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Controlling weeds with fungi,
bacteria and viruses: a review
Dylan P. Harding and Manish N. Raizada*

Department of Plant Agriculture, University of Guelph, Guelph, ON, Canada

Weeds are a nuisance in a variety of land uses. The increasing prevalence of
both herbicide resistant weeds and bans on cosmetic pesticide use has created
a strong impetus to develop novel strategies for controlling weeds. The application
of bacteria, fungi and viruses to achieving this goal has received increasingly great
attention over the last three decades. Proposed benefits to this strategy include
reduced environmental impact, increased target specificity, reduced development
costs compared to conventional herbicides and the identification of novel herbicidal
mechanisms. This review focuses on examples from North America. Among fungi, the
prominent genera to receive attention as bioherbicide candidates include Colletotrichum,
Phoma, and Sclerotinia. Among bacteria, Xanthomonas and Pseudomonas share this
distinction. The available reports on the application of viruses to controlling weeds are
also reviewed. Focus is given to the phytotoxic mechanisms associated with bioherbicide
candidates. Achieving consistent suppression of weeds in field conditions is a common
challenge to this control strategy, as the efficacy of a bioherbicide candidate is generally
more sensitive to environmental variation than a conventional herbicide. Common themes
and lessons emerging from the available literature in regard to this challenge are
presented. Additionally, future directions for this crop protection strategy are suggested.

Keywords: bioherbicide, herbicide resistance, turf, Colletotrichum, Phoma, Sclerotinia, Xanthomonas,
Pseudomonas

Recent History of Weed Control

Weeds are a problem in both crop production and turfgrass systems, associated with declines in crop
yields and quality, as an esthetic nuisance and as a source of allergenic pollen (Stewart-Wade et al.,
2002; Oerke, 2006; Gadermaier et al., 2014). Since the post-World War II introduction of the first
selective herbicides, 2,4-D and MCPA, such products have significantly changed the management
techniques that are employed by farmers and other managers of anthropogenic ecosystems (Mithila
et al., 2011). The primary benefit offered by selective herbicides is the ability to control certain
weed species without harming crops, based on physiological differences between species. This ability
has enabled significant yield increases in many crops, and continues to be an important aspect of
agroecosystem management (Mithila et al., 2011). Currently, there are 25 known herbicide target
sites at the molecular level (Heap, 2015), e.g., disruption of EPSP synthase required for branched
amino acid synthesis by glyphosate (Sammons and Gaines, 2014) or interference of auxin pathways
by 2,4-D (Grossmann, 2010). Despite this variety, in many cases a limited number of herbicide
mechanisms have been continuously employed by operators based on the low cost or ease of use
associated with those products (Beckie, 2011; Mithila et al., 2011). This practice has in many
cases created artificial selection pressure on weed populations, causing the widespread emergence
of herbicide-resistant weeds (Beckie et al., 1999; Green and Owen, 2011; Mithila et al., 2011;
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Darmency, 2013). As of June, 2015, resistant-weed populations
have been reported in association with 22 of the 25 known
herbicide targets (Heap, 2015).

The introduction of glyphosate-resistant transgenic crops
brought a novel strategy for controlling weeds to the array of
options available to operators (Green and Owen, 2011). This
approach was notably different from previous selective weed
control options in that it enabled the application of a broad
spectrum herbicide that controlled almost all plants that were
not engineered to tolerate glyphosate (Green and Owen, 2011).
The unprecedented efficacy and ease of use associated with
this weed control system led to its rapid adoption throughout
much of the world, in many cases completely replacing former
weed control practices (Beckie, 2011; Green and Owen, 2011).
However, as with the generation of selective herbicides before
it, the common practice of continuous glyphosate use led to
the emergence of resistant weed populations, beginning in 1996
with the observation of glyphosate-resistant rigid ryegrass (Lolium
rigidum) in Australia (Green and Owen, 2011). As of the writing
of this report, there are 32 glyphosate-resistant weed species
throughout the world (Heap, 2015).

It is apparent that as new herbicides are developed, weeds will
continue to evolve in response to whatever selective pressure that
is applied. For this reason, the continuous development of novel
weed control methods is essential to the ongoing maintenance
of agricultural yields. These developments are needed both to
control weed populations that are resistant to currently available
modes of action, as well as to diversify weed control platforms in
order to delay the emergence of new resistance traits. Additionally,
increasing public concern with the negative effects of pesticide
residues, particularly in residential areas (e.g., turfgrass), has led
to increasing demand for alternativemethods of controllingweeds
and other pests (Knopper and Lean, 2004; Bailey et al., 2010; Belair
et al., 2010).

Biological Control of Weeds: Introduction
and Scope of Review

Biological control as a general term refers to the introduction of
organisms into an ecosystem with the intention of controlling
one or more undesirable species (Charudattan, 2001; Bailey et al.,
2010). Within the context of controlling weeds and otherwise
invasive plant species, this field of study has increasingly focused
on bacteria and fungi in the past five decades (Li et al., 2003),
although viruses have also been considered for this purpose in
select cases (Ferrell et al., 2008; Elliott et al., 2009;Diaz et al., 2014).

There are two primary fields of application within the study of
biological weed control. Classical biological control refers to the
release of a natural predator or pathogen of a pest species with
the anticipation that it will be able to persist in the environment
and provide ongoing reduction of the pest species population
throughout an entire ecosystem (Dane and Shaw, 1996; TeBeest,
1996; Shaw et al., 2009). On the other hand, inundative biological
control (also referred to as the bioherbicide strategy) refers to
the application of propagation materials such as fungal spores or
bacterial suspensions in concentrations that would not normally
occur in nature, with the intention of destroying a pest species

within a managed area (Johnson et al., 1996; TeBeest, 1996).
The inundative biological control strategy is more relevant to the
needs of agriculture and turf management, as it can generally be
implemented through the application of inoculum as liquid sprays
or solid granules in a similar manner to conventional herbicides
(Auld et al., 2003; Caldwell et al., 2012).

In Canada, a significant number of biological agents for control
of insects, plant pathogens and weeds has been approved by
the Pest Management Regulatory Agency (PMRA), with 24 such
products registered between 1972 and 2008, and the majority
of these registrations occurring between 2000 and 2008 (Bailey
et al., 2010). An even greater number of microbes and microbe-
derived chemicals has been registered with the United States
Environmental Protection Agency (EPA) for crop, forest, or
ecologicalmanagement, with 53 such products registered between
1996 and 2010 (EPA, 2014). As of 2014, 47 different microbial
strains were approved in the EU for the purpose of controlling
fungi or insects (European Parliament, 2014). Surprisingly, there
are no microbes approved for the control of weed species in the
European Union (European Parliament, 2014).

This review will focus on the use of biological agents to control
weeds, including fungi, bacteria and viruses, with examples
provided from North America. The review will discuss incentives
to adopt these technologies, factors in the real world that affect
their efficacy, and challenges to their commercialization. The
review will conclude by examining future directions to accelerate
progress in this promising field.

Incentives to Adopt Biological Agents to Control
Weeds
The use of bioherbicides in lieu of traditional chemical inputs
has the potential to offer a number of benefits to managers of
ecological systems, pesticide producers and the general public.
Most proponents of biological control strategies cite reduced
environmental impact as the primary benefit associated with
such management techniques (Auld and Morin, 1995; Johnson
et al., 1996; Li et al., 2003; Ghosheh, 2005). This argument has
been put forth on the basis of increased target specificity (Auld
and Morin, 1995), the rapid degradation of residual biological
weed control agent metabolites (Li et al., 2003), and the inability
of bioherbicide species to propagate without human assistance
(Johnson et al., 1996; Hoagland et al., 2007). It has also been
argued that the unintended dispersal of introduced biological
weed control species can be limited through the employment
of agents that cannot survive without their particular host, such
as certain strains of Xanthomonas (Schaad et al., 2001). The
development cost associated with bioherbicides has also been
reported to be generally lower than the cost of developing a
comparable chemical agent (Auld andMorin, 1995; Li et al., 2003).
Finally, as the public perception of pesticides is generally negative,
the development and implementation of lower-risk pest control
strategies has the potential to capture the increased willingness
of consumers to pay premium prices for foods produced through
these methods (Anderson et al., 1996; Bazoche et al., 2014).
This has been specifically investigated by McNeil et al. (2010)
through a telephone survey of Canadian consumers, in which
70% of participants indicated preference for foods produced using
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biological control agents rather than synthetic insecticides. It is
likely that a similar trend would emerge in regard to consumer
preference for biological herbicides over conventional herbicides.

The pressure to develop novel weed control strategies has
been additionally increased by the removal of several effective
but environmentally problematic pesticides from various markets
(Charudattan, 2001). Biological weed control strategies can
potentially address this need and provide novel modes of action
that will inhibit the growth of weeds that are resistant to more
commonly used herbicides. Additionally, it is also possible that
in some cases biological control agents could be applied in
combination with herbicides to attack weed species through
multiple modes of action (Auld and Morin, 1995; TeBeest, 1996).

Biological Control of Weeds Using Fungi

A list of the biological weed control candidates described in this
article is summarized (Table 1). Most commercial biological weed
control products researched inNorthAmerica have been based on
formulations of fungal species, however, few have been successful
in the long term. Examples include BioMal, a formulation of
Colletotrichum gloeosporioides f.sp. malvae, introduced for the
control of round leaf mallow (Malva pusilla) (Mortensen, 1988;
PMRA, 2006), and C. gloeosporioides f.sp. aeschynomene, which
was released for control of northern jointvetch (Aeschynomene
virginica) in the United States in 1982 as Collego (Daniel
et al., 1973; Menaria, 2007), and again in 2006 as LockDown
(EPA Registration Number 82681-1) (Bailey, 2014). Additionally,
Sarritor, a formulation of Sclerotinia minor was introduced for
the control of dandelion (Taraxacum officinale), white clover
(Trifolium repens) and broadleaf plantain (Plantago major) in turf
(PMRA, 2010).

Within the scientific literature, three genera of fungi have
received the majority of attention as bioherbicide candidates
(Table 1). In addition to the aforementioned BioMal and Collego,
several other species within the genus Colletotrichum have been
investigated. Additional examples include C. truncatum, which
has been investigated to control hemp sesbania (Sesbania exaltata)
(Schisler et al., 1991), and C. orbiculare, which was investigated
for its potential to control spiny cocklebur (Xanthium spinosum)
(Auld et al., 1988, 1990). An investigation of the genomes of
C. gloeosporioides and C. orbiculare, found that both species
contained a number of candidate genes predicted to be associated
with pathogenesis, including plant cell wall degrading enzymes
and secreted disease effectors including small secreted proteins
(SSPs), the latter of which were shown to be differentially
expressed in planta according to stage of infection, suggesting that
some of these proteins may have specific roles in the infection
process (Gan et al., 2013). There is also evidence that both of these
Colletotrichum species have the ability to produce indole acetic
acid (Gan et al., 2013), a plant hormone, derivatives of which are
well established herbicide templates (Grossmann, 2010).

Three species within the genus Phoma have also received
attention as potential agents for biological weed control (Table 1).
P. herbarum, a fungal pathogen originally isolated from dandelion
leaf lesions in Southern Ontario, has been investigated for control
of dandelions in turf (Neumann and Boland, 1999; Stewart-Wade

and Boland, 2005). P. macrostoma has also been investigated for
similar purposes as it has been observed to specifically inhibit
the growth of dicot plants (Bailey et al., 2011, 2013; Smith et al.,
2015). The 94-44B strain of this species has been registered
for control of broadleaf weeds in turf systems in Canada and
the US (Evans et al., 2013). An investigation of 64 strains of
P. macrostoma, including 94-44B, found that the bioherbicidal
activity of these species was limited to a genetically-homogeneous
group of strains, all of which were isolated from Canada thistle
(Pitt et al., 2012). Through mass spectrometry, P. macrostoma
has been recognized to produce photobleaching macrocidins
(Graupner et al., 2003) that do not affect monocots (Bailey
et al., 2011). As the activity of P. macrostoma is most apparent
on new growth, it has been suggested that these compounds
are transported in the phloem of the host plant (Graupner
et al., 2003). Unfortunately, the specific phytotoxic mechanism
of macrocidins remains unknown (Schobert and Schlenk, 2008;
Zhao et al., 2011; Mo et al., 2014). Despite this, macrocidins and
other molecules within the tetramic acid family have received
significant attention as templates for the development of novel
synthetic herbicides (Barnickel and Schobert, 2010; Yoshinari
et al., 2010; Zhao et al., 2011). Additionally, an anthraquinone
pigment has been isolated from a P. macrostoma strain and
shown to have herbicidal effects on several prominent weeds of
Central India (Quereshi et al., 2011). Anthraquinone pigments
produced by other fungi have also been demonstrated to cause
necrosis on wheat leaf blades (Bouras and Strelkov, 2008) and a
variety of cultivated legumes (Andolfi et al., 2013). Although the
phytotoxic mechanism underlying the effects of these compounds
has not been fully characterized, the development of necrosis after
exposure to the anthraquinone lentisone was found to be light
dependent, a potential clue for the eventual determination of the
mechanism associated with this class of molecules (Andolfi et al.,
2013). Also of note within this genus is Phoma chenopodicola,
which has been investigated as a potential control agent for
lamb’s quarters (Chenopodium album) (Cimmino et al., 2013).
A phytotoxic diterpene, chenopodolin, has been isolated from
this species, which was found to cause necrotic lesions on
lamb’s quarters (Chenopodium album), creeping thistle (Cirsium
arvense), green foxtail (Setaria viridis) and annual mercury
(Mercurialis annua) (Cimmino et al., 2013). Two additional
fungal isolates of the genus Phoma have also been found to
cause a modest degree of stem rot on C. arvense, however, these
isolates were not identified at the species level (Skipp et al.,
2013).

Two species within the aforementioned Sclerotinia genus have
been investigated for their potential to control weeds. Abu-Dieyeh
and Watson (2007a) found that Sclerotinia minor effectively
controlled dandelions with and without the presence of turf
species in greenhouse conditions. A follow up trial including
application of S. minor in field conditions confirmed these results
(Abu-Dieyeh andWatson, 2007b). As noted earlier, S. minor strain
IMI 344141 was introduced to the Canadian lawn care industry
under the product name Sarritor in 2010, however, it is no longer
commercially available (Watson and Bailey, 2013; see Challenges
in Commercialization). A relative of S. minor, S. sclerotiorum,
has been observed to have phytotoxic activity against creeping
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thistle (Cirsium arvense) (Skipp et al., 2013). Production of oxalic
acid by both S. minor (Briere et al., 2000) and S. sclerotiorum
(Magro et al., 1984) has been observed to play a role in the
virulence of these fungi on their host plant. Oxalic acid production
can be encouraged through addition of sodium succinate to S.
minor growth media, and cultures grown on sodium succinate-
enriched media caused greater development of necrotic tissue
when applied to dandelion than cultures grown on non-enriched
media (Briere et al., 2000). Oxalic acid acidifies the host tissue,
enabling cell wall degradation, and also interferes with polyphenol
oxidase (PPO), which normally assists in plant defense (Magro
et al., 1984). Low concentrations of oxalic acid have also been
shown to suppress the release of hydrogen peroxide, another plant
defensemolecule, in cell cultures of soy and tobacco (Cessna et al.,
2000).

In addition to the other examples described earlier in the text,
several other fungi have been registered as bioherbicides for use
in forestry or ecosystem management in Canada and the US
(Bailey, 2014), though in general, there appears to be limited
research about these strains with respect to their mode of action.
Two separate strains of Chondrostereum purpureum have been
registered in Canada and the US for controlling regrowth of
deciduous tree species in coniferous plantations (Bailey, 2014).
This fungal species is a naturally occurring pathogen of deciduous
trees in North America (Setliff, 2002). Although the potential host
range of this species is fairlywide,wound infection is a key element
of successful infection in most cases (Setliff, 2002). C. purpureum
strain HQ1 was registered under the product name Mycotech
Paste with the PMRA in 2002 (PMRA Reg. No. 27019) and the
EPA in 2005 (EPA Reg. No. 74128-2). Registration of this strain
with the PMRA ended in 2008. Another strain of this species, PFC
2139, was registered under the product name Chontrol Paste with
the EPA in 2004 (EPA Reg. No. 74200-E/R) and with the PMRA
in 2007 (PMRA Reg. No. 27823 and 29293). Both registrations
are currently active and this product remains commercially
available.

Another fungus, Puccinia thlaspeos, was registered with the
EPA in 2002 under the product name Woad Warrior for control
of Dyer’s woad (Isatis tinctoria) (EPARegistrationNumber 73417-
1). This fungus is an obligate parasite and requires a living host to
reproduce, however, inoculum can be produced from dried and
ground plant material of its target weed (Thomson and Kropp,
2004). This product is no longer commercially available (Bailey,
2014).

Alternaria destruens strain 059 was registered with the EPA in
2005 under the product names Smolder WP and Smolder G (EPA
Reg. Nos. 34704-825 and 34704-824, respectively). This product,
originally isolated from Cuscuta gronovii growing in unmanaged
conditions in Wisconsin, is intended for control of dodder species
(Cuscuta spp.) (Cook et al., 2009), however, it is not commercially
available (Bailey, 2014).

A final bioherbicide that bears mentioning is DeVine, a
formulation of the fungus Phytophthora palmivora (Kenney,
1986). This product was registered with the EPA in 1981 and
again in 2006 (Bailey, 2014; EPA Reg No. 73049-9). P. palmivora
was originally isolated from strangler vine (Morrenia odorata) in
Florida andwas used to control the same species in citrus orchards

(Ridings, 1986). Although this product was re-registered in 2006,
it is no longer commercially available (Bailey, 2014).

Biological Control of Weeds Using Bacteria

A number of bacteria have also been investigated as potential
biological weed control agents (Table 1). Of these, Pseudomonas
fluorescens and Xanthomonas campestris have attracted the
most attention. Biological weed control using bacteria has
been suggested to have several advantages over the use of
fungi, including more rapid growth of the bioherbicide agents
(Johnson et al., 1996; Li et al., 2003), relatively simple propagation
requirements (Li et al., 2003), and high suitability for genetic
modification through either mutagenesis or gene transfer
(Johnson et al., 1996).

As mentioned above, P. fluorescens has received much of the
attention as a biological weed control agent (Table 1). There
are many strains of this species, some of which are beneficial
to plants (Gamalero et al., 2005), whereas others are inhibitory
(Banowetz et al., 2008). Among studies into the suppressive
effects of P. fluorescens, three strains have been investigated in
especially great detail, all of which have been observed to inhibit
plant growth and/or germination through the production of
extracellular metabolites (Kennedy et al., 1991; Quail et al., 2002;
Banowetz et al., 2008).

Pseudomonas fluorescens strain D7, originally isolated from
the rhizospheres of winter wheat (Triticum aestivum) and downy
brome (Bromus tectorum) in Western Canada, has been observed
to selectively inhibit growth and germination of a number of
grassy weeds, most notably downy brome (Kennedy et al., 1991,
2001; Gealy et al., 1996). By selective removal of compounds
from cell-free filtrates, the growth-inhibiting activity associated
with this strain was attributed to a combination of extracellular
peptides and a lipopolysaccharide, which were suggested to work
in conjunction to express herbicidal activity (Gurusiddaiah et al.,
1994). No subsequent reports regarding mechanism were found
in the available literature.

Conversely, P. fluorescens strain WH6 has been observed
to affect the germination of a much broader range of plant
species, significantly inhibiting germination of all species tested
(21 monocot species and 8 dicot species) with the exception
of a modern corn (Zea mays) hybrid (Banowetz et al., 2008).
The germination-inhibiting activity of the WH6 strain has been
attributed to the production of a compound originally referred to
as Germination Arrest Factor (GAF; Banowetz et al., 2008). The
active component of GAF has been identified through nuclear
magnetic resonance spectroscopy and mass spectrometry as 4-
formylaminooxy-L-vinylglycine (McPhail et al., 2010), and its
biosynthesis has been proposed to begin with the amino acid
homoserine (Halgren et al., 2013). This class of compounds,
the oxyvinylglycines, has been shown to interfere with enzymes
that utilize pyridoxal phosphate as a cofactor, including enzymes
involved in nitrogen metabolism and biosynthesis of the plant
hormone ethylene (Berkowitz et al., 2006; Halgren et al., 2013).
Interestingly, GAF has also been recognized to express specific
bactericidal activity against Erwinia amylovora, the bacterium
that causes fire blight in orchards (Halgren et al., 2011). The
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genome sequence of P. fluorescens strain WH6 has been published
(Kimbrel et al., 2010), and gene knockouts were used to identify
several biosynthetic and regulatory genes involved in GAF/ 4-
formylaminooxy-L-vinylglycine production (Halgren et al., 2013;
Okrent et al., 2014). Strain D7 was also included in the original
investigation of strain WH6, however, as culture filtrates of
strain D7 prepared in the same manner as WH6 did not possess
germination-inhibiting activity the authors suggested that GAF
was not responsible for the activity associated with strain D7
(Banowetz et al., 2008).

The production of extracellular metabolites with phytotoxic
effects has also been observed in an additional P. fluorescens
strain, referred to as BRG100, which has been recognized
to have suppressive activity on the grassy weed green foxtail
(Setaria viridis) (Quail et al., 2002; Caldwell et al., 2012). The
herbicidal compounds produced by this species, referred to as
pseudophomin A and B, have been characterized through a
combination of serial chromatography, high performance liquid
chromatography (HPLC), thin layer chromatography (TLC),
chemical degradation, and X-ray crystallography (Quail et al.,
2002; Pedras et al., 2003). Unfortunately, neither the biosynthetic
pathway involved in the production of these compounds nor
the specific biochemical effects of these molecules on green
foxtail have been characterized at this time. However, the full
genome sequence of this strain has been published (Dumonceaux
et al., 2014) and a detailed projection of the costs and technical
requirements for the mass production of this biocontrol agent has
been reported (Mupondwa et al., 2015).

The other bacterial species that has received much of the
attention as a candidate biological weed control agent is
Xanthomonas campestris (Table 1). Most notably within this
species, the strain X. campestris pv. poae (JT-P482) was registered
in Japan in 1997 for control of annual bluegrass (Poa annua) under
the product name Camperico (Imaizumi et al., 1997; Tateno,
2000). The activity of this species is specific to Poa annua and Poa
attenuata, and was not reported to affect other turf species tested
(Imaizumi et al., 1997). A separate strain of X. campestris (isolate
LVA-987) has also received attention as a potential control agent
against horseweed (Conyza canadensis) (Boyette and Hoagland,
2015). No discovery of phytotoxic compounds was reported
in any of the aforementioned investigations into application
of X. campestris as a bioherbicide, however, compounds with
phytotoxic activity have been previously isolated from the vitians
pathovar of this species (Scala et al., 1996), and it is possible
that phytotoxic metabolites play a role in the suppression of Poa
annua and Conyza canadensis. Although the cause of host-plant
suppression was not indicated in the above studies, the infection
process of X. campestris pv. campestris (Xcc) in brassica crops has
been well characterized. Briefly, Xcc can colonize the xylem of
the host plant and use this pathway to spread throughout the
organism (Duge de Bernonville et al., 2014). The success of Xcc
in reaching the host xylem is contingent on its interaction with
receptor proteins of the host plant that can recognize pathogen
associated molecular patterns (PAMPs), potentially resulting in
elicitation of plant defense responses such as programmed cell
death and increased production of reactive oxygen (Guy et al.,
2013).

Biological Control of Weeds Using Viruses

In select cases, viruses that affect weed species have also been
considered as bioherbicide candidates. This strategy is more
commonly considered for management of invasive species in
broader ecosystems rather than specifically managed areas.
Viruses have been suggested to be inappropriate candidates for
inundative biological control due to their genetic variability
and lack of host specificity (Kazinczi et al., 2006). Examples of
viruses that have been investigated for the potential to control
invasive or undesirable species include Tobacco Mild Green
Mosaic Tobamovirus for control of tropical soda apple (Solanum
viarum) in Florida (Ferrell et al., 2008; Diaz et al., 2014), and
AraujiaMosaic Virus for control ofmoth plant (Araujia hortorum)
in New Zealand (Elliott et al., 2009). A patent on the former
biological control agent has been filed (Charudattan et al., 2009)
and EPA approval for use on fenced-in pasture areas was granted
in 2015 (EPA, 2015). A virus resembling Tobacco Rattle Virus has
also been proposed as a control agent for Impatiens glandulifera,
an invasive weed of concern in central and western Europe
(Kollmann et al., 2007). Similarly, Óbuda Pepper Virus (ObPV)
and Pepino Mosaic Virus (PepMV) have been proposed as agents
to reduce overall populations of the weed Solanum nigrum
(Kazinczi et al., 2006). The biological activities of viruses are very
distinct from pathogenesis caused by bacteria or fungi, and may
present additional opportunities for biological weed control in
some situations.

Real World Factors that Affect the Efficacy
of Bioherbicides

The research pipeline from the screening stage to field conditions
faces a number of unique challenges (Figure 1). One commonly
reported challenge is the need for continuousmoisture availability
during the period in which the biocontrol agent infects the plant
(Auld et al., 1990; Schisler et al., 1991; Auld and Morin, 1995;
Stewart-Wade and Boland, 2005; Boyette and Hoagland, 2015).
In a review of bioherbicide technology published by Auld and
Morin (1995), it was reported that dew periods of more than
12 hours are commonly necessary for bioherbicide candidates to
successfully infect their hosts. A variety of techniques to provide
this moisture have been tested, with varying degrees of success. In
order to prolong the period of leaf wetness necessary for successful
infection of dandelion by Phoma herbarum, several vegetable
oil emulsions were included in aqueous inoculants, however,
these additives were found to be phytotoxic, thus obscuring the
benefit to infection that may have been caused by their addition
(Stewart-Wade and Boland, 2005). Timing inoculant application
to prolong the leaf wetness period (e.g., application at dawn or
dusk) has also been suggested as a simple method of maximizing
infection, although the success of this technique can be highly
sensitive to environmental fluctuations (Auld and Morin, 1995).
In some cases, solid inoculant media have also been investigated.
The most common method for developing solid inoculant media
is to propagate the candidate biological weed control species
on grains which will subsequently be applied directly to the
field or incorporated with other moisture-retaining materials
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FIGURE 1 | Overview of factors involved in the development of a bioherbicide.

such as calcium alginate, oils or vermiculite (Auld et al., 2003).
Granular applications have the advantage of prolonging the in-
field survival of introduced biologicalweed control agents through
the provision of moisture and nutrients, however, they are also
generally associated with a more gradual rate of infection (Auld
et al., 2003).

The interplay of temperature andhumidity also has a significant
effect on the success or failure of infection by many pathogens

(Ghosheh, 2005) and may alter the efficacy of biological control
agents (Casella et al., 2010; Figure 1). Cold air can retain less total
moisture than warm air, and thus the relative humidity is more
commonly elevated at lower temperatures. Elevated humidity
is generally beneficial to successful bioherbicide colonization
because it decreases evaporation rates, thus increasing the
duration of leaf wetness following inoculant application (Casella
et al., 2010). In investigating the efficacy of the biological weed
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control product Sarritor, it was found that infection rates were
highest when the temperature remained below 20°C and the
relative humidity was high (Siva, 2014). Similar requirements
have been suggested by Auld et al. (1990), who observed that
successful infection of spiny cocklebur (Xanthium spinosum) by
biological weed control agent Colletotrichum orbiculare may have
been contingent on elevated humidity. As with any species, most
biological control species will have a fairly finite temperature
range in which they can survive, as well as a narrower range in
which their activity will be maximized. For example, Imaizumi
et al. (1997) found that ambient temperatures below 25°C (day)
and 20°C (night) caused decreased efficacy of Xanthomonas
campestris pv. poae in the suppression of annual bluegrass (Poa
annua). Similarly, the efficacy of X. campestris isolate LVA-
987 in controlling horseweed (Conyza canadensis) was found to
require ambient temperatures between 20°C and 35°C, with peak
efficacy between 25°C and 35°C (Boyette and Hoagland, 2015).
This parameter will be different for any given biological control
candidate species and thus temperature and humidity should be
tracked throughout any efficacy trials involving biological weed
control agents.

Quorum sensing refers to the ability of a bacterium to
differentially express genes based on its population density
(Rutherford and Bassler, 2012). The effect of bacterial and fungal
population densities can in some cases inform the behavior
of these species, and in some cases affect whether a pathogen
is virulent or latent (Bowden et al., 2013; Lu et al., 2014).
This is an important factor in the characterization of potential
bioherbicides, however, testing inoculant media with varying
population densities (Figure 1) is not a common practice within
the investigation of biological weed control strategies, nor is the
phenomenon of quorum sensing commonly discussed in the
related literature. However, apparent latent periods in the life
cycle of biological weed control candidate species have been
occasionally reported (Romero et al., 2001; Paynter et al., 2006),
and it is possible that quorum sensing effects could explain these
cases of asymptomatic infection.

It is possible that interactions with fertilizers and pesticides
could affect the infectiousness of a candidate biological weed
control agent (Boyetchko, 1997; Figure 1). For example, an
investigation of the ability of P. macrostoma to control dandelions
in turf found that co-application with a high rate of nitrogen
fertilizer improved its efficacy, whereas co-application with
phosphorus had no effect, and potassium sulfate decreased
efficacy (Bailey et al., 2013).

Challenges in Commercialization

Despite the promise shown by many bioherbicides, few have
achieved long-term commercial success, in part due to the
challenges to achieving consistent efficacy in field conditions
noted above. For example, amongst the fungal bioherbicides
described in this review, only LockDown (C. gloeosporioides f.sp.
aeschynomene) remains commercially available (Bailey, 2014). In
the case of BioMal (C. gloeosporioides f.sp. malvae), the narrow
target specificity (only round leaf mallow) of the product made
for a market niche that was too small to cover production costs

(Cross and Polonenko, 1996). Additionally, significant challenges
were encountered in maintaining product consistency while
scaling up production volumes (Boyetchko et al., 2007). For
these reasons, Philom Bios, the original commercial producer
of this bioherbicide, discontinued its production in 1994, only
2 years after registration (Boyetchko et al., 2007). The strain
was later licensed to Encore Technologies in 1998, however,
challenges with maintaining product consistency under mass
production led to the abandonment of the project (Boyetchko
et al., 2007). In the case of Sarritor (S. minor strain IMI 344141),
the commercial failure has been attributed to challenges with
increasing production volume and product consistency, as well
as inconsistent efficacy of the product due to the narrow range of
environmental conditions in which successful infection will occur
(Watson and Bailey, 2013). Unfortunately, the current commercial
status of Camperico (X. campestris pv. poae JT-P482), described
above, is unclear (Bailey, 2014).

Future Directions

Mechanism of Action
As noted above, the mechanism(s) behind the suppressive
activity of a given biocontrol agent is in many cases only partially
understood. Future research into the mechanisms underlying
these effects will be important to achieve consistent efficacy
with biocontrol agents, as well as to evaluate potential impacts
on human and ecosystem health. This in turn will be of value
to gaining regulatory approval. Additionally, understanding
bioherbicidal mechanisms may generate novel chemical
herbicides to overcome current resistance traits (Boyetchko
et al., 2009), and will likely also be of peripheral value to the field
of plant pathology.

Transition to the Field
Translating effects observed in a controlled environment to
field conditions is a significant challenge to the development
of successful biocontrol agents (Figure 1), and it is common
for projects to conclude at this juncture. Thus, the development
of new delivery formulations intended to improve the in-field
stability of biocontrol agents is as important as the discovery of
the agents themselves. Widespread testing of a given biocontrol
agent in a variety of locations, similar to plant variety testing,
is essential to understanding the feasibility of introducing that
agent on a broad scale. Finally, the production of commercially
relevant quantities of viable inoculum or culture extract must
also be considered, as techniques employed in the laboratory
are frequently impractical for industrial-scale production. Lessons
fromother industries such as pharmaceuticals and probiotic foods
will likely be valuable in addressing this challenge.

Extraction of Herbicidal Compounds
As discussed earlier, in some cases a particular herbicidal
compound can be extracted from a live culture (Kennedy et al.,
1991; Quail et al., 2002; Banowetz et al., 2008). This strategy can
yield a more stable control agent, the efficacy of which will not be
contingent on the continued survival of a given organism in an

Frontiers in Plant Science | www.frontiersin.org August 2015 | Volume 6 | Article 6599

http://www.frontiersin.org/Plant_Science/
http://www.frontiersin.org
http://www.frontiersin.org/Plant_Science/archive


Harding and Raizada Microbial and viral weed control

uncontrolled environment. Although the differentiation between
naturally and synthetically sourced pesticides may be arbitrary
in terms of their potential effect on human and environmental
health, such compounds will likely be more acceptable in the
public eye than those produced through traditional chemistry.

New Sources of Bioherbicide Candidates
This review has focused on a limited number of genera
which have received an especially great degree of attention
as bioherbicide candidates for turf and field crop situations.
Considering the degree of taxonomic diversity among microbes,
there are opportunities to employ other genera as bioherbicides in
the future. Most of the studies discussed in this review employed
microbes that were originally isolated from diseased individuals
within the population of a weed species (Kennedy et al., 1991;
Neumann and Boland, 1999; Ghosheh, 2005). However, there are
additional ecological niches from which potential biological weed
control candidates can be discovered. For example, most plant
species form relationships with a variety of microbes, referred
to as endophytes, which colonize the internal environment
of the plant without causing disease (Duan et al., 2013; Ali
et al., 2014). There is evidence that endophytes can play a
role in nutrient accumulation, drought tolerance and disease
resistance (Compant et al., 2010; Johnston-Monje and Raizada,
2011; Mousa and Raizada, 2013). Growth-promoting endophytes
have been shown to reduce weed populations in pastures by
inoculating the desired grass species, enabling them to compete
with weeds more effectively (Saikkonen et al., 2013; Vazquez-
de-Aldana et al., 2013). It has been reported that some plant-
inhabiting microbes will express host-specific behavior, acting
as an endophyte in some plant species but as a pathogen in
another (Gomes et al., 2013). Additionally, some endophytes have
also been reported to produce compounds that are phytotoxic
to non-host species (Waqas et al., 2013; Zhang et al., 2013;
Li et al., 2014). These phenomena could potentially be applied
to controlling undesirable weed species. Endophyte-based weed
control may have unique advantages over the application of
pathogens such as improved ability of candidate microbes to

persist in field conditions through having a more consistent
ecological niche within their plant host, or the provision of other
benefits to their host such as nutrient acquisition or disease
resistance.

Conclusion

Although there are many challenges and constraints inherent
in the development of biological herbicides, the increasing
prevalence of both herbicide-resistant weeds (Green and Owen,
2011) and public concern with pesticide use (McNeil et al.,
2010) creates a strong impetus for continued investigation in
this field. These strategies will be of especially great value
to organic production systems and to regions where cosmetic
pesticide bans are in place. With continued investigation in this
field, there is significant potential for the development of new
weed control strategies that can be employed to delay herbicide
resistance, produce food in accordance with consumer concerns,
and reduce the environmental impact of modern agriculture and
ecosystemmanagement. Although there is a considerable number
of candidate species that have been considered for this purpose,
the major challenge to successful implementation of this strategy
is the development of techniques to maintain consistent efficacy
in field conditions.
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