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Rohini Garg and Mukesh Jain*

Functional and Applied Genomics Laboratory, National Institute of Plant Genome Research, New Delhi, India

Development of informative polymorphic simple sequence repeat (SSR) markers at a
genome-wide scale is essential for efficient large-scale genotyping applications. We
identified genome-wide 1835 SSRs showing polymorphism between desi and kabuli
chickpea. A total of 1470 polymorphic SSR markers from diverse coding and non-
coding regions of the chickpea genome were developed. These physically mapped
SSR markers exhibited robust amplification efficiency (73.9%) and high intra- and
inter-specific polymorphic potential (63.5%), thereby suggesting their immense use in
various genomics-assisted breeding applications. The SSR markers particularly derived
from intergenic and intronic sequences revealed high polymorphic potential. Using the
mapped SSR markers, a wider functional molecular diversity (16–94%, mean: 68%),
and parentage- and cultivar-specific admixed domestication pattern and phylogenetic
relationships in a structured population of desi and kabuli chickpea genotypes was
evident. The intra-specific polymorphism (47.6%) and functional molecular diversity
(65%) potential of polymorphic SSR markers developed in our study is much higher
than that of previous documentations. Finally, we have developed a user-friendly web
resource, Chickpea Microsatellite Database (CMsDB; http://www.nipgr.res.in/CMsDB.

html), which provides public access to the data and results reported in this study. The
developed informative SSR markers can serve as a resource for various genotyping
applications, including genetic enhancement studies in chickpea.

Keywords: chickpea, genotyping, molecular diversity, polymorphism, population structure, simple sequence
repeat

Introduction

In recent years, a significant progress has been made concerning the development of numerous
genomic and transcript-derived simple sequence repeat (SSR) and single nucleotide polymorphism
(SNP) markers at a genome-wide scale and their deployment in multi-dimensional genomics-
assisted breeding applications in chickpea (Winter et al., 2000; Abbo et al., 2005; Millan et al.,
2010; Nayak et al., 2010; Gujaria et al., 2011; Thudi et al., 2011; Gaur et al., 2012; Hiremath
et al., 2012; Roorkiwal et al., 2013; Deokar et al., 2014; Jaganathan et al., 2014). This suggests
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that development, large-scale validation and use of functionally
relevant informative sequence-based robust genetic markers
revealing high intra-specific polymorphic potential are preferred
in marker-assisted genetic enhancement studies of chickpea.
Due to many inherent desirable genetic attributes, including
abundance, co-dominant inheritance, reproducibility, multi-
allelic nature and simpler genotyping potential (gel-based assay),
SSRs have been considered as marker of choice in crop plants,
including chickpea (Varshney et al., 2005, 2014; Parida et al., 2006;
Sethy et al., 2006; Radhika et al., 2007; Upadhyaya et al., 2008;
Nayak et al., 2010; Anuradha et al., 2011; Bharadwaj et al., 2011;
Gujaria et al., 2011; Vadez et al., 2012).

Length polymorphism of SSR markers in the coding sequence
(CDS) and non-CDS components [5′-untranslated regions
(5′-UTRs), introns and 3′-untranslated regions (3′-UTRs)] of
genes are known to affect transcription and translation, and
may have significant consequences on gene function (Li et al.,
2004). The expansion and contraction of SSR repeats in the 5′-
UTRs, for instance, have significance in regulating many traits
(Dresselhaus et al., 1999; Bao et al., 2002; Zhang et al., 2006). The
length polymorphism in the functional domain of transcription
factor genes, and alteration of secondary structure of proteins
and functional domain sites have been proposed to control
seed weight/seed size in chickpea (Kujur et al., 2013). These
studies have suggested the utility of coding and non-CDS-based
SSR markers for rapidly establishing marker-trait linkages and
identifying genes/QTLs for many useful agronomic traits in crop
plants. The SSR markers particularly derived from the non-
CDS components of genes with moderate selection pressure are
expected to reveal high intra-specific polymorphism in contrast
to highly constrained CDS-based markers (Cho et al., 2000;
Chabane et al., 2005; Parida et al., 2010; Kujur et al., 2013).

The utility of genome-wide identification of polymorphic
SSR markers by comparing the genomic or transcript sequences
between indica and japonica rice (Grover et al., 2007; Zhang
et al., 2007), and Setaria italica and S. viridis (Zhang et al.,
2014) as well as among chickpea genotypes (Agarwal et al., 2012;
Jhanwar et al., 2012) in large-scale genotyping applications has
been well demonstrated. A large chickpea genome (∼740 Mb)
with narrow genetic base requires a huge number of such
functionally relevant polymorphic SSR markers at a genome-
wide scale for various applications in structural, functional,
and applied genomics. With the availability of draft genome
sequences of desi and kabuli chickpea (Jain et al., 2013; Varshney
et al., 2013), it is now possible to mine informative SSR
markers from coding and non-CDS components of genes in
the two chickpea genomes. Recently, SSR markers identified
from the kabuli genome have been made publicly accessible
via a web resource, Cicer arietinum Microsatellite Database
(CicArMiSatDB; Doddamani et al., 2014). The informativeness
of such genome-wide SSR markers can further be enriched by
identifying a subset of markers showing polymorphism between
desi and kabuli chickpea in different sequence components of
annotated genes.

Keeping all above in view, the present study was undertaken
to mine and characterize SSR repeat-motifs in different coding
and non-CDS components, and intergenic regions between

desi and kabuli chickpea genomes and develop genome-
wide polymorphic SSR markers. The developed markers were
evaluated to determine their amplification and polymorphic
potential, and assessment of functional molecular diversity and
population genetic structure among desi and kabuli chickpea
genotypes. In addition, we have developed an easy-to-use web
resource for public access of the SSR data generated in this study.
The development of informative markers would further expedite
the process of construction of high resolution genetic map, and
identification and mapping of genes/QTLs regulating important
agronomic traits for genetic improvement of chickpea.

Materials and Methods

Discovery of SSRs in Chickpea Genomes
The desi (Cicer arietinum L. cv. ICC4958; Jain et al., 2013)
and kabuli (C. arietinum L. cv. CDC Frontier; Varshney
et al., 2013) chickpea genomes were obtained from Chickpea
Genome Analysis Project1 and International Chickpea Genetics
& Genomics Consortium2, respectively. These sequences were
mined for SSRs using MISA (MIcroSAtellite3) following the
criteria (at least six repeats of di-nucleotides and five repeats
of tri- to hexa-nucleotides) as described earlier (Garg et al.,
2011; Jhanwar et al., 2012). The perfect SSRs were further
classified into hypervariable class I (≥20 bp) and potentially
variable class II (12–20 bp) types according to length of repeat-
motifs. The structural annotation of identified SSRs in different
coding (CDS) and non-coding (5′-UTRs, introns and 3′-UTRs)
sequence components of chickpea genes, and upstream regions
(1000 bp) and intergenic regions was performed based on the
available genome annotation. The putative function of SSRs
containing gene sequences was determined based on their
available functional annotation information.

Development of Gene-Derived Polymorphic
SSR Markers in Chickpea
The SSRs showing polymorphism between desi and kabuli
chickpea were identified using the approach described by Zhang
et al. (2007). In the first step, 250 bp flanking sequences on
each side of the identified SSR motifs were retrieved from both
the genomes and searched against each other via BLASTN.
Only the sequences showing unique hit in the reciprocal BLAST
results with an E-value cut-off of ≤1e-40 were retained. This
resulted in the identification of 13327 orhtologous SSR loci
in the two genomes. Further, we used custom designed perl
script to identify and characterize the polymorphic SSR loci
between desi and kabuli chickpea based on difference in number
of repeat-units present, as described by Jhanwar et al. (2012).
The forward and reverse primers from the genomic sequences
of ICC 4958 flanking polymorphic SSR repeat-motifs were
designed using the Primer3 tool at default parameters. The
polymorphic SSR markers were physically mapped on eight

1http://nipgr.res.in/CGAP/home.php
2http://www.icrisat.org/gt-bt/ICGGC/GenomeManuscript.htm
3http://pgrc.ipk-gatersleben.de/misa/
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chromosome pseudomolecules of chickpea according to their
genomic location.

Evaluation of Amplification Efficiency and
Polymorphic Potential
A total of 341 selected polymorphic SSRs (showing ≥4-
bp fragment length polymorphism between desi and kabuli
chickpea) present in the coding and non-CDS components
of genes, and intergenic regions were amplified via PCR
using genomic DNA of 31 desi and 15 kabuli chickpea
genotypes to evaluate their amplification and polymorphic
potential. These desi and kabuli genotypes [collected from
Indian Agricultural Research Institute (IARI), New Delhi
and International Crops Research Institute for the Semi-
Arid Tropics (ICRISAT), Hyderabad] with diverse useful yield
contributing and stress tolerance traits, have been primarily
utilized as contrasting parents in various cross-breeding varietal
improvement programs for developing improved cultivars of
chickpea in India. The touchdown thermal cycling profiling
and standard constituents used for PCR amplification were as
described previously (Agarwal et al., 2012; Jhanwar et al., 2012).
The PCR products amplified by each SSR marker in the 46
chickpea genotypes were resolved on 3.5% metaphor agarose
gel and their allele size and fragment length polymorphism was
determined. The genotyping information of SSR markers was
used to estimate the number of polymorphic alleles per marker
locus, percent polymorphism and polymorphism information
content (PIC) among genotypes using PowerMarker v3.51 (Liu
and Muse, 2005). The polymorphic SSRs were positioned on the
chickpea chromosomes according to their genomic coordinates
using MapChart (v2.2).

Functional Molecular Diversity and Population
Structure Analysis
A total of 160 informative SSRmarkers were used for determining
functional molecular diversity and establishing phylogenetic
relationships among chickpea genotypes based on Nei’s genetic
distance (Nei et al., 1983) by neighbor-joining (NJ) method
(with 1,000 bootstrap replicates) using PowerMarker v3.51 and
unrooted phylogenetic tree was constructed. For assessment of
population structure, the SSR marker genotyping data were
analyzed in STRUCTURE (Pritchard et al., 2000) with burn-in
of 100000 iterations and run length of 1000000, following the
method described by Kujur et al. (2013). The genetic variability
(FST) and degree of admixture within and between population
groups at optimal K (population number) value was determined.

Construction of Chickpea Microsatellite
Database
We developed a user-friendly web resource, Chickpea
Microsatellite Database (CMsDB), to provide browsable
access to the SSR data. The web pages of CMsDB have been
written using Perl-CGI on the Apache Tomcat (version 5.5.29)
Web server application. The information regarding SSRs, their
flanking sequences and primer details are cataloged in the MySql
server (version 5.0.77). The database is currently hosted on Sun
Workstation running CentOs (version 5.4) Linux operating

system with two Intel Xeon quad core processors and 12 GB of
random access memory. The database is compatible with various
browsers like Internet Explorer, Mozilla Firefox, and Google
Chrome.

Results

Frequency and Distribution of SSRs in desi and
kabuli Chickpea Genomes
A total of 519.8 and 522.3 Mb sequences of desi and kabuli
chickpea genomes, respectively, were utilized for mining and
characterization of SSR motifs. Based on these analyses, 74941
and 81845 perfect SSRs (excluding mono-nucleotides) were
identified in desi and kabuli chickpea with an average density
of 0.144 SSR/kb and 0.157 SSR/kb, respectively (Table 1). The
overall frequency of compound SSRs identified in desi (2563,
0.005 SSRs/kb) and kabuli (2470, 0.004 SSRs/kb) chickpea was
almost comparable with each other. In both the genomes,
di-nucleotide repeat-motifs (desi: 41457, 55.3% and kabuli: 47127,
57.6%) were most prevalent followed by tri- and tetra-nucleotides
(Table 1). In terms of proportion of total number of SSRs
identified, the long hyper-variable class I repeats varied from
49.8% (40789) in kabuli to 50.3% (37737) in desi chickpea. The
class I and class II di-nucleotide repeat-motifs were present in
maximum fraction varying from 49.1 (18537) to 62.3% (25568)
in desi and kabuli chickpea (Figure 1A). Next, the tri-nucleotide
SSR repeat-motifs were most abundant (varied from 34.2 to
38.4%) in both class I and class II SSRs, while tetra-, penta-,
and hexa-nucleotide motifs were completely absent in case of
class II SSRs. The frequency of AT-rich di-nucleotide repeat-
motifs (32354 SSRs in desi, 43.2% and 37977 SSRs in kabuli,
46.4%) was maximum in both desi and kabuli chickpea followed
by AAT/ATT-rich tri-nucleotide SSRs (21113 SSRs, 28.2% in
desi and 22003, 26.9% in kabuli) and AAAT/ATTT-rich tetra-
nucleotide SSRs (3095, 4.1% and 2924, 3.6%) (Figure 1B).
The structural annotation of identified SSRs in desi genome
revealed their highest frequency in intergenic regions (64961

TABLE 1 | Summary of SSRs identified in desi and kabuli chickpea
genomes.

Characteristic Desi Kabuli

Total number of sequences examined 181462 7135

Total size (bp) of examined sequences 519846222 522314610

Total number of identified SSRs 74941 81845

Number of SSRs containing sequences 18559 1769

Number of SSRs present in compound
formation

2563 2470

Frequency of SSRs 0.144 SSR/kb 0.157 SSR/kb

Number (%) of di-nucleotides 41457 (55.3) 47127 (57.6)

Number (%) of tri-nucleotides 28042 (37.4) 29442 (36.0)

Number (%) of tetra-nucleotides 4098 (5.5) 3944 (4.8)

Number (%) of penta-nucleotides 740 (0.98) 781 (0.95)

Number (%) of hexa-nucleotides 604 (0.81) 551 (0.67)

Number (%) of class I SSRs 37737 (50.4) 40789 (49.8)

Number (%) of class II SSRs 37204 (49.6) 41056 (50.2)
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FIGURE 1 | Classification and frequency of simple sequence repeats (SSRs) identified in desi and kabuli chickpea genomes. (A) The bar graph displays
the number of SSRs of different types in long hypervariable class I (≥20 nt) and potentially variable class II (12–20 nt). (B) Frequency of major SSR motifs of different
classes identified in desi and kabuli genomes.

FIGURE 2 | Distribution of SSRs identified from desi and kabuli chickpea genomes in different regions of the chickpea genome. The bar graph displays
the number of SSRs of different classes located in different genomic features (various gene components and intergenic regions) of the chickpea genome.

SSRs) followed by introns (6762), exons (3218), CDS (1816),
and upstream regions (3289) (Figure 2). All five different
classes of SSR repeat-motifs (di- to hexa-nucleotides) were
predominant particularly in the intergenic regions as compared
to various coding and non-CDS components of genes. However,
within genes, the frequency of di- (4191), tetra- (462), and
penta-nucleotide (84) SSR repeat-motifs were maximum in the
intronic and upstream sequences, whereas tri- (2100) and hexa-
nucleotide (76) motifs were abundant in the exons (Figure 2).
Maximum number of tri-nucleotide SSR repeat-motifs was found
in the CDS (1673 SSRs), whereas upstream regions (3029), and
5’- (703) and 3’-UTRs (168) were rich in di-nucleotide repeat-
motifs.

Density and Relative Abundance of
Polymorphic SSRs
We identified 1835 genome-wide SSRs showing polymorphism
between desi and kabuli chickpea based on their
expansion/contraction of SSR repeat-length (ranged from 2
to >20 bp; Figures 3A,B). Among the polymorphic SSRs
obtained, the di-nucleotide repeat-motifs (1425 SSRs, 77.6%)
were most abundant followed by tri-nucleotide motifs (388,
21.1%) (Figure 3B). With the increase of SSR repeat-length
variation, the number of SSRs showing polymorphism decreased,
which indicates inverse correlation between fragment length
polymorphism and frequency of polymorphic SSRs identified
in desi and kabuli chickpea (Figure 3A). Maximum number

Frontiers in Plant Science | www.frontiersin.org 4 August 2015 | Volume 6 | Article 645

http://www.frontiersin.org/Plant_Science/
http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Science/archive


Parida et al. Genome-wide SSRs and CMsDB in chickpea

FIGURE 3 | Identification and analysis of polymorphic SSRs between
desi and kabuli chickpea. (A) Distribution of polymorphic SSRs in different
classes. (B) Number of SSRs with different motif length (2 to >20) differences.

(C) Frequency of selected (most abundant) motifs in the polymorphic SSRs.
(D) Distribution of polymorphic SSRs in in different genomic features (various
gene components and intergenic regions).

of polymorphic SSRs showed ≥2-bp repeat-unit variation
and 287 SSRs with >20-bp variation between desi and kabuli
chickpea were identified. The AT/TA di-nucleotide repeats
(1339, 73%) were maximum followed by TTA/TAA (132,
7.2%), AAT/ATT (128, 6.8%), and TAT/ATA (104, 5.7%)
(Figure 3C). All the identified 1835 polymorphic SSRs were
structurally annotated in intergenic regions, and coding
and non-CDS components of genes. Maximum number of
polymorphic SSR repeats were identified in the intergenic
regions (1453 SSRs, 79.2%), (Figure 3D). The polymorphic
SSRs identified within genes included highest number in
the upstream sequences (190, 10.4%) followed by introns
(143, 7.8%), exons (31, 1.7%) and minimum in 3′-UTRs
(3, 0.16%) of genes. All classes of polymorphic SSR repeats
including di- to hexa-nucleotide motifs were maximum in
the intergenic sequences (Figure 3D). The di-nucleotide
followed by tri-nucleotide SSR repeats were abundant in the
upstream regions (139 di- and 49 tri-nucleotide) and intronic
(126 di- and 15 tri-nucleotide) sequences of genes, whereas
tri-nucleotide repeats were maximum in the coding regions.

About 85% of the polymorphic SSRs were present on the eight
chickpea chromosomes, whereas other 15% were located on the
scaffolds of kabuli chickpea genome (Supplementary Figure S1).
A complete list of polymorphic SSRs along with their motifs and
genomic location in both genomes is given in the Supplementary
Table S1.

The higher abundance of polymorphic SSRs specifically in
the upstream regulatory regions and introns of chickpea genes
is consistent with the previous reports in rice and Arabidopsis
(Fujimori et al., 2003; Lawson and Zhang, 2006; Parida et al.,
2009). The most frequent occurrences of di- and tri-nucleotide
SSR repeats in the upstream regulatory regions of genes are
expected. These SSR repeats can possibly facilitate or abolish
binding sites of regulatory proteins and thus regulate gene
expression (Yu et al., 2002; Lawson and Zhang, 2006; Parida
et al., 2009). The presence of AT-rich di-nucleotide SSRs in
the introns of chickpea genes is also comparable to that
observed in the earlier studies of cereal genomes (Temnykh
et al., 2001; Lawson and Zhang, 2006; Parida et al., 2009).
The genome-wide identification and characterization of SSRs
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including those showing polymorphism between desi and kabuli
revealed non-random and biased distribution across various
genomic components.

Development and Annotation of Polymorphic
SSR Markers
The forward and reverse primers from the flanking sequences
of polymorphic 1835 SSR repeat-motifs were designed. The
structural annotation and organization of selected SSR repeats
located in different components of genes are presented in
the Figure 4. We could design primers for 1470 (80.1%)
polymorphic SSRs, which included 1151 (78.3%) in the intergenic
regions, 150 (10.2%) in the upstream regulatory sequences,
125 (8.5%) in the introns, 31 (2.1%) in the exons, 17 (1.2%)
in the 5′-UTRs, 11 (0.75%) in the CDS, and 3 (0.20%)
in the 3′-UTRs (Supplementary Table S1). At least 85% of
these genome-wide unique SSR markers were mapped on the
chickpea chromosome pseudomolecules (Supplementary Figure
S1).Maximumnumber of markers weremapped on chromosome
4 (224, 15.2%) followed by chromosome 5 (206, 14%), while
minimum number of markers mapped on chromosome 8 (72,
4.9%).

Amplification and Polymorphic Potential of
Developed SSR Markers
We utilized 341 SSR markers (revealing ≥4-bp fragment
length polymorphism between desi and kabuli chickpea) in
total located in different components of genes (upstream, 5′-
UTRs, CDS, introns and 3′-UTRs) and intergenic regions to
evaluate their amplification efficiency as well as potential for
detecting polymorphism among 31 desi and 15 kabuli chickpea
genotypes (Supplementary Table S3). Two hundred fifty-two
of the 341 markers gave successful PCR amplification in all
46 chickpea genotypes with an amplification success rate of

73.9% (Supplementary Table S2). One hundred sixty (63.5%) of
252 amplified markers showed polymorphism in at least two
combinations of chickpea genotypes (Figure 5A). It included
130 (73.9%, mean PIC: 0.76) of 176 class I and 30 (39.5%,
0.69) of 76 class II SSR markers. The remaining 92 (36.5%)
markers exhibited monomorphic amplification among chickpea
genotypes used. A total number of 764 alleles were amplified
by 160 polymorphic SSR markers with a mean allele number
of 4.8. The number of alleles amplified per locus varied from
2 to 12. The PIC ranged from 0.23 to 0.86 with an average of
0.75, while gene diversity varied from 0.25 to 0.89 with a mean
of 0.77 (Supplementary Table S2). The polymorphic potential
of markers in different sequence components of genes and
intergenic regions was analyzed in detail based on the percent
polymorphism, PIC and polymorphic alleles amplified among
chickpea genotypes. We were able to detect polymorphism in
55 (62.5%, allele number from 2–9 and PIC 0.74) of 88 markers
derived from the different coding and non-CDS components of
genes between desi and kabuli chickpea. The remaining 105 (64%,
2–12 and 0.63) of 164 markers derived from intergenic regions
also showed polymorphism between the two chickpea types
(Supplementary Table S2). Within genes, maximum potential
of polymorphism was detected by the markers developed from
intronic sequences (28 of 38 markers, 73.7%, allele number 2–9
and PIC 0.74) followed by 3′-UTRs (5 of 8 markers, 62.5%, 2–
4 and 0.66), upstream (19 of 35 markers, 54.3%, 2–5 and 0.76)
and 5′-UTRs (2 of 6 markers, 33.3%, 4–5 and 0.62) of genes
(Supplementary Table S2, Figure 5A). Remarkably, 120 (47.6%,
2–10 and 0.62) and 107 (42.5%, 2–8 and 0.57) markers revealed
polymorphism within desi and kabuli chickpea genotypes too,
respectively. Overall, eight different representative allele types
were detected based on fragment length polymorphism patterns
of all the 160 SSR markers in 46 desi and kabuli genotypes
(Figure 5B).

FIGURE 4 | Diagrammatic representation of polymorphic SSRs
present in different components of chickpea genes. Introns and
exons are represented by lines and boxes, respectively. Different
components of exons are represented in different shaded boxes. The

SSR motifs present in different genic regions have been highlighted
in gray texture. The motif and its frequency in both chickpea
(desi/kabuli) types are also given. Gene ID and length (bp) are given
on right side.
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FIGURE 5 | Validation of amplification and polymorphic potential of
selected SSRs and allelic variations in chickpea genotypes.
(A) Polymerase chain reaction based validation of amplification and polymorphic
potential of selected SSRs in chickpea genotypes. Only five selected examples
of SSRs have been represented. Representative gels showing PCR amplification
of polymorphic SSRs (labeled on right side) validating the length polymorphism

between desi and kabuli chickpea genotypes (genotype details are available in
Supplementary Table S3). M, 50 bp DNA ladder as size standard. (B) Eight
different representative allele types identified based on the fragment length
polymorphism pattern of 160 SSR markers across desi and kabuli chickpea
genotypes. The SSR marker-alleles are illustrated according to their lower to
higher fragment size (bp).

Functional Molecular Diversity and Population
Structure Among desi and kabuli Chickpea
The pair-wise distance matrix among 46 desi and kabuli chickpea
genotypes based on genotyping information of 160 validated
polymorphic SSR markers revealed a broad range of genetic
distance that varied from 0.16 (kabuli cv. BGD1105 – kabuli
cv. Pusa1088) to 0.94 (desi cv. Vishal – desi cv. ICC4958)
with an average of 0.68. Maximum average genetic distance
was observed particularly among the accessions belonging to
desi chickpea (0.65) in contrast to that detected within kabuli
(0.57). The phylogenetic relationship among 31 desi and 15
kabuli chickpea genotypes has been depicted in an unrooted
dendrogram (Figure 6). This set of informative genome-wide
physically mapped SSR markers (160) clearly discriminated all
46 genotypes from each other and resulted in definite desi
and kabuli cultivar-specific groupings. Most of the desi and
kabuli genotypes were grouped in separate clusters (I and II),
which further corresponded well with their known pedigree

relationships and parentage with slight deviations. However, desi
genotypes included under cluster I were further grouped into four
different sub-clusters (Ia, Ib, Ic, and Id), while kabuli genotypes
belonging to cluster II classified into two different sub-clusters
(IIa and IIb; Figure 6).

The population genetic structure among 31 desi and 15
kabuli chickpea genotypes was determined using 160 validated
polymorphic SSR markers with varying levels of population
numbers (K = 2–10) with 20 replications. The optimization of
K inferred that at K = 5, the average estimate of Ln P(D) across
20 independent replications plateaus and also best replicate
giving maximum log likelihood values with sharp peak was
obtained. All 46 chickpea genotypes were majorly classified into
two distinct high resolution population groups (Figure 7). The
population groups, I (31 desi and one kabuli chickpea) and II
(14 kabuli chickpea) contained the genotypes mostly from desi
and kabuli chickpea, respectively. The desi population group (I)
was further classified into four sub-population groups; Ia (10
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FIGURE 6 | Unrooted phylogenetic tree depicting the genetic
relationships among desi and kabuli genotypes. The tree was generated
based on Nei’s genetic distance using genotyping data of 160 informative SSR

markers in 31 desi and 15 kabuli chickpea genotypes. Molecular classification
clearly differentiated genotypes into six different clusters, which corresponded to
their cultivar-specific origin and parentage/known pedigree relationships.

FIGURE 7 | Population genetic structure inferred best possible structure
among desi and kabuli chickpea genotypes. The genotyping data of 160
informative genome-wide SSR markers in 31 desi and 15 kabuli chickpea
genotypes was used for this analysis. These mapped markers assigned 46
chickpea genotypes into five populations that majorly grouped accordingly by

their cultivar-specific origin and parentage/pedigree relationships. The
accessions represented by vertical bars along the horizontal axis were classified
into K color segments based on their estimated membership fraction in each K
cluster. Five diverse colors represent different population groups based on
optimal population number K = 5.

desi and one kabuli chickpea genotypes), Ib (10 desi), Ic (8 desi),
and Id (3 desi) (Figure 7). The cultivar-specific classification
and geographical origin of 46 chickpea genotypes belonging to
all the five individual population groups are provided in the
Supplementary Table S3. The population groupings obtained
among 46 chickpea genotypes corresponded well with their
origin and pedigree relationships/parentage. This was further
consistent with the clustering patterns and genetic relationships

as obtained by the NJ tree analysis. Further, molecular genetic
variation among and within five populations was estimated using
above 160 informative SSR markers. It revealed a wider level
of quantitative genetic differentiation (FST varied from 0.16–
0.91 with an average of 0.64) among five population groups.
The genetic variation among the five population groups (mean
FST: 0.62) was higher than that estimated within populations
(0.53). Higher molecular diversity of population group I (mean
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FST: 0.86) as compared to group II (0.69) was evident. Within
population groups I and II, maximum divergence was observed
in population groups Ib (mean FST: 0.83) and IIb (0.65),
respectively. All the 46 chickpea genotypes clearly belonged to
a structured population of five distinct groups in which about
74.2% of inferred ancestry of each group was derived from one
of the model-based population and remaining ∼25.8% contained
admixed ancestry. Maximum admixtures (20.3%) of the three desi
population groups (Ib, Ic, and Id) with kabuli population (II)
were observed.

CMsDB: Features and Utility
We developed a public data resource, CMsDB, to provide a
searchable interface to the SSR data reported in this study.
CMsDB is publicly available at http://www.nipgr.res.in/CMsDB.
html. The database provides browsable access to all the SSRs
identified in desi and kabuli chickpea types, and polymorphic
SSRs between them. CMsDB can be used to retrieve SSRs
in desi and kabuli genomes using various simple [genomic
location (chromosome number and position) and genomic
feature (genic and/or inter-genic)] and advanced [motif type
(di- to hexa-nucleotide), motif sequence, repeat number and
repeat unit length] search parameters. Multiple parameters can
be combined also to search for a specific set of SSRs as per
user requirement. The output lists all the SSRs meeting the user-

selected parameters(s) in tabulated format along with various
information, including SSR identifier, chromosome number,
motif type and length, genomic location (start and end position
in bp) and location in the genomic features (genic/intergenic,
gene identifier and intron/exon/upstream sequence). An option
for downloading the flanking sequences (50–250 bp) of
individual/multiple SSRs has also been provided. Polymorphic
SSRs between desi/kabuli can also be searched/retrieved using
similar parameters. Further, CMsDB provides information
on the primers designed for the polymorphic SSRs. In
addition to download the flanking sequences (50–250 bp),
an option for viewing/downloading the designed primers for
individual/multiple polymorphic SSRs has also been provided.
Whole datasets have also been made available for download
for high-throughput genotyping applications. We aim to update
the database as the new versions of desi and kabuli reference
genome sequence data set(s) will become available for chickpea.
Figure 8 provides snapshots of various features and utilities of the
CMsDB.

Discussion

The development and large-scale validation of informative
genome-wide SSR markers showing high intra-specific

FIGURE 8 | Snapshots of the public web resource CMsDB showing its various utilities. The snapshots were taken from the database webpages.
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polymorphic potential among desi and kabuli genotypes is
required for marker-assisted genetic improvement of chickpea.
In this context, we discovered 74941 and 81845 SSRs from the
desi and kabuli chickpea genomes, respectively, and inferred their
frequency and genomic distribution in the intergenic regions and
within protein-coding genes. Subsequently, 1835 polymorphic
(based on SSR repeat-length variation) SSRs between desi and
kabuli genomes from different coding and non-CDS components
were identified and characterized. CMsDB provides an integrated
web interface to search, browse and filter the SSRs in desi and
kabuli chickpea genomes and polymorphic SSRs between
them. Recently, the CicArMiSatDB comprising SSR markers
identified from coding and non-coding regions of kabuli genome
(Varshney et al., 2013) has been constructed (Doddamani et al.,
2014). CMsDB developed in our study provides additional
interfaces for genome-wide SSR markers from both desi and
kabuli chickpea, and polymorphic SSR markers (derived from
different coding and non-CDS components) between them,
Thus, CMsDB will assist molecular breeders in rapid selection
of gene-based polymorphic SSR markers for use in large-scale
genotyping applications of chickpea.

Large-scale genome-wide SSR markers (designed from
diverse coding, non-coding and intergenic regions) showing
polymorphism between desi and kabuli chickpea developed
in our study will serve as an immediate resource for
mapping whole genome and targeted mapping of trait-
specific genes/QTLs for marker-assisted genetic improvement
in chickpea. These polymorphic SSR markers being derived
from different coding and non-CDS components that regulate
cellular and biological functions have significance in developing
functional genetic markers for rapidly establishing marker-
trait linkages and identification of genes/QTLs associated with
important agronomic traits. The association of gene-based SSR
markers based on their expansion/contraction of repeats with
many traits of agricultural importance including seed weight in
chickpea have been well studied (Kujur et al., 2013, 2014).

Higher (∼74%) amplification success rate of polymorphic
SSR markers in chickpea genotypes suggested their immense use
in various genotyping applications in chickpea. The remaining
∼26% of SSR markers derived mostly from the introns and
intergenic regions of genes showed null amplification in chickpea
genotypes. It could be due to insertion–deletions in the
primer-binding sites of corresponding genomic sequences of
desi and kabuli chickpea. This may also result from frequent
association of transposable elements with the intronic and
intergenic SSRs as previously documented in rice (Temnykh
et al., 2001; Parida et al., 2009). The extent of intra-specific
polymorphic potential (63.5%, 2–12 alleles and PIC: 0.75)
detected in our study is much higher than that obtained
previously using random SSR markers (∼35–40%; Sethy et al.,
2006; Nayak et al., 2010; Bharadwaj et al., 2011; Gujaria
et al., 2011; Hiremath et al., 2011; Kujur et al., 2013) and
polymorphic SSR markers (50–60%, Hiremath et al., 2011;
Agarwal et al., 2012). The maximum polymorphic potential
(average 63% and mean PIC: 0.69) of SSR markers specifically
derived from the intergenic, upstream regulatory regions and
intronic sequences in chickpea agreed well with the previous

reports in crop plants (Grover et al., 2007; Zhang et al.,
2007; Parida et al., 2009, 2010). It suggested the utility of
polymorphic SSRs derived from non-CDS component of genes
in chickpea. The presence of abundant di- and tetra-nucleotide
SSR repeats with their specific characteristics of showing high
replication slippage than tri-nucleotide SSRs (more constrained
by selective pressure), particularly in the upstream regulatory
regions, introns and intergenic regions might be contributing
to their high polymorphic potential. Among the identified
polymorphic genome-wide SSR markers, the class I and non-
coding gene sequence-derived SSR markers were found more
informative and thus would have greater utility in rapid selection
of polymorphic markers for efficient genotyping applications in
chickpea. The SSR marker-based polymorphic potential (64.7%,
PIC: 0.75) among desi and kabuli chickpea genotypes was higher
(47.6%, PIC: 0.62) than that within desi or kabuli genotypes.
Henceforth, the developed genome-wide SSR markers being
more informative (in terms of high intra-specific polymorphic
potential as well as functional significance) than SSR markers
identified till now would be of immediate use in efficient
large-scale genotyping applications in chickpea. Considering
requirement of functional SSR markers showing high intra-
specific polymorphism among desi and kabuli genotypes for
chickpea marker-assisted genetic enhancement, the large-scale
experimentally validated polymorphic SSRmarkers developed by
us will be highly relevant.

A wider level of genetic differentiation (FST varied from
0.16 to 0.94 with a mean of 0.68) obtained among 46
chickpea genotypes belonging to five population groups was
comparable/higher than the previously detected level (0.03–
0.82) with the genomic and genic SSR markers (Sethy et al.,
2006; Choudhary et al., 2009; Bharadwaj et al., 2011; Kujur
et al., 2013). The higher molecular diversity between desi
and kabuli population groups than that obtained within desi
and kabuli populations is expected in a self-pollinated crop
species like chickpea. Higher genetic differentiation within
desi population in contrast to kabuli agreed well with earlier
observations (Upadhyaya et al., 2008; Bharadwaj et al., 2011;
Kujur et al., 2013). Therefore, wider molecular diversity and
genetic base detected by genome-wide informative SSR markers
would be much relevant in the selection of desirable plant types
for varietal improvement in chickpea. The admixed ancestry
(∼25.8%) among six populations might be due to their complex
breeding history involving inter-crossing and introgression
among desi and kabuli chickpea genotypes along with strong
selection pressure and evolutionary bottlenecks during chickpea
domestication. Maximum admixtures and close phylogenetic
relationships between desi and kabuli populations is consistent
with the earlier morphological, cytological and biochemical
documentation and molecular studies using SSR markers (Abbo
et al., 2003; Berger et al., 2003; Sethy et al., 2006; Upadhyaya
et al., 2008; Bharadwaj et al., 2011; Jhanwar et al., 2012; Kujur
et al., 2013). It is also supported with the commonly accepted
presumption related to origination and domestication of desi and
kabuli chickpea at archeological sites of South Eastern Turkey
nearly about 10000 years ago (Abbo et al., 2003; Berger et al.,
2003).
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The distinctness and phylogenetic relationships established
by informative genome-wide SSR markers in desi and kabuli
chickpea genotypes belonging to five population groups
are in accordance with their cultivar-specific origin and
parentage/pedigree relationships. For instance, the genotypes
classified under desi (31) and kabuli (15) population groups
had distinct agro-morphological features that are commonly
observed in desi (purple flower and small seed size with
yellow brown to light brown colored seed coat) and kabuli
(white flower and large seed size with beige colored seed coat)
chickpea, respectively. The grouping of one kabuli chickpea
genotype ICC 8261 (originated from Turkey) with the desi
genotypes (originated from India) of population group Ia
reflected more influence of its geographical origin rather than
cultivar-specific classification. However, complex breeding
history involving introgression, cross-breeding efforts and
sequential evolutionary bottlenecks among desi genotypes
possibly led to their clustering in four population sub-groups.
The informative genome-wide SSR markers developed by us
are significant in establishing distinctness and evolutionary
relationships as well as assaying broader molecular diversity
among desi and kabuli chickpea genotypes and therefore, will
be useful for many applications in chickpea genetics, genomics
and breeding.

Conclusion

We developed a large set of polymorphic SSR markers
between desi and kabuli chickpea from different coding

and non-CDS components of genes and intergenic regions.
These genome-wide physically mapped markers with relatively
high experimental validation success rate and intra-/inter-
specific polymorphic potential have immense utility in large-
scale genotyping applications in chickpea. A wider molecular
(functional) diversity including parentage- and cultivar-specific
phylogenetic relationships assayed by these informative SSR
markers in a structured desi and kabuli population suggested their
significance in chickpea structural, functional and comparative
genomics, and breeding.We anticipate that web resource CMsDB
will be very useful to scientists/breeders to search, browse and
query SSRs in chickpea to facilitate molecular breeding strategies
in chickpea.
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