss during storage, has been poorly studied at
the molecular level if compared with to orthodox ones. This
knowledge will help to understand biochemistry and metabolic
status before and after the germination process, which could be
important for the development and optimization of strategies
for large scale propagation, germplasm conservation and seed
conservation practices (Balbuena et al., 2011; Walters et al.,
2013).

The germination process of plant seeds has been analyzed by
using a proteomics approach both for comparative purposes and
for characterisation of posttranslational modifications (PTMs),
mainly phosphorylation. Phosphorylation is a ubiquitous and
reversible PTM, which determines protein conformation,
stability and activity (Kersten et al., 2006; Hunt et al., 2007; Bond
et al., 2011). Phosphorylation events modulate a wide range of
biological processes in plants and other organisms (Nakagami
et al., 2010). Thus, in seed germination, phosphorylation has
proven to be one of the mechanisms underlying the signaling
cascade pathway mediated by ABA (Fujii et al., 2009; Cutler
et al., 2010; Umezawa et al., 2013). Quantitative and qualitative
profiling of phosphoproteins during seed germination and
seedling development has been performed using different
proteomic approaches (gel based and gel-free) in different plant
species such as Arabidopsis thaliana (Sugiyama et al., 2008;
Kersten et al., 2009; Reiland et al., 2009), Medicago truncatula
(Kersten et al., 2009; Rose et al., 2012a), Phaseolus vulgaris
(Alonso and Zapata, 2014), Zea mays (Lu et al., 2008), and
Oryza sativa (Chen et al., 2014; Han et al., 2014). It is important
to highlight that to the best of our knowledge, all previously
investigated species produced orthodox seeds and no data on
phosphoproteomic analysis of non-orthodox or recalcitrant
seeds have been published.

The characterisation of the phosphoproteome includes
the detection and identification of phosphoproteins and
phosphopeptides, localisation of the exact phosphorylation sites
and the quantitation of phosphorylation status, which can
be performed by gel-based and gel-free approaches. Although
several MS-based approaches for studying phosphoproteins,
including down and bottom-up ones (Kaufmann et al.,
2001; Woods Ignatoski, 2001; Agrawal and Thelen, 2005)
have been used, phosphopeptides are notoriously difficult to
analyse, especially in the presence of their non-phosphorylated
counterparts. This is due, among other factors, to the low
stoichiometry of phosphorylated proteins arising from the fact
that only a small fraction of the protein will exist in a particular
phosphorylated form (Wu et al., 2011; Rigbolt and Blagoev,
2012).

Phosphoproteomic experiments are being perfomed by
using a phospho-protein/peptide enrichment preliminary step
(Thingholm et al., 2009). These protocols require an excessive
manipulation of the sample, thus reducing the confidence of the
comparative results. It is for that reason, and as a complementary
protocol, we propose the use of multiplexing (SYPRO-Ruby
and Pro-Q DPS) staining of high-resolution 2-DE gels for a
simultaneous analysis of protein changes in abundance and/or
phosphorylation status.

In the present work we describe the use of that a technique
to detect changes in the phosphoprotein profile throughout
the Q. ilex seed germination and early seedling growth
stages. After MALDI-TOF-TOF MS analysis, we have identified
20 proteins whose phosphorylation status varies during the
seed developmental process, with seven of them showing no
differences in abundance. This last group included enzymes of the
glycolytic and amino acid pathways that were, respectively, more
and less phosphorylated in seedlings than in seeds. This pattern
was different from the one reported for orthodox seed species, in
which concomitant changes in abundance and phosphorylation
have been observed for enzymes of these two pathways.

Materials and Methods

Plant Material
Mature acorns were harvested during October–November from
healthy holm oaks from Cerro Muriano-Córdoba (Córdoba,
Spain 37◦59′57.74′′N, 4◦46′57.93′′W). Germination and seedling
growth were performed at 22 ± 1◦C for up to 10 days in darkness
as described in Liu et al. (2012). Undamaged, mature acorns were
sterilized by immersion in 2.5% sodium hypochlorite, washed
abundantly with water and finally dried with filter paper. In
order to achive a homogeneous and synchronized germination
(Liu et al., 2012), acorns were peeled, removing the pericarp and
cutting off parts of the distal ends of the acorns, and then placed
in plastic boxes containing one sheet of whatman No3 filter
paper over wet perlite. The system was covered with filter paper
to avoid water loss (Figure S1). Analyzed time course/periods,
corresponding to different seed developmental stages (Figure S2)
was selected based on morphology as assessed by microscopic
observations (Romero-Rodríguez, 2015; Ph. D Thesis); these
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stages were selected because they were representative of the
morphological changes that occur during germination and
seedling growth (24 h after imbibition the emergence of radicle
was visible and 216 h shoot seedling started to grow). The
embryonic axis was removed from seeds at 0 and 24 h after
imbibition and the whole seedling at 216 h after imbibition.
Samples from each time were abundantly washed with water,
blot dried and frozen in liquid nitrogen and stored at −80◦C
until protein extraction. Three pooled samples per stage, each
one corresponding to a biological replicate (1–2 g fresh weight
per pool coming from 20 to 100 individuals), were performed.

Protein Extraction, 2-DE Electrophoresis and
Multiplex Staining of the Gels
Tissue samples were ground to a fine powder in liquid nitrogen
using a mortar and pestle (three biological replicates per stage).
Protein extracts were obtained from embryo axes of mature (0 h,
un-imbibed seeds) and germinated seeds (24 h after imbibition
when the radicle just emerged) and from seedling radicles
(4.5–5 cm length, 216 h after imbibition), (Figure S2). Proteins
were extracted using TCA/acetone-phenol according to the
protocol of Wang et al. (2006). Protein content in samples
was estimated by the method of Bradford (Bradford, 1976)
with bovine serum albumin as a standard. Samples (400 μg of
protein) of each biological replicate per gel, were focused on
17 cm, 5–8 pH IPG strips using a Bio–Rad Protean IEF Cell
system (Görg et al., 2004; Maldonado et al., 2008; Valero Galván
et al., 2011). The second dimension, SDS-PAGE (Laemmli, 1970)
was performed on 12% polyacrylamide gels (PROTEAN R© Plus
Dodeca Cell). Gels were double stained, first with Pro-Q DPS
and then with SYPRO-Ruby (Figure S3) following the procedure
described in Agrawal and Thelen (2006) and Berggren et al.
(2000). Images were captured with Molecular Imager FX (Bio-
Rad Laboratories, Inc.). Experimental Mr-values were calculated
by mobility comparisons with protein standard markers (SDS-
PAGE Standards, 161-0304, Bio-Rad) run in a separate marker
lane on the SDS-gel, while pI was determined by using a 5–8
linear scale over the total length of the IPG strips.

Gel Image Analysis and Statistical Tests
Gel image (Pro-Q DPS and SYPRO-Ruby) analysis was
performed with PDQuest 8.0.1 software (Bio-Rad) (Valledor
and Jorrín, 2011). As reported by Agrawal and Thelen (2006)
and in order to eliminate false positives, phosphoproteins spots
(revealed with Pro-Q DPS) were only considered if the Pro-
Q DPS/SYPRO-Ruby volume ratios were higher than those
obtained for negative control, non-phosphorylated markers (β-
galactosidase and serum albumin) and with ratios equal to or
higher than those obtained for phosphorylated ovoalbumin used
as positive control. Consistent spot volumes (those present in all
biological replicates) were normalized based on total quantity in
valid spots, calculated for each 2-DE gel and used for statistical
assessments of differential phosphoprotein and total protein
abundance. For statistical analysis (ANOVA, PCA), the web-
based software NIA array analysis tool (http://lgsun.grc.nia.nih.
gov/anova/index.html) (Sharov et al., 2005; Sghaier-Hammami
et al., 2013) was employed.

MALDI-TOF/TOF Analysis
Spots with differential abundance were automatically excised
(Investigator ProPic, Genomic Solutions), transferred to
multiwell 96 plates, and digested with modified porcine trypsin
(sequencing grade; Promega) by using a ProGest (Genomics
Solution) digestion station. In-gel digestion was performed as
decribed by Shevchenko et al. (1996). Peptides were extracted
from gel plugs by adding 10 μL of 10% (v/v) trifluoracetic
acid (15 min at room temperature). Solubilized peptides were
desalted and concentrated by using μC-18 ZipTip columns
(Millipore). Eluate was directly loaded onto the MALDI plate
using α-cyano hydroxycinnamic acid as a matrix. Peptide
mass analysis was performed with a MALDI-TOF/TOF (4800
Proteomics Analyzer, Applied Biosystems). The most abundant
peptide ions were then subjected to fragmentation analysis
(MS/MS), providing information that can be used to determine
the peptide sequence. Proteins were assigned identification
by peptide mass fingerprinting and confirmed by MS/MS
analysis. Mascot 2.0 search engine (Matrix Science Ltd.,
London; http://www.matrixscience.com) was used for protein
identification running over non-redundant NCBI protein,
UniprotKB, and Quercus (Romero-Rodriguez et al., 2014)
databases. The following parameters were allowed: taxonomy
restrictions to Viridiplantae in public databases, one missed
cleavage, 100 ppm mass tolerance in MS and 0.5 Da for MS/MS
data, cysteine carbamidomethylation as a fixed modification,
methionine oxidation, and the phosphorylation of Ser, Thr,
and Tyr residues as a variable modification. The confidence
in the peptide mass fingerprinting matches (p < 0.05) was
based on the MOWSE score, and confirmed by the accurate
overlapping of the matched peptides with the major peaks
of the mass spectrum. Proteins with statistically significant
(p < 0.05) hits were positively assigned identification. Identified
phosphoprotein sequences downloaded from UniprotKB, NCBI
nr or available in Quercus_DB (Romero-Rodriguez et al., 2014)
were subjected to BLAST analysis by using the phosphoprotein
BLAST tool in the Plant Protein Phosphorylation DataBase
(P3DB) (Gao et al., 2009) available at http://www.p3db.org/,
to find orthologous proteins whose phosphorylation sites were
described previously in other species. Proteins identified by
MALDI TOF/TOF analysis were extracted and classified based
on their putative function according to Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathway, using Blast2GO (Conesa
et al., 2005) based on BLASTp results against NCBI nr protein
database (e < 10−3), or according to annotations in UniProtKB
protein database.

Results

By using a multiplex double staining of the gels it was possible to
detect changes in the protein abundance (SYPRO-Ruby-stained
spots) and phosphorylation status (Pro-Q DPS-stained spots)
throughout the seed germination and early seedling growth
of Q. ilex in three different stages, mature seeds (just before
imbibition), germinated seeds (24 h after imbibition), and early
grown seedlings (216 h after imbibition) (Figure S2). In the
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analyzed stages the protein yield per fresh weight was around 2–
15 mg of protein per g, diminishing during the seedling growth
(Table 1).

Proteins in the extract were separated by 2-DE, and were
evenly distributed throughout along the whole pH (5–8) and
Mr (6–116 kDa) ranges (Figure 1). A total of 482 spots were
resolved after SYPRO-Ruby staining, with 222 of them also
being stained with Pro-Q DPS, these corresponding to putative
phosphoproteins (Table S1).

Consistent Pro-Q DPS stained spots, present in all the three
biological replicates, were subjected to statistical, ANOVA and
PCA, analysis, with 55, out of the 222, showing significant
variations (spot volume) between samples (Table S1). Both
qualitative and quantitative changes were observed (Table 1).
Taking as a reference the mature seed phosphoprotein-profile, big
changes occur after radicle emergence, with small differences in
germinated seeds. At the seedling stage (216 h post imbibition),
33 qualitative (7 newly appeared and 26 disappeared), and
20 quantitative (12 up and 8 down) changes were observed
(Table 1).

Two-dimensional biplots indicating associations between
experimental samples and protein spots were generated by
principal component analysis (PCA) in NIA array analysis
tools (Figure 2). The consistent Pro-Q-DPS stained spots were
different enough to establish groups of the samples analyzed.
The three analyzed stages were separated from each other; the
first component separated the mature (0 h, un-imbibed) and
germinated (24 h after imbibition) stage from seedling stages
(216 h post imbibition), and the second component separated all
the three stages. PCA results showed that PC1 and PC2 explained
88.57 and 11.42% of total variance, respectively. The 55 putative
phosphoprotein spots were selected for MALDI-TOF/TOF MS
analysis. ANOVA tests of SYPRO-Ruby stained spots (Table S1
and Figure S4) revealed that 20 out of the 55 did not show any
differences in abundance while 35 did.

Protein Identification
After MALDI-TOF/TOF analysis, 20 putative phosphoproteins
were identified (Table 2). Out of the 20, 13 changed in
abundance, while seven did not. For the former the variation in
phospho-signal could be simply due to a change in abundance

while for the other seven results can only be explained by
a modification in their phosphorylation status. To validate
the phosphoprotein character/nature of the identified proteins,
a BLAST against entries at Plant Protein Phosphorylation
DataBase (P3DB; http://www.p3db.org/) (Kersten et al., 2009)
was performed. With the only exception of spot 3103, a
putative cyclase family protein, the other Q. ilex proteins had
at least one orthologous phosphoprotein in A. thaliana, M.
truncatula, Nicotiana tabacum, and Glycine max. Table 3 lists
the orthologous proteins and their host species (Sugiyama et al.,
2008; Jones et al., 2009; Li et al., 2009; Reiland et al., 2009;
Grimsrud et al., 2010; Nakagami et al., 2010; Fíla et al., 2012; Rose
et al., 2012b).

FIGURE 1 | A virtual 2-DE gel showing the protein profile of Q. ilex
mature seed embryo axis (0 h, un-imbibed) obtained by successive
Pro-Q DPS and SYPRO-Ruby staining. Proteins stained with SYPRO-Ruby
appear in green, while Pro-Q DPS stained proteins appear in red. The
statistically significant differential phosphoprotein spots are indicated with
circles for quantitative differences and with triangles for qualitative
(absence/presence) differences. Numbers in red indicate the protein spots that
were identified by MALDI TOF/TOF.

TABLE 1 | Electrophoretic analysis of changes in the protein and phosphoprotein profile during germination and seedling growth.

Hours after Protein yield mg g−1 Spots detected by Spots detected by Spots with change in total Spots with change in

imbibition of fresh weight SYPRO-Ruby stain Pro-Q DPS protein profile* (SYPRO-Ruby) phosphoprotein profile*

Qualitative Quantitative Qualitative Quantitative

Up Down Up Down Up Down Up Down

0 15.2 402 205 – – – – – – – –

24 13.6 412 211 3 3 2 3 1 6 4 2

216 1.9 329 174 17 8 33 23 7 26 12 8

Up and down accumulated proteins were calculated respect to the mature (0h) stage.
*Phosphorylation profile was considered changed when no difference was observed in SYPRO-Ruby staining but was statistically different in Pro-Q DPS. In contrast, it was considered
unchanged when a difference was observed in both staining methods.
Number of spots detected by SYPRO-Ruby and Pro-Q DPS in different analyzed stages and number of differential spots in total protein and phosphoprotein are shown.
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FIGURE 2 | Principal component analysis plots. (A) Representation of the
samples based on the main principal components found after PCA. (B) Plot
component PC1 vs. PC2 of differentially expressed spots in three stages
analyzed.

The identified proteins were grouped into functional
categories based on the KEGG pathways database (Table 2):
carbohydrate and amino acid metabolism, defense, protein
folding and oxidation-reduction processes.

Discussion

As a preliminary step in the phosphoproteome analysis during
the seed germination and early seedling growth processes of a
non-orthodox sp. Q. ilex, a multiplex (SYPRO-Ruby and Pro-Q
DPS) staining of high-resolution 2-DE gels was used. With this
protocol it was possible to detect changes in protein-abundance
and/or phosphorylation status, identifying, at the same time,
candidate phosphoproteins. This simple technique could be a
good complementary alternative to the enrichment protocols
used in the search for phosphoprotein (Subba et al., 2013;
Han et al., 2014; Li et al., 2015). Phosphoprotein enrichment
apart from providing, as Pro-Q staining does, false positives,
involves excessive manipulation of the sample that results in
protein and PTM losses and possible biases. It is true that
phosphoprotein validation requires the identification of the
phosphorylated peptide, this not being possible or being moret
difficult through the MALDI-TOF-TOF MS strategy employed
in this work (Thingholm et al., 2009). The protocol presented
suffers from the inherent limitations of the 2-DE coupled to
the MALDI-TOF-TOF strategy, such as the possible existence
and identification of commigrating spots. In at least one case,
that of the cyclase, a phosphopeptide was identified, thus
confirming its phosphoprotein nature. In any case, rather than
identifying the site of phosphorylation, our objective was to
search for putative phosphoroteins that showed changes in
the phosphorylation status and interpreted those changes from
a biological point of view. Different evidence confirmed that
most of the Pro-Q–DPS stained spots identified corresponded
to real phosphoproteins. Thus: (i) they are Pro-Q stained;
(ii) they were only considered if the Pro-Q DPS/SYPRO-
Ruby volume ratios were higher than those obtained for a
negative control, non-phosphorylated markers (β-galactosidase
and serum albumin in this work) and with a ratio equal to or

higher than to those obtained for phosphorylated ovoalbumin
used as a positive control (Agrawal and Thelen, 2006); (iii)
phosphoprotein orthologs have been reported for four different
plant species, including A. thaliana, M. truncatula, N. tabacum,
and G. max; (iv) biological interpretation of the data, as discussed
below, fits in very well with what is known about the regulation
of the identified proteins by phosphorylation. The percentage
of phosphorylated proteins detected in our experimental system
was of 46%, with similar figures reported for chickpea seedlings
(300, Subba et al., 2013) but lower than those reported for
germinating rice seeds (500, Han et al., 2014). This could
be due to the different methodological approaches and the
experimental system used, rather than the system itself or the
biological process used or the experimental conditions rather
than differences in the number of detectable phosphorylated
proteins.

The percentage of protein identification was lower than that
obtained in Coomassie stained spots (Valero Galván et al., 2011,
2012b), this being related to the amount of protein present
beyond the absence of sequences for Quercus in databases.
The most important functional categories are discussed. In this
work, we paid special attention to those proteins that showed
variations in the phosphorylation pattern with no changes in
protein abundance, so that they were supposed to be regulated
at the post-translational levels. Independent (protein abundance
or phosphorylation pattern) or simultaneous, multiplex (protein
abundance and phosphorylation pattern) proteomics analysis by
using a similar (bottom-up, 2-DE based) strategy has been used
in the analysis of mature orthodox seed and seed germination
process in model and crop plant species, including Arabidopsis,
rice, soybean, rapeseed and maize (Lu et al., 2008; Meyer et al.,
2012; Han et al., 2014).

Three proteins belonged to the carbohydrate metabolism
category: pyrophosphate-dependent phosphofructokinase
(PPi-PFK, spot 7502), phosphoglycerate kinase (PGK, spot
7318) and glucose-1-phosphate adenylyltransferase (AGP, spot
4304) (Table 2 and Figure 3). PPi-PFK is a cytosolic enzyme
that catalyzes the phosphorylation of fructose-6-phosphate
to fructose-1,6-bisphosphate in the glycolytic direction, using
inorganic pyrophosphate as the phosphoryl donor. This
process makes fructose flow into glycolysis to provide energy.
PGK catalyzes the conversion of 1,3-diphosphoglycerate to
3-phosphoglycerate, the first substrate-level phosphorylation
reaction in the glycolytic pathway for production of ATP.
AGP catalyzes the synthesis of ADP-glucose, which is the
active glucoside for starch synthesis (Figure 3). Overall, the
phosphorylation states of these three enzymes increased
throughout the germination process. Phosphorylation
modification of many glycolytic enzymes has been reported
to cause a significant increase in enzyme activity (Li et al., 2011),
incrementing the glycolysis rate and the generation of energy
to supply the needs of the developing seedling. These results
are in agreement with previous studies on rice germination
and seedling (Nakagami et al., 2010; Chen et al., 2014; Han
et al., 2014). An increased glycolytic activity in germinating
Q. ilex seeds is supported by a decrease in sucrose content
(Romero-Rodríguez, 2015).
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FIGURE 3 | Carbohydrate metabolic pathway constructed with
proteins whose phosphorylation changed. Proteins are represented by a
green circle. The figures represent the normalized spots volume vs. analyzed
stages of each protein, also shown is the spot volume in the stages analyzed.

On the contrary, for enzymes of the amino acid metabolism
(Glutamate decarboxylase, spot 3612) and chaperones (Heat
shock protein 60, spot 2606) a decrease in their phosphorylation
signal was observed (Table 2). Glutamate decarboxylase (GDC)
catalyzes the decarboxylation of glutamate to GABA, a non-
protein amino acid involved in stress tolerances that accumulates
in germinating seeds of rice and tomato (Taji et al., 2002; Leitner
et al., 2011). Some isoforms of this enzyme are inhibited by
phosphorylation (Bao et al., 1995). If applicable to GDC, the
reduction in its phosphorylation status observed here might
imply an increase in the activity of this enzyme, to eliminate the

excess of glutamate and glutamine originated by the high rates of
stored proteins degradation occurring during germination.

The phosphorylation status of heat shock proteins (HSPs),
involved in protein folding, has been described decreasing
during rice germination (Han et al., 2014). In agreement with
that, HSP60 showed high levels of phosphorylation in non-
imbibed (0 h after imbibition) and germinated seeds (24 h after
imbibition).

In conclusion, over 200 putative phosphoproteins spots
were detected in our analysis. Among them, 20 proteins
exhibited significant changes in their phosphorylation status,
seven of which were identified. Identified enzymes of the
glycolytic (pyrophosphate-dependent phosphofructokinase and
phosphoglycerate kinase) and amino acid metabolic pathways
(glutamate decarboxylase) and protein folding (heat shock
protein 60) did not change in abundance during germination
and growth but their phosphorylation status increased suggesting
regulation at the post-translational level. Alterations in the
phosphorylation status of proteins related to glycolysis and
amino acid metabolism are in agreement considering that these
pathways must increase from mature seeds to germinated seeds
and seedling. To test these hypotheses it is necessary identify the
phosphorylation sites, but this work constitutes an initiation in
the study of the molecular mechanism involved in Q. ilex seed
germination. The phosphoproteome analysis suggested that the
metabolic machinery present in the recalcitrant seeds receives
a signal to activate and resume/summarize the most important
metabolic pathways in Q. ilex to start the germination and the
establishment of the seedlings. In orthodox seeds, changes in
abundance, together with differences in their phosphorylation
status, were observed for these enzymes. Thus, this is one of the
differences between orthodox and non-orthodox seeds that may
explain their different behavior (Han et al., 2014).

Supplementary Material

The Supplementary Material for this article can be found
online at: http://journal.frontiersin.org/article/10.3389/fpls.2015.
00620
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