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The induction of wheat male fertile lines by using the chemical hybridizing agent
SQ-1 (CHA-SQ-1) is an effective approach in the utilization of heterosis; however, the
molecular basis of male fertility remains unknown. Wheat flag leaves are the initial
receptors of CHA-SQ-1 and their membrane structure plays a vital role in response
to CHA-SQ-1 stress. To investigate the response of wheat flag leaves to CHA-
SQ-1 stress, we compared their quantitative proteomic profiles in the absence and
presence of CHA-SQ-1. Our results indicated that wheat flag leaves suffered oxidative
stress during CHA-SQ-1 treatments. Leaf O2

−, H2O2, and malonaldehyde levels were
significantly increased within 10 h after CHA-SQ-1 treatment, while the activities of major
antioxidant enzymes such as superoxide dismutase, catalase, and guaiacol peroxidase
were significantly reduced. Proteome profiles of membrane-enriched fraction showed
a change in the abundance of a battery of membrane proteins involved in multiple
biological processes. These variable proteins mainly impaired photosynthesis, ATP
synthesis protein mechanisms and were involved in the response to stress. These results
provide an explanation of the relationships between membrane proteomes and anther
abortion and the practical application of CHA for hybrid breeding.

Keywords: wheat, flag leaves, membrane proteome, CHA-SQ-1, ROS

Introduction

Membranes are highly organized structures and important components of plant cells. The
membrane system of plant cells includes the plasma membrane (PM) and organelle membranes
(nuclear membrane, endoplasmic reticulum (ER) membrane, Golgi membrane, mitochondrial
membrane, chloroplast membrane, and lysosomal membrane). Membranes not only form cellular
compartments for performing multiple differential metabolic processes and maintaining organelle
homeostasis, but they also play a critical role in the exchange of substances and signals (Jaiswal
et al., 2012). Lipids and proteins are major components of membranes. Membrane proteins take
part in multiple biological reactions such as metabolite and ion exchange, signal transduction,
biosynthesis, photosynthesis, and energy generation (Kota and Goshe, 2011; Liu et al., 2011;
Takahashi et al., 2013).
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Plants may suffer various biotic and abiotic stresses during
growth, which can cause damage to cellular functions. However,
within a certain threshold, plants have a battery of protective
mechanisms to maintain the stability of the normal mechanical
processes of cellular homeostasis. These protective mechanisms
include changes in lipid composition and regulation of protein
expression. Some reports show that changes in the ratio of
lipid composition and an increase in the level of unsaturation
of membrane lipids in some species under various stressors
are effective in maintaining a stable membrane conformation
(Welti et al., 2002; Gigon et al., 2004; López-Pérez et al., 2009).
Membrane proteins play a vital role in plant stress response.
Nouri and Komatsu (2010) suggested that transcription and
expression of H+-ATPase in Arabidopsis thaliana are increased,
which then accelerates the transport of ions between the
inner and outer PM to maintain cellular homeostasis during
hyperosmotic stress. Some studies have indicated that proteins
of photosystem II (PS II), including chlorophyll a/b binding
protein, ATP generating proteins, and NAD(P)H-quinone
oxidoreductase, are up-regulated in Aeluropus lagopoides, barley,
and mangrove plants under salt stress, which can facilitate
photon capture, provide sufficient energy, detoxify quinines and
maintain normal photosynthesis process (Sobhanian et al., 2010;
Rasoulnia et al., 2011; Wang et al., 2013). Tan et al. (2012)
suggest the existence of changes in mitochondrial membrane
proteomes in response to cold and chemical stresses for normal
mitochondrial function. Compared with WT rice, salt tolerance
was significantly enhanced in SaVHAc1 (encode c1 subunit
of vacuole H+-ATPase)-expressing rice (Baisakh et al., 2012).
Some reports show that the ER membrane protein bZIP is
released into the Golgi and is then degraded when plants
suffer stress; subsequently, degradation products move into cell
nuclei and eventually lead to the up-regulation of stress proteins
encoded by nuclear genes (Liu and Howell, 2010; Zhang and
Wang, 2012; Howell, 2013). Nowadays, researchers increasingly
focus on the study of membrane proteins in plants, including
phosphoproteomics (Nuhse et al., 2007), regulation of related
metabolism in C4 plant (Manandhar-Shrestha et al., 2013),
response to stress (Nouri and Komatsu, 2010; Hopff et al., 2013)
and signaling (Nie et al., 2015); meanwhile, the technology of
mass spectrometry offers convenience in the identification and
quantification of membrane proteins.

Wheat (Triticum aestivum L.) is a valuable agricultural crop
and an important food source for humans. A continual increase
in wheat consumption has led to a demand for greater wheat
yields to guarantee world food security (Curtis and Halford,
2014). The utilization of heterosis in wheat is still limited due
to its complex hereditary basis and self-pollination; however,
the chemical hybridizing agent SQ-1 (CHA-SQ-1) offers a new
approach to the application of heterosis. Normal fertile male
wheat can be made sterile after the spraying of appropriate
doses of CHA-SQ-1 at a specific developmental period. The
proportion of male sterile wheat can reach 95–100%, and the
outcrossing rate can exceed 85%. However, how does CHA-SQ-
1 cause male sterility in wheat? In previous studies, attention
has been focused more on the anther and pollen in CHA-SQ-
1-induced male sterility (Ba et al., 2013, 2014a,b; Wang et al.,

2015; Zhu et al., 2015a). Despite some progress in reactive oxygen
metabolism (Ba et al., 2013), aliphatic metabolism (Ba et al.,
2014a), DNA methylation (Ba et al., 2014b), cell morphology
(Wang et al., 2015), and transcriptome (Zhu et al., 2015a),
there is a dearth of information on the interceptive mechanism
of CHA-SQ-1-induced male sterility. More importantly, the
involvement of leaves as the recipient tissues has not yet been
reported.

Flag leaves provide sufficient energy and sucrose for meiosis
to take place in the pollen mother cells and to allow pollen
development and the accumulation of pollen starch during the
reproductive stage (Liu et al., 2006; Zhang et al., 2010). SQ-1
is a pyridazine chemical hybridizing agent which can induce
male sterility in wheat. During the induction of wheat male
sterility, the flag leaves are the initial receptor of CHA-SQ-
1, and are stressed by its application. However, after spraying
CHA-SQ-1 on flag leaves, the dynamic characteristics of the
membrane proteins of the flag leaves remain unknown and the
relationship between the dynamic characteristics of membrane
proteins and cellular metabolic processes also remain unclear.
In order to explore how the membrane proteomes responses
to this abiotic stress during CHA-SQ-1-induced male sterility,
we profiled the dynamic characteristics of proteomes for flag
leaf membrane-enriched fraction in the presence and absence of
CHA-SQ-1.

Materials and Methods

Plant Materials
The wheat cultivar cv. Xinong 1376 was grown in an experimental
field of the Northwest Agriculture and Forestry University,
Yangling, China (108◦ E, 34◦ 15′ N). The wheat flag leaves were
treated with CHA-SQ-1 (5 kg/hectare) when wheat reached the
Feeks’ 8.5 stage (the internal morphology of wheat development
where the connectivum is formed in female and male primordia).
Wheat flag leaves treated with water were used as a control. Flag
leaves were collected from control and treated with CHA-SQ-1
(at 2, 4, 6, 10, and 24 h after treatment, respectively) and analyzed
for physiological indices. For proteomics, flag leaves treated with
CHA-SQ-1 after 2 and 6 h were collected, respectively. Three
independent experiments were performed as biological replicates
for all experiments.

Determination of O2
− Formation Rate and

H2O2 Content
Determination of O2

−, and H2O2 content were performed
according to Ba et al. (2013). Estimation of Superoxide anion,
flag leaves (0.5 g) were homogenized in 65 mM phosphate buffer
(pH 7.8) and centrifuged at 4◦C, 5000 × g for 10 min. The
supernatants were incubated in 65mMphosphate buffer (pH 7.8)
and 10 mM hydroxylamine chlorhydrate at 25◦C for 20 min, and
then added 17mM sulfanilamide and 7mM α-naphthylamine for
another 20 min. The absorbance at 530 nm was measured with
a Nicolet Evolution 300 spectrophotometer (Thermo, USA) and
the formation rate of O2

− was calculated from a standard curve
of NaNO2.
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For determination of H2O2, flag leaves (0.5 g) were
homogenized in cold (−20◦C) acetone and centrifuged at 4◦C,
3000 × g for 10 min. The supernatant was added to ammonia
and 95% (v/v) hydrochloric acid containing 20% (v/v) titanium
tetrachloride. After centrifugation at 10 000 × g for 10 min,
the sediment was repeatedly washed with cold (−20◦C) acetone
and centrifuged at 14 000 × g for 4◦C and then dissolved in
1 M H2SO4. The absorbance was measured at 410 nm and the
content of H2O2 in the leaves was calculated with an H2O2
solution-derived standard curve.

Determination of Activities of Antioxidant
Enzymes
The activities of SOD, CAT, and POD were performed according
to Ba et al. (2013). To extract antioxidant enzymes, 0.5 g fresh flag
leaves were ground in 50 mM cool phosphate buffer [containing
1% (w/v) polyvinylpyrrolidone, pH 7.0] and centrifuged at 4◦C,
15 000 × g for 20 min. The supernatant was used for assays of
enzyme activity.

The activity of SOD was determined by measuring its ability
to inhibit the photoreduction of nitro blue tetrazolium (NBT).
The reaction solution contained 50 μM NBT, 1.3 μM riboflavin,
13 mM methionine, 75 nM EDTA, 50 mM phosphate buffer
(pH 7.8), and enzyme extract. The photo-induced reaction
was performed under a light bank at 78 μM m−2 s−1 for
15 min. The absorbance of the irradiated and non-irradiated
solution at 560 nm was determined with a Nicolet Evolution 300
spectrophotometer (Thermo, USA). One unit of SOD activity
was defined as the amount of enzyme that would inhibit 50% of
NBT photo reduction.

The CAT reaction solution contained 50mMphosphate buffer
(pH 7.0), 15 mM H2O2, and enzyme extract. Reaction was
initiated by adding enzyme extract. Changes in absorbance of
the reaction solution at 240 nm were read every 20 s. One unit
CAT activity was defined as an absorbance change of 0.01 units
per min.

The POD reaction solution contained 50 mM sodium
acetate buffer (pH 5.0), 20 mM guaiacol, 40 mM H2O2,
and enzyme extract. Changes in absorbance of the reaction
solution at 470 nm were determined every 20 s. One unit POD
activity was defined as an absorbance change of 0.01 units
per min.

Determination of MDA Content
The level of lipid peroxidation in samples was determined by
estimating the MDA content according to Ba et al. (2013).
0.5 g leaf sample was homogenized in 20% (v/v) trichloroacetic
acid and 0.5% (v/v) thiobarbituric acid, and centrifuged at 10
000 × g for 10 min. The amount of MDA in the supernatant was
estimated by the thiobarbituric acid reaction.

Measurement of Photosynthesis
Net photosynthetic rates (Pn) of wheat flag leaves were measured
with a portable photosynthesis measurement system (Li-6400,
Li-Cor, USA) at a photosynthetic photo flux density (PPDF) of
1200 μmol m−2 s−1 (provided by a red–blue LED light source)
and an ambient CO2 concentration of 400 μmol mol−1.

Measurement of Total Soluble Sugars and
Starch Content
Flag leaves were ground in liquid nitrogen and homogenized
with 80% ethanol. After centrifugation at 16 000 × g for 10 min,
the supernatant was removed to a fresh tube and the pellet was
extracted another two times. Starch in the pellet was hydrolyzed
with 30% perchloric acid overnight at room temperature, then
incubated at 60◦C for 10 min and centrifuged at 16 000 × g for
10 min. Total soluble sugar and starch content were determined
using the anthrone method as described by Zhu et al. (2015b).

Isolation of Membrane-Enriched Fraction
The membrane fraction was isolated as previously described
(Martinec et al., 2000) with few modifications. Approximately,
50 g of tissue was chopped and ground in a Waring blender.
The tissue was homogenized in 500 ml homogenizing solution
[500 mM sucrose, 50 mM Tris-MES, 50 mM EDTA-Na2, 20 mM
NaF, 10% glycerol (v/v), 10 mM ascorbic acid, 0.6% PVP (w/v),
1 mM PMSF, 0.5% BSA (w/v), 1 mM DTT; pH 7.8]. The
homogenates were filtered through four layers of cheese-cloth
and centrifuged at 6000 × g for 15 min. Membrane vesicles
were pelleted from the resulting supernatant by centrifugation
at 150 000 × g for 45 min. The resulting pellet containing the
membrane fraction was suspended in suspension buffer (50 mM
PBS, 330 mM sucrose, 10 mM NaF, and 2 mMDTT; pH 7.8).

ATPase Activity Measurement
Enrichment assessment of various subcellular membranous
components was performed by measurement of membrane-
specific H+-ATPase activity compared to total ATPase activity.
The hydrolytic activity of H+-ATPase was determined according
to the procedures of Yan et al. (2002) and Shen et al. (2006).
Hydrolytic ATPase activity was determined in 0.5 ml Tris/MES
buffer containing 50 mM Tris-MES, 1 mM Na2MoO4, 5 mM
MgSO4, 50 mM KCl, 0.02% Brij 58 (w/v), 5 mM ATP-Na2,
pH 6.5 for P-ATPase activity or 8.0 for V-ATPase activity,
and F-ATPase activities. Subsequently 1 mM NaN3, 50 mM
KNO3, and 0.5 mM Na3VO4 were contained respectively for
determination of F-ATPase activity, V-ATPase activity, and
P-ATPase activity. The reaction was initiated by the addition
of the membrane-enriched fraction (equivalent to 3 μg of
membrane protein), proceeded for 30 min at 30◦C, and stopped
with 0.5 ml of stopping reagent (10% SDS). After 2 min, color
reagent containing 2% concentrated H2SO4 (v/v) and 0.5%
(NH4)2MoO4 (w/v) was added, followed immediately by 1 ml
Millipore-Q water and 10 μl of 10% (w/v) ascorbic acid. Color
development was completed after 30 min. To select the most
suitable wavelength for the activity of H+-ATPase, we employed
the full wavelength range for the first optimization using a
UV-spectrophotometer. Then, ATPase activity was calculated as
phosphate liberated in excess of the boiled membrane fraction
control.

2-DE and Gel Image Analysis
2D-PAGE was performed following the method of Ye et al.
(2013) with minor modifications. The fractions’ membrane
proteins were solubilized in lysis solution containing 7 M urea,
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2 M thiourea, 4% (w/v) CHAPS, 65 mM DTT, 0.5% (v/v)
Bio-Lyte (pH 4–7), and 0.001% (w/v) bromphenol blue. The
protein concentration was determined by using a standard curve
(R2 = 0.998) of Bio-Rad Protein Assay Kit II (Bio-Rad, USA),
according to the manufacturer’s instructions. About 520 μg of
membrane protein was loaded onto a commercially available
precast IPG strip (Bio-Rad, USA) with a 17 cm linear pH 4–
7 gradient and actively rehydrated at 50 V for 12 h at 20◦C.
Subsequently, focusing was performed on the IPGphor apparatus
(PROTEAN IEF Cell; Bio-Rad, USA) under the following
conditions: 250 V for 1 h, 500 V for 1 h, 1000 V for 1 h, 400 V
for 1 h, 8000 V for 4 h, and 8000 V to achieve 80000 V-h. Prior
to SDS-PAGE, the strips were equilibrated for 15 min in 10 ml of
reducing equilibration buffer [6 M urea, 2% SDS (w/v), 0.375 M
Tris-HCl at pH 8.8, 20% glycerol (v/v), 2% DTT (w/v)] and then
for another 15 min in alkylating equilibration buffer containing
2.5% (w/v) iodoacetamide instead of 2% DTT. The strips were
placed on the top of vertical 11% SDS-PAGE. Electrophoresis
was carried out at 15◦C and 10 mA for 1 h and then at 20 mA
until the dye front reached the bottom of the gel. The gels were
then stained with Coomassie Brilliant Blue (CBB) G250. Each
sample was run in three independent experiments (biological
replicates).

Gels were visualized using a PowerLook 2100XL scanner
(UMAX, Taiwan, China) at a resolution of 600 dpi. Images
were analyzed using the analytical software PDQuest 2-DE 8.0.1
(Bio-Rad, USA) for spot detection, gel matching, and statistical
analysis of spots. The selection of protein spots of interest for
analysis by MS was based on a fold change ≥1.5 (p < 0.05).

In-Gel Digestion and MALDI-TOF/TOF MS
Analysis
The protein spots were excised manually, washed twice with
Millipore-Q water, and destained with fresh solution (50% ACN,
40 mM NH4HCO3). The reaction was stopped with Millipore-
Q water when the blue color disappeared after about 2 min.
Next, 200 μl of 40 mM ammonium bicarbonate (NH4HCO3)
was added to cover the gel for 2 min, followed by repeated
dehydration with changes of 150 μl 100% acetonitrile (ACN)
until the gel pieces turned opaque white; the gel was then dried
in a vacuum centrifuge. Enzymatic digestion was performed with
10 μg/ml trypsin (enzyme/sample ratio 1:20) during incubation
for 45 min in an ice bath, and the supernatant was subsequently
removed. Then, 40 μl 40 mM of NH4HCO3 solution containing
10% ACN was added to cover the gel, followed by incubation
for 16 h at 37◦C. Following enzymatic digestion, the supernatant
was collected and the resultant peptides were extracted during
20 min incubation in 20 μl extraction solution containing
0.1% trifluoroacetic acid (TFA) and 60% ACN. The supernatant
was then collected and the peptides were re-dissolved in
20 μl extraction solution (50% ACN, 0.1% TFA) for 10 min.
Subsequently, the supernatant was collected and mixed with
the previous two supernatants. Mass spectra were collected
using a 5800 MALDI Time of Flight (TOF)/TOFTM analyzer
with α-cyano-4-hydroxycinnamic acid (CHCA) as matrix and
analyzed using TOF/TOFTM Series ExplorerTM Software V4.1.0
(AB Sciex, Foster City, CA, USA).

Searches for MS/MS mass spectra were performed using
the Mascot search engine1 against the NCBInr and Swissprot
databases with a taxonomy parameter set to green plants. For
the database search, parameters such as one missed cleavage
site by trypsin, peptide tolerance of 100 ppm, and an MS/MS
tolerance of 0.3 Da, peptide charge of 1+, carbamidomethylation
of cysteine, and oxidation of methionine as fixed and variable
modifications were used. The MASCOT score, the number of
peptide matches, sequence coverage, pI, and molecular weight
were used to evaluate the database search results. Sequences of
proteins identified as unknown, hypothetical or proteins with an
uncharacterized function were used as queries for searching their
homologues with BLASTP algorithm.

Bioinformatic Analysis
The prediction of transmembrane domains (TMDs) of
the identified proteins was carried out using TMpred2.
Grand Average of Hydropathicity (GRAVY) value for each
protein was calculated using the Protein GRAVY tool3.
Hierarchical cluster analysis and heat-map were performed
using MultipleExperiment Viewer 4.9 software based on the Log
2-transformed fold change. All identified proteins were blasted
against the Arabidopsis thaliana TAIR10 (The Arabidopsis
Information Resource) protein database4 with the intention
of obtaining annotated protein entries for protein–protein
interaction network (PPI) tools. Results with the highest score
and lowest E value were considered as relevant for each identified
protein. A PPI was constructed with the online analysis tool
STRING 9.1 and biological processes and molecular functions
were predicted by BiNGO 3.0.2, a plugin for Cytoscape.
Subcellular localization of the identified proteins was analyzed
using AT_CHLORO database5, TAIR10 database4 and SUBA3
database6.

Statistical Analysis
The results presented are the means of three independent
experiments. Sample variability is given as the standard deviation
of the mean. The significance of differences between control
and treatment mean values was determined by Student’s t-test,
at the 0.01 significance level, and where applicable at the 0.05
significance level.

Results

Physiological Changes in Wheat Flag Leaves
Under CHA-SQ-1 Treatment Conditions
O2

− and H2O2, as the major members of the ROS family,
play vital roles in oxidative damage to plants. In order to
further explore whether the generation and accumulation of ROS

1www.matrixscience.com
2http://www.ch.embnet.org/software/TMPRED_form.html
3http://www.bioinformatics.org/sms2/protein_gravy.html
4http://www.arabidopsis.org/
5http://at-chloro.prabi.fr/at_chloro/
6http://suba3.plantenergy.uwa.edu.au/

Frontiers in Plant Science | www.frontiersin.org 4 August 2015 | Volume 6 | Article 669

www.matrixscience.com
http://www.ch.embnet.org/software/TMPRED_form.html
http://www.bioinformatics.org/sms2/protein_gravy.html
http://www.arabidopsis.org/
http://at-chloro.prabi.fr/at_chloro/
http://suba3.plantenergy.uwa.edu.au/
http://www.frontiersin.org/Plant_Science/
http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Science/archive


Song et al. CHA-SQ-1-responsive membrane proteins in wheat

caused oxidative damage in CHA-SQ-1 treated wheat flag leaves,
ROS content and antioxidant enzyme activities were measured
(Figure 1). CHA-SQ-1-treated flag leaves had significantly higher
levels of O2

−, the precursor of most ROSs, than was found in
control leaves from 2 to 10 h and contents increased by 1.64-
fold at 2 h, 1.88-fold at 4 h, 1.74-fold at 6 h, and 1.09-fold at
10 h, respectively (Figure 1A), thus first showing an increase and
then a decrease with treatment time and eventually returning
to normal levels. Meanwhile, excess O2

− was catalyzed to form
H2O2. The levels of H2O2 in leaves treated at 2, 4, 6, and
10 h after CHA-SQ-1 were also increased by 1.25-fold, 1.12-
fold, 1.14-fold, and 1.07-fold, respectively, as compared to the
control plants (Figure 1A). Meanwhile, the activities of SOD,
POD, and CAT were measured, and the results showed that
activities of all three antioxidant enzymes in wheat flag leaves
declined significantly after CHA-SQ-1 treatment when excess
ROS was generated (Figure 1B) and this further interfered with
the oxidative/antioxidative balance. More importantly, excessive
ROS can oxidize membrane lipids and generate MDA, which
can aggravate damage to membrane structure. Not surprisingly,
within 24 h after CHA-SQ-1 treatments, the levels of MDA were
increased by 1.25-fold at 2 h, 1.13-fold at 4 h, 1.13-fold at 6 h,
1.07-fold at 10 h, and 1.09-fold at 24 h over control leaves,
respectively (Figure 1A).

FIGURE 1 | Assessment of ROS content and oxidative stress analysis
in wheat flag leaves under chemical hybridizing agent (CHA)-SQ-1
treatment conditions. (A) The generation rate of O2

− and content of H2O2

in control wheat flag leaves and CHA-SQ-1 treated flag leaves; content of
malonaldehyde (MDA) in control and CHA-SQ-1 treated flag leaves.
(B) Activities of superoxide dismutase (SOD), guaiacol peroxidase (POD) and
catalase (CAT) in control and CHA-SQ-1 treated flag leaves. Data are
means ± SD of three independent experiments (biological replicates). The
significant of differences was assessed by Student’s t-test (∗P < 0.05,
∗∗P < 0.01).

To determine the effects of CHA-SQ-1 treatment on
photosynthesis of flag leaves, net photosynthesis rate (Pn)
was measured at different times after CHA-SQ-1 treatment.
Meanwhile, contents of soluble sugar and starch were also
determined. Results showed that the Pn of the wheat flag
leaves decreased significantly from 20.57 μmol m−2 s−1 (control
plants) to 3.11 (at 10 h after CHA-SQ-1 treatment) and began to
increased slightly at 24 h after treatment (Supplementary Figure
S1). Contents of soluble sugar and starch were decreased by 1.73-
to 4.19-fold and 3.26- to 8.01-fold, respectively (Supplementary
Figure S2).

Enrichment Assessment of Various Subcellular
Membranous Components
Enrichment of the membrane microsomal fraction of flag
leaves was accomplished by differential centrifugation. It
was systematically assessed for the enrichment of various
subcellular membranous components using standard marker
enzyme assays viz., vanadate-, azide-, nitrate-sensitive ATPase
PM, mitochondrial membrane, tonoplast, and Golgi membranes,
respectively. The results showed that a maximum absorption at
820 nm (Figure 2A), which means 820 nm was selected as the
most adequate wavelength for testing all activity of H+-ATPase.
Accordingly, the relative changes in percent inhibition of ATPase
activities associated with mitochondria, tonoplast, and PM were
1.60-, 1.63-, and 1.73-fold, respectively in microsomal fractions
compared to the crude homogenate (Figure 2B). The higher
level activities of the marker enzymes in the membrane fraction
indicate the enrichment of various subcellular membranous
components.

Analysis of Differential Membrane Proteins in
Control and CHA-SQ-1 Treated Wheat Flag
Leaves
To understand the membrane proteome response to short-term
CHA-SQ-1-treatment of wheat flag leaves, and the changes in

FIGURE 2 | Enrichment assessment of various subcellular
membranous components. (A) Wavelength scanning of reaction system of
H+-ATPase activity determination at a wavelength of 400–900 nm.
(B) Enzymatic characterization of the membrane fraction. Relative H+-ATPase
activity was determined by measurement of membrane-specific H+-ATPase
activity compared to total ATPase activity. MF, membrane fraction; CH, crude
homogenate; VM, vacuole membrane; PM, plasma membrane; MM,
mitochondria membrane. Data are means ± SD of three independent
experiments (biological replicates).
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membrane proteomes of wheat flag leaves from the control,
CHA-SQ-1-treated plants (2 and 6 h) were analyzed by 2-DE.
The membrane protein maps produced from three independent
protein extractions showed a high reproducibility based on
analysis using PDQuest software.

Figure 3 shows a representative gel image of proteins extracted
from the control and CHA-SQ-1-treated plants. Protein spots
[345 (±12), 361 (±15), 370 (±13)] were reproducibly detected
using PDQuest software from the control, 2 and 6 h after
CHA-SQ-1 treatment, respectively (n = 3). From a spot-to-
spot comparison and based on statistical analysis, a total of
150 spots (numbered from 1 to 150) exhibited at least 1.5-fold
(p< 0.05) difference in abundance between the control and CHA-
SQ-1 treatment (Figure 3, Supplementary Table S1). In wheat
leaves at 2 h after treatment, 68 spots had >1.5-fold change in
abundance (p < 0.05) and 37 spots showed a >2.0-fold change;
meanwhile, in wheat leaves at 6 h after CHA-SQ-1 treatment,
83 spots had a >1.5-fold change in abundance and 41 spots
showed a >2.0-fold change (Supplementary Table S1). Among
150 differential proteins, only spot 20 showed qualitative changes
and was detected in CHA-SQ-1-treated flag leaves (Figure 3,
Supplementary Table S1).

To understand the differentially expressed protein (DEP)
profile patterns at two time points during CHA-SQ-1 treatment,
the distribution of proteins were analyzed. Figures 4A,B present
the number of DEPs under CHA-SQ-1 treatments and how
these spots overlap using Venn diagram analysis. There were
35 up-regulated proteins and 70 down-regulated proteins in
flag leaves at 2 h after CHA-SQ-1 treatment; meanwhile, there
were 43 up-regulated proteins and 81 down-regulated proteins
in flag leaves at 6 h after CHA-SQ-1 treatment (Figures 4A,B).
Among the up-regulated spots, 24 spots were up-regulated at
both CHA-SQ-1 time treatments; of all down-regulated spots,
52 spots were down-regulated under both two different CHA-
SQ-1 treatments (Figures 4A,B). Approximately 50% (52.5% for
down-regulated proteins and 44.4% for up-regulated proteins) of
the DEPs exhibited a similar regulatory pattern under the two
different CHA-SQ-1 treatments. Additionally, 77 spots showed
up or down-regulation under only one treatment. Of these, 29
spots were found to be differentially expressed at 2 h after CHA-
SQ-1 treatment, while the other 48 spots showed significant
changes in response to 6 h of CHA-SQ-1 treatment, indicating
that these spots were specifically responsive to short-term CHA-
SQ-1-treatment of wheat flag leaves (Figures 4A,B).

FIGURE 3 | 2-DE image analysis of membrane proteomes in control and CHA-SQ-1-treated wheat flag leaves. (A) 2-DE map of control flag leaves;
(B) 2-DE map of flag leaves treated with CHA-SQ-1 for 2 h (C) 2-DE map of flag leaves treated with CHA-SQ-1 for 6 h.
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FIGURE 4 | Venn diagram analysis of the differentially expressed
membrane protein spots and functional classification of 149 identified
membrane proteins. (A) The numbers of differentially expressed protein
spots with down-regulation in wheat flag leaves after CHA-SQ-1 treatment for
2 and 6 h. (B) The numbers of differentially expressed protein spots with
up-regulation in wheat flag leaves after CHA-SQ-1 treatments for 2 and 6 h.
(C) Distribution of proteins according to their biological functions. Unclassified
proteins include those whose functions have not been described.

Identification and Functional Classification of
DEPs
A total of 150 DEPs were analyzed by MALDI-TOF/TOF MS.
Amongst them, 149 were successfully identified by MS/MS
(Supplementary Table S2). Among the 149 identities, 142 have
been functionally annotated in the current database, whereas the
remaining seven identities were either unnamed proteins (spot
84, spot 92, spot 115, and spot 120) or hypothetical proteins (spot
27, spot 78, and spot 109; Supplementary Table S2). To annotate
their identities, their sequences were used as a query to search for
homologs using BLASTP (NCBI). The corresponding homologs
with the highest similarity are listed in Supplementary Table S3.
All 7 proteins shared at least 80% sequence similarity, suggesting
that they may have similar function with their homologues. In
summary, 149 identities represented 103 unique proteins.

Based on the metabolic and functional features of wheat
flag leaves, all of the 149 identities were classified into 12
major categories, including photosynthesis, ATP synthesis
and ion transport, protein folding and assembly, unclassified
proteins, protein biosynthesis, cell rescue and defense, redox
homeostasis, carbohydrate metabolism, protein degradation,
signal transduction, protein transport, and chlorophyll
biosynthesis (Figure 4C). Eighty percent of these identified
proteins were implicated in the first six functional groups,
whereas the largest functional groups that were greatly affected by

CHA-SQ-1 treatment were proteins involved in photosynthesis
(27.5%). Further analysis of the change of abundance in each
group revealed that proteins involved in ATP synthesis (13.4%),
protein folding and assembly (11.4%), protein biosynthesis
(9.4%), and stress-related proteins (9.4%) were overrepresented,
either in number or in expression level, suggesting that these
processes were susceptible to CHA-SQ-1 treatment. In order
to visualize the protein expression patterns of all 12 categories,
hierarchical clustering of proteins was analyzed (Figure 5).

In general, the apparent Mr predicted by SDS-PAGE has
an error of about ±10% compared with the theoretical value.
However, amongst all of the identified proteins, a set of 37
identities with known function were found with observed Mr
values much smaller than the theoretical values (Supplementary
Table S2), suggesting that these proteins appeared to be partially
degraded products of their intact proteins. Of these, twelve
identities were involved in photosynthesis (spot 26, spot 39, spot
48, spot 67, spot 71, spot 72, spot 76, spot 116, spot 121, spot
133, spot 141, and spot 145); five identities were involved in the
process of protein folding and assembly (spot 74, spot 129, spot
139, spot 142, and spot 143); respectively, four identities were
involved in the process of ATP synthesis (spot 33, spot 64, spot 66,
and spot 111), protein biosynthesis (spot 107, spot 118, spot 132,
and spot 137) and cell rescue and defense (spot 68, spot 69, spot
119, and spot 138); three identities were involved in the process
of carbohydrate metabolism (spot 61, spot 77, and spot 135); two
identities were related to signal transduction (spot 124 and spot
146); and respectively, one identity was suggested to be related
to protein degradation (spot 123) and protein transport (spot 49)
processes; one identity (spot 27) was unclassified protein.

By contrast, 17 identities with annotated function were found
with observed Mr values much larger than theoretical values
(Supplementary Table S2), indicating that these proteins may be
products of post translation modified proteins.

Physicochemical Characteristics of Membrane
Proteins
To evaluate the physicochemical characteristics of flag leaf
membrane proteins, all of the identified proteins were analyzed
in terms of hydrophobicity (GRAVY values) and the number
of TMDs. The GRAVY score takes into account the size and
the charge of the whole protein and ranges for instance from
−2 to +2, positive values referring to hydrophobic proteins
while negative values refer to hydrophilic proteins. The majority
of analyzed proteins have a GRAVY between −0.4 and +0.4,
which could not discriminate their hydrophobic or hydrophilic
nature (Morel et al., 2006). In our case, the GRAVY of
membrane proteins of the wheat flag leaves analyzed ranged
from −1.122 to +1.125, and most of the proteins (78.5%)
had a GRAVY index between −0.4 and +0.4 (Supplementary
Table S2). TMDs prediction programs (TMpred) were used
to predict putative TMDs in all of 149 identified proteins
(Supplementary Table S2). TM candidate proteins formed 92.7%
(138/149) of the proteins, displaying at least one TMD. Among
them, 47.8% (66/138) exhibited one to three TMDs, 31.2%
(43/138) showed four to six TMDs, and 21.0% (29/138) had
7 to 19 TMDs (Figure 6). It has been reported that most of

Frontiers in Plant Science | www.frontiersin.org 7 August 2015 | Volume 6 | Article 669

http://www.frontiersin.org/Plant_Science/
http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Science/archive


Song et al. CHA-SQ-1-responsive membrane proteins in wheat

FIGURE 5 | Hierarchical clustering of membrane proteins of all 12
categories in control and two different CHA-SQ-1 treatment
regimes of wheat flag leaves. The hierarchical cluster analysis was
conducted using MultiExperiment Viewer 4.9 and the Log-transformed
values of -fold change ratios listed in Supplementary Table S4.

A, photosynthesis; B, signal transduction; C, protein transport; D,
chlorophyll biosynthesis; E, ATP synthesis and ion transport; F, protein
biosynthesis; G, electron transport; H, protein degradation; I, protein
folding and assembly; J, unclassified proteins; K, cell rescue and defense;
L, carbohydrate metabolism.

the integral cytoplasmic membrane proteins are hydrophobic,
while the majority of integral outer membrane proteins are
hydrophilic (Nouwens et al., 2000; Santoni et al., 2000), which
can cause the observed ambiguity between GRAVY values and
TMDs. A similar phenomena was also observed in our study.
Eighty-seven percent (120/138) of proteins with putative TMDs
showed negative GRAVY values; while LRR disease resistance
protein/transmembrane receptor kinase PS4 with no predicted
TMD scored positive GRAVY values (1.125; Supplementary
Table S2). According to the localization tools, the results
indicated that identified proteins were higher enrichment in

membrane proteins, but a number of non-membrane proteins
were identified in this study (Supplementary Table S5), which
is a common problem in isolating membrane from plant tissue
and also observed in many other membrane proteomic studies
(Li et al., 2012; Manandhar-Shrestha et al., 2013; Nie et al.,
2015).

PPI Analysis of Identified Membrane Proteins
In order to explore the relationship among all identified
differential proteins, protein–protein interaction was analyzed.
All 149 identified proteins were blasted against the Arabidopsis
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FIGURE 6 | Distribution of the number of predicted transmembrane
domains (TMDs) of membrane protein in wheat leaves. TMDs analysis of
identified proteins was performed using TMpred program. The algorithm is
based on the statistical analysis of TMbase. The number of TMDs for every
DEP was listed in Supplementary Table S2.

thaliana TAIR10 protein database (Supplementary Table S5).
Identified proteins were grouped into functional classes
according to the biological processes in which they are
involved. STRING and BiNGO were used to visualize
the protein–protein interaction, biological pathways, and
molecular functions (Maere et al., 2005; Franceschini et al.,
2013).

The STRING analysis revealed the functional links between
different proteins in which proteins involved in photosynthesis,
ATP synthesis, response to stress, and protein synthesis were
major clusters (Figure 7). Actually, these four clusters were
not separated and together they formed a related-network
in response to CHA-SQ-1 treatment. Proteins overlapped
among the four clusters, especially proteins involved in
photosynthesis and energy metabolism. Abbreviations of
the specific protein names in the network are shown in
Supplementary Table S6.

To obtain statistically over- or under-represented categories
of biological pathways and molecular functions related to
CHA-SQ-1 treatment, BiNGO was used to analyze identified
differential proteins (Figure 8, Supplementary Tables S7
and S8). Several overrepresented biological pathways were
mostly significant (Figure 8A, Supplementary Table S7),
including photosynthesis (p = 2.3849e–21), photosynthesis
and light reaction (p = 2.8509e–21), generation of precursor
metabolites and energy (p = 5.2254e–16), and response to
stimulus (p = 6.6954e–13). Meanwhile, a complete list of
the enriched Gene Ontology (GO) molecular functions for
the proteins was presented in Figure 8B and Supplementary
Table S8. Of them, several most highly enriched molecular
functions are poly(U) RNA binding (p = 1.5997e–7), poly-
pyrimidine tract binding (p = 1.5997e–7), chlorophyll
binding (p = 5.8727e–7), single-stranded RNA binding
(p = 8.3523e–7), hydrogen ion transporting ATP synthase
activity and rotational mechanism (p = 5.2896e–6), ATPase
activity (p = 5.4790e–6), NADPH dehydrogenase activity
(p = 2.5621e–5), antioxidant activity (p = 4.1425e–5), ATP-
dependent peptidase activity (p = 4.1601e–5), metallopeptidase

activity (p = 6.8133e–5) and translation elongation factor activity
(p = 7.6145e–5).

Discussion

Oxidative Stress of Wheat Flag Leaves Caused
by CHA-SQ-1
Various abiotic stresses lead to the overproduction of ROS
in plants, which result in oxidative stress and cause damage
to multiple cellular components such as proteins (Gill and
Tuteja, 2010). It has been reported previously that CHA-SQ-1,
in a manner similar to other stress factors, can generates
excessive ROS during the anther abortion (Ba et al., 2013).
And, indeed, our current results showed that CHA-SQ-1 also
induced the overproduction of ROS in flag leaves and further led
to degradation of multiple membrane proteins (Supplementary
Table S2). Generally, in order to cope with continuous ROS
production under stress, major antioxidant enzymes including
SOD, POD, and CAT, are activated to scavenge ROS (Gill
and Tuteja, 2010). We found an inverse correlation between
the level of intracellular ROS and the activities of leaf SOD,
CAT, and POD. This meant that excessive ROS cannot be
eliminated effectively at the early stage of CHA-SQ-1 treatment,
which aggravated damage to cellular components. In plants,
overproduction of ROS can destroy membrane stability through
the formation of MDA (Gill and Tuteja, 2010). Similarly, in
the present study, MDA content increased significantly under
CHA-SQ-1 treatment, showing that the peroxidative reaction
in membrane lipids had become stronger and the plant injury
would be more serious. In this case, membrane proteomes were
damaged.

Proteins Involved in Photosynthesis
Photosynthesis is the primary pathway for the production
of carbohydrates, which are essential for cell growth and
proliferation. It is composed of two steps, photoreaction
(light dependent) and dark reaction (carbon fixation). The
capability of a plant to maintain a stable photosynthetic rate is
significant for sustaining plant growth under stress conditions
(Wang et al., 2013). Previously, our results suggest that CHA-
SQ-1 affected the major products of photosynthesis during
the anther abortion, such as sucrose, starch and aliphatic
metabolism (Ba et al., 2014a; Zhu et al., 2015b). Similarly,
in the present study, 41 DEPs were found to be associated
with the photosynthetic process under CHA-SQ-1 treatment
(Supplementary Table S2).

Of these, six DEPs (spot 25, spot 50, spot 67, spot
121, spot 127, and spot 136) belonged to Chlorophyll a/b
binding proteins (LHCB; Supplementary Table S2). As a whole,
their abundance was down-regulated in CHA-SQ-1 treated
flag leaves (Supplementary Table S1). LHCB are the most
abundant membrane proteins in plants and play a vital role in
maintaining a stable photosynthetic rate. Previous study showed
that gene expression of LHCB is down-regulated under ROS
stress (Staneloni et al., 2008), and decrease LHCB expression
leads to plants being more vulnerable under stress conditions
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FIGURE 7 | Analysis of protein interaction network by STRING 9.1. TAIR homologous proteins from identified proteins were mapped by searching the STRING
9.1 software with a confidence level of 0.4. Colored lines between the proteins indicate the various types of interaction evidence.

(Andersson et al., 2001; Ganeteg et al., 2004; Kovács et al.,
2006).

Oxygen evolving enhancer proteins 1 (OEE 1) and OEE 2
are responsible for the stability of PS II and play a vital role in
catalyzing the splitting of water (Mayfield et al., 1987a,b). Study
has shown that OEE 2 expression is increased in some species
under drought and salt stress (Sugihara et al., 2000; Abbasi and
Komatsu, 2004; Gazanchian et al., 2007). However, a few studies
have shown that the expression level of OEE decreased during
salt stress in potatoes and wheat (Aghaei et al., 2008; Gao et al.,
2011). In our study, the abundance of OEE 1 (spot 18 and spot 19)
was up-regulated at 2 h after CHA-SQ-1 treatment, and down-
regulated at 6 h after CHA-SQ-1 treatment (Supplementary
Tables S1 and S2). At 2 h after CHA-SQ-1 treatment, increased
abundance of OEE 1 helped repair the damaged PS II. However,
decreased abundance of OEE1 at 6 h after treatment caused

instability of PS II under peroxide stress caused by CHA-SQ-1.
Meanwhile, the abundance of OEE 2 (spot 32) was reduced at 6 h
after CHA-SQ-1 treatment in flag leaves (Supplementary Tables
S1 and S2), which further slowed the photosynthetic process.

Proteins Involved in ATP Production and
Electron Transport
ATP synthase is the universal enzyme that manufactures
ATP from ADP and provides energy for a large number of
fundamental biological processes (Kang et al., 2012). In the
present study, a total of 16 DEPs were involved in ATP synthesis,
with 14 DEPs down-regulated and two DEPs (spot 34 and
spot 64) up-regulated in response to CHA-SQ-1 treatment of
flag leaves (Figure 3, Supplementary Tables S1 and S2). During
biotic and abiotic stresses in plants, high energy costs are
required at the stage of stress acclimation, such as the increased
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FIGURE 8 | Biological pathway (A) and molecular function (B) networks generated by BiNGO. Homologous proteins were used for the GO analysis. The size
of the node is related to the number of proteins and the color represents the p-value for the statistical significance of the overrepresented GO term (see the color
scale on the right bottom), whereas white nodes are not enriched.

relative abundance of components of mitochondrial ATP-
synthase (Kosová et al., 2014). Here, as a whole, the abundance of
different subunits of ATP synthesis was decreased in CHA-SQ-1
treated flag leaves compared to the control plant; this interrupted
multiple normal metabolic processes dependent on ATP. In
addition, the abundance of vacuolar proton-ATPase subunit A
(spot 46, spot 47, and spot 86) was decreased significantly in
CHA-SQ-1 treated flag leaves (Figure 3, Supplementary Tables
S1 and S2), which would cause an imbalance of homeostasis and
abnormal cellular activity. These negative events might trigger
an insufficiency of ATP production for maintaining normal
metabolic processes under CHA-SQ-1 treatment in flag leaves.

The process of ATP production is always along with
electron transport. Ferredoxin-NADP+ oxidoreductase (FNR) is
a ubiquitous enzyme encoded by nuclear genes in higher plants.
It catalyzes reversible electron transfer between ferredoxin (Fd;

or flavodoxin) and NAD(P)H (Mulo, 2011). In the present study,
the expression level of FNR (spot 10, spot 12, spot 14, spot 62,
and spot 63) was decreased in CHA-SQ-1 treated wheat flag
leaves compared to the control plants (Supplementary Tables S1
and S2). As mentioned above, LHCB was down-regulated under
CHA-SQ-1 treatment, and this decrease may hinder photon
capturing and the transfer the excitation energy to reaction
centers to decrease NADP+ to NADPH generation (Komatsu
et al., 2014). Subsequently, the marked release of FNR from
the thylakoid membrane followed by a reduction in NADP+
photoreduction capacity might maintain the NADP+/NADPH
homeostasis of the stressed plants (Palatnik et al., 1997; Lehtimäki
et al., 2010). On the other hand, decreased reduction of
NADP+ caused the photosynthetic electron transport chain to
become over-reduced, therefore accelerating the formation and
accumulation of ROS (Komatsu et al., 2014). As a consequence,
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the photosynthetic process was further impaired and slowed
the growth of wheat plants and the development of pollen.
In addition, NADH-ubiquinone oxidoreductase (spot 37) was
down-regulated in CHA-SQ-1 treated flag leaves in our study
(Figure 3, Supplementary Tables S1 and S2). NADH-ubiquinone
oxidoreductase is an enzyme that detoxifies quinones and their
derivatives (Wang et al., 2013) and its down-regulation in CHA-
SQ-1 treated flag leaves might cause further damage to cellular
metabolic process.

Proteins Involved in the Stress Response
In the present study, ROS and MDA, with the potential to cause
cellular damage, were generated and accumulated. Under abiotic
stresses, plants have evolved protective mechanisms to eliminate
or reduce ROS and MDA levels and defend against a stressful
environment (Gill and Tuteja, 2010). In our study, some anti-
stress proteins, such as Temperature stress-induced lipocalin
(TIL; spot 134) and 2-Cys peroxiredoxin (spot 138 and spot 140),
and Abscisic acid stress ripening (ASR; spot 20 and spot 21)
who play vital roles in response to stresses (König et al., 2002;
Yang et al., 2005; Abo-Ogiala et al., 2014), were up-regulated
to response to CHA-SQ-1 treatment in flag leaves (Figure 3,
Supplementary Tables S1 and S2). To some extent, this increase
can restrain accumulation of ROS. However, in our results, other
antioxidative proteins, such as LRR disease resistance protein
(spot 87 and spot 149) were down-regulated in CHA-SQ-1 treated
flag leaves (Figure 3, Supplementary Tables S1 and S2). This
means that excessive ROSwas not been completely scavenged and
this aggravated the damage to cellular biological processes.

Protein Metabolism-Related Proteins
Synthesis, assembling, folding, and degradation-related proteins
are necessary for maintaining cellular protein homeostasis
(Saikawa et al., 2004). In the present study, DEPs involved in
protein metabolism are implicated in three functional subgroups:
(1) protein synthesis-related proteins; (2) assembling/folding-
related proteins; (3) degradation-related proteins.

In the first subgroup, five elongation factor Tu (EF-Tu; spot
7, spot 54, spot 56, spot 103, and spot 118) were up-regulated in
flag leaves under CHA-SQ-1 treatment (Figure 3, Supplementary
Tables S1 and S2). EF-Tu is a protein that plays a central role in
the elongation phase of protein synthesis in plants. In additional,
EF-Tu can prevent aggregation of denatured proteins caused
by environmental stresses and chemicals (Kudlicki et al., 1997;
Fu and Dooner, 2002). In our case, on the one hand, the up-
regulation of EF-Tu could accumulate synthesis of proteins and
replaced damaged proteins under CHA-SQ-1 treatment; on the
other hand, it prevented the aggregation of damaged proteins
caused by ROS.

In the second subgroup, eight DEPs (spot 43, spot 44, spot 55,
spot 79, spot 81, spot 82, spot 83, and spot 122) were identified as
heat shock proteins (HSPs) and chaperones and their expression
levels were increased except for the 20 kD chaperonin (spot 122)
whose abundance was decrease in flag leaves under CHA-SQ-1
treatment (Figure 3, Supplementary Tables S1 and S2). HSPs and
chaperones play crucial roles in protecting plants against stress
and they are involved in a wide range of crucial cellular processes

(Wang et al., 2004; Al-Whaibi, 2011). Our results indicated
that the accumulation of ROS caused instability of proteins and
membrane structure under CHA-SQ-1 treatments. An increased
abundance of HSPs was a protective mechanism in response to
oxidative stress. However, HCF136 (spot 65) which is related to
the stability of PS II, was down-regulated in CHA-SQ-1-treated
wheat leaves (Figure 3, Supplementary Tables S1 and S2) and this
might cause the damage of PS II.

In the third subgroup, four DEPs (spot 3, spot 4, spot
45, and spot 98) identified as cell division protease FtsH-like
proteins (Supplementary Table S2). FtsH proteins are involved in
photosynthesis and control of the cell cycle in eukaryotic cells.
In vivo, studies have shown that FtsH proteins are responsible
for the degradation of unassembled proteins (Ostersetzer and
Adam, 1997) and D1 proteins (Lindahl et al., 2000; Malnoë et al.,
2014). In the present study, down-regulation of FtsH protein
in CHA-SQ-1 treated wheat flag leaves interrupted the process
of photosynthesis and impacted the formation of thylakoid
membranes (Supplementary Table S1). Meanwhile, variegation
in wheat flag leaves after CHA-SQ-1 treatment may be related
to a decrease in the abundance of FtsH protein (Chen et al.,
2000). These events resulted in there being a low photosynthesis
rate (Supplementary Figure S1) and insufficient source of energy
(Supplementary Figure S2) to response to CHA-SQ-1 treatment
in wheat flag leaves.

Other Proteins
In addition to the above described DEPs, 14-3-3 protein (spot
28) related to signal transduction was up-regulated in flag leaves
after CHA-SQ-1 treatment (Figure 3, Supplementary Tables S1
and S2), which suggested signal transduction was enhanced in
response to CHA-SQ-1 treatment; Toc75 (spot 80) is the protein
translocation channel located in the outer envelope membrane of
plastids (Baldwin et al., 2005) and its abundance was decreased in
flag leaves after CHA-SQ-1 treatment (Figure 3, Supplementary
Tables S1 and S2), which resulted in precursor proteins not
being transported in the chloroplast stroma and this subsequently
impaired chloroplast function.

Conclusion

During pollen development, wheat flag leaves are an important
component of the source-sink unit as they provide sucrose and
energy, and initial recipient tissue of CHA-SQ-1. The results
of the present work have shown that ROS (O2

− and H2O2)
contents accumulated rapidly in wheat flag leaves after CHA-
SQ-1 treatment and exceeded the cell threshold. An increase
in ROS content was accompanied by an inhibition of SOD,
CAT and POD activities. Excessive ROS were not effectively
removed by the antioxidative system, which induced oxidative
damage in membrane structures and membrane proteins.
Comparative membrane proteomic analysis revealed that four
biological processes (photosynthesis, ATP production, response
to stress, and proteins metabolism) were interrupted after
CHA-SQ-1 treatment in flag leaves. These abnormal biological
processes caused complete dysfunction of the flag leaves. And
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then dysfunctional cells of flag leaf affected photosynthesis,
energy supply and carbohydrate production. These results
provide the basic insight needed to further investigate the
mechanism of anther abortion induced by CHA-SQ-1.
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