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To defend against pathogens, plants have developed a sophisticated innate immunity
that includes effector recognition, signal transduction, and rapid defense responses.
Recent evidence has demonstrated that plants utilize the epigenetic control of
gene expression to fine-tune their defense when challenged by pathogens. In this
review, we highlight the current understanding of the molecular mechanisms of
histone modifications (i.e., methylation, acetylation, and ubiquitination) and chromatin
remodeling that contribute to plant immunity against pathogens. Functions of key
histone-modifying and chromatin remodeling enzymes are discussed.
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Introduction

Throughout their life cycles, plants are exposed to abiotic stresses, including temperature
fluctuation and nutrition deficiency, and biotic threats, including attack by herbivores and
microbial pathogens. With respect to microbial pathogens, plants are unlike animals in that they
lack an adaptive immune system that produces antibodies and also lackmobile circulatory cells that
detect and prevent or reduce infection. Instead, plants mainly rely on an innate immunity system
to resist microbial attack. In plants, the salicylic acid (SA), jasmonic acid (JA), and ethylene (ET)
signaling pathways play pivotal roles in defending against biotrophic and necrotrophic pathogens
(Pieterse et al., 2009). After detecting a pathogen, the plant activates a cascade of defense responses
to establish local and systemic acquired resistance (SAR; Durrant and Dong, 2004).

Transcription of defense genes is tightly regulated by many transcription factors (TFs) that
fine-tune the defense response (Thilmony et al., 2006). This requires that plants rapidly and
precisely re-program gene expression. In particular, activation of an appropriate stress signaling
pathway following pathogen detection is integrated in the plant cell nucleus through a set of
regulatory cascades that prioritize defense over growth-related cellular functions (Moore et al.,
2011). Research over the last decade has revealed that this transcriptional re-programming and
regulation of defense-related genes often involves chromatin modifications and remodeling in
Arabidopsis (Alvarez et al., 2010). In this review, we summarize and discuss the roles of chromatin
modifications and remodeling in plant defense.

Plant Innate Immunity

Plant innate immunity is triggered by pattern recognition receptors (PRRs) located on the
external cell surface. PRRs can recognize specific pathogen-/microbe-associated molecular patterns
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(PAMPs/MAMPs), including cell wall components, short
peptides, and lipopolysaccharides derived from the pathogen,
leading to PAMP/MAMP-triggered immunity (PTI/MTI), which
is the first layer of defense (Boller and Felix, 2009). Several
early defense responses, including the generation of reactive
oxygen species (ROS), calcium flux, plant cell wall modification,
and the activation of a cascade of mitogen-activated protein
kinases (MAPKs), are triggered during PTI. To overcome PTI,
pathogens may deliver effector proteins into host cells, resulting
in effector-triggered susceptibility (ETS). An additional level of
resistance associated with vigorous defense induction may occur
when specific intracellular receptors/sensors called resistance (R)
gene products to recognize such race-specific avirulence (avr)
effectors, thereby activating effector-triggered immunity (ETI;
Jones and Dangl, 2006). ETI usually triggers a localized cell death
at the infection site, in a process known as the hypersensitive
response (HR), which along with antimicrobial effects may
restrict most pathogen growth (Caplan et al., 2008). In addition
to these PTI and ETI responses after initial local infection, the
uninfected portions of the plant usually develop SAR, providing
resistance in distal plant tissues against subsequent pathogen
challenges (Durrant and Dong, 2004; Mishina and Zeier, 2007).

Chromatin Modification in Plant Innate
Immunity

Chromatin Structure and Modifications
The basic, repeated unit of chromatin is the nucleosome
that contains 147 base pairs (bp) of DNA wrapped around
a histone octamer, which in turn consists of two copies of
the following core histones: H2A, H2B, H3, and H4 (Luger
et al., 1997). The linker histone, H1, associates with DNA
between two nucleosomes and participates in higher order
chromatin structure formation and remodeling. Extending
from the globular nucleosome core, the histone tails may
harbor diverse post-translational modifications (PTMs), i.e.,
acetylation, methylation, phosphorylation, ubiquitination,
sumoylation, carbonylation, and glycosylation. PTMs can
directly affect chromatin structure or can recruit specific
“readers or effectors,” thereby regulating gene expression
mainly by altering nucleosome stability and positioning,
which affect the accessibility for regulatory proteins or protein
complexes involved in transcription, DNA replication, and repair
(Kouzarides, 2007). In general, histone acetylation by histone
acetyltransferases (HATs) is associated with transcriptional
activation, while histone deacetylation by histone deacetylases
(HDACs) is associated with transcriptional suppression
(Eberharter and Becker, 2002). Depending on the context
of targets, histone methylation and/or ubiquitination can
either be an active or repressive marker for transcription.
Generally, tri-methylations of H3K4 and H3K36 (H3K4me3
and H3K36me3) and mono-ubiquitination of H2B (H2Bub)
are enriched at actively expressed genes (Xu et al., 2008; Zhang
et al., 2009), H3K27me3 is associated with repressed genes,
while H3K9me2 and H4K20me1 are enriched at constitutive
heterochromatin and silenced transposons (Zhang et al., 2007a,b;

Bernatavichute et al., 2008). In addition to histone modification,
ATP-dependent chromatin-remodeling enzymes use the energy
of ATP hydrolysis to remodel chromatin structure by modifying
the interaction between DNA and histone to relocate or
dissociate nucleosomes, move histone octamers, and catalyze
the incorporation of specific histone variants. ATP-dependent
chromatin-remodeling enzymes thus play crucial roles in
nucleosome assembly/disassembly and allow the transcriptional
machinery to access the DNA (Smith and Peterson, 2005; Clapier
and Cairns, 2009).

Many studies have documented that histone modifications
and ATP-dependent chromatin remodeling result in rapid,
reversible, or trans-generational changes in gene expression
associated with various developmental processes, such as
flowering time control, cell fate determination and maintenance,
and seed development. These mechanisms, however, have only
recently attracted attention as potential transcriptional regulators
in plant innate immunity (Table 1).

Histone Acetylation
Histone lysine acetylation is regulated by the antagonistic
interactions between HATs and HDACs. Plant HDACs can be
divided into four major groups or families. In addition to a plant-
specific type-II HDAC (HD2) family, three other major families
are designated as reduced potassium dependency 3 (RPD3),
HDA1, and silence information regulator 2 (SIR2); this grouping
is based on homology to yeast counterparts. Among these groups,
HDA19 from Arabidopsis has been well-studied with regard to
its roles in plant defense against pathogen attack. HDA19, which
belongs to the RPD3 subfamily, was initially reported to be
involved in the ET/JA signaling pathways of defense responses
based on two lines of evidence. First, the expression of HDA19 is
induced by wounding, by challenge with the pathogen Alternaria
brassicicola, and by treatment with the plant hormone JA.
Second, the knock-down mutant of HDA19 exhibits decreased
transcription of several ET/JA pathway genes (ERF1, CHI-B, and
BGL) and increased susceptibility to fungal pathogens, while
overexpression results in the opposite disease phenotypes (Zhou
et al., 2005). Similarly, HDA6, another Arabidopsis RPD3-type
HDAC, is induced by treatments with JA and the ET precursor
ACC, whereas the expression of other members of Arabidopsis
RPD3-type HDACs is not inducible by these hormones (Zhou
et al., 2005). In addition, HDA6 interacts with an F-box protein,
coronatine insensitive 1 (COI1), which mediates JA signaling
(Devoto et al., 2002). The expression of the JA-responsive genes,
i.e., PDF1.2, VSP2, JIN1, and ERF1, is down-regulated in axe1-
5 (HDA6 loss-of-function mutant) and HDA6-RNAi plants (Wu
et al., 2008), suggesting redundant roles of HDA6 and HDA19
in plant defense against infection by necrotrophic pathogens.
In addition to its role in the JA/ET defense pathway, HDA19
positively regulates SA-mediated basal defense and the expression
of pathogenesis-related gene 1 (PR1) by physically interacting
withWRKY38 andWRKY62 and inhibiting their transcriptional-
activator activities (Kim et al., 2008). On the other hand, the
basal expression of the SA-induced PR1 and PR5 is upregulated
in the hda19 mutant when it is not challenged by pathogens,
reflecting the negative role of HDA19 in defense responses. PR1
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TABLE 1 | Histone-modifying enzymes and chromatin-remodelling factors involved in plant responses to pathogens.

Modification
category

Sub-category Name Gene locus Mutant phenotype and biological role Reference

Histone
acetylation

Histone deacetylase
(HDAC)

HDA19/AtHD1 At4G38130 Increases sensitivity to Alternaria brassicicola and
Pst DC3000; down-regulates ET/JA pathway genes
(PDF1.2, VSP2, and ERF1), and enhances basal
expression of SA-responsive genes (PR1, PR4, and
PR5)

Zhou et al. (2005), Kim
et al. (2008), Choi et al.
(2012)

HDA6/Axe1 At5G63110 Down-regulates expression of ET/JA pathway
genes (PDF1.2, VSP2 ERF1)

Zhou et al. (2005)

AtSRT2 At5G09230 Increases resistance to Pst DC3000;
down-regulates expression of SA-biosynthesis
genes (PAD4, EDS5, and SID2)

Wang et al. (2010)

HDT701 Os5G51830 Increases resistance to rice blast in RNAi plants;
up-regulates mitogen-activated protein kinases
(MAPK6), WRKY53

Ding et al. (2012)

Histone acetylase HAC1 At1G79000 Mutants deficient in priming the of PTI Singh et al. (2014a)

Histone
methylation

Histone
methytransferase

ATX1/SDG27 At2G31650 Down-regulates expression of SA-pathway genes
(WRKY70 and PR1); up-regulates expression of
ET/JA pathway genes (PDF1.2, VSP2)

Alvarez-Venegas et al.
(2007)

SDG8/ASHH2/
EFS/LAZ2

At1G77300 Increases sensitivity to Botrytis cinerea;
down-regulates expression of ET/JA pathway
genes; increases sensitivity to PST DC3000,
down-regulates the basal expression of R genes
(LAZ5 and RPM1) and SA-inducible genes
(WRKY70 and PR1)

Berr et al. (2010),
Palma et al. (2010),
De-La-Pena et al.
(2012)

ASHR1 At2G17900 Increases sensitivity to Pst DC3000,
down-regulates the expression of SA-inducible
genes (WRKY70 and PR1)

De-La-Pena et al.
(2012)

Histone demethylase FLD/RSI1 At3G10390 Decreases resistance after systemic acquired
resistance (SAR) induction, down-regulates
expression of SAR-inducible WARY6 and WRKY29

Singh et al. (2013,
2014b)

JMJ705 Os1G67970 Increases sensitivity to Xoo, down-regulates the
basal and MeJA-inducible defense genes

Li et al. (2013)

Histone
ubiqutination

H2B ubquitation-ligase HUB1 At2G44950 Increases sensitivity to B. cinerea and
A. brassicicola, does not alter expression of
PDF1.2; decreases resistance to Pst DC3000 in
snc1 and bon1 background, down-regulates the
expression of the R gene SNC1

Dhawan et al. (2009),
Zou et al. (2014)

Chromatin
remodeling
factors

SWI2-like group DDM1 At5G66750 Increases resistance to Pst DC3000 in mos1/snc1
background, up-regulates the expression of R gene
SNC1

Li et al. (2010)

SWR1-like group PIE1/CHR13 At3G12810 Enhances resistance to Pst DC3000, up-regulates
the expression of SA-pathway genes

March-Diaz et al. (2008)

SNF2-like group SYD/CHR3 At2G28290 Increases sensitivity to B. cinerea, down-regulates
expression of ET/JA pathway genes (PDF1.2,
VSP2, and Myc2)

Walley et al. (2008)

and PR2 are well-defined markers for SA-mediated basal and
R gene-mediated defense against biotrophic pathogens (Ward
et al., 1991; Rairdan and Delaney, 2002; van Loon et al., 2006).
Several studies have shown that the SA-induced activation of PR1
is tightly correlated with an increase in the level of acetylated
histones at the PR1 locus in Arabidopsis (Mosher et al., 2006;
Koornneef et al., 2008) and tobacco (Butterbrodt et al., 2006).
Additionally, HDA19 associates directly with the promoters of
PR1 and PR2 and deacetylates histones at PR1 and PR2 locus.
Thus, HDA19 forms a repressive chromatin environment (low
histone acetylation level) under unchallenged conditions that
ensures a low basal expression of defense genes as well as the

proper induction of PR genes without harmful overstimulation
during defense responses to pathogen attacks (Choi et al., 2012).

The HDAC proteins in the Sir2 family are NAD+-dependent
HDACs that play diverse roles in a variety of physiological
processes, including chromatin silencing, DNA repair, the cell
cycle, and apoptosis and aging in yeast and mammalian systems
(Eberharter and Becker, 2002; Yamamoto et al., 2007; Etchegaray
et al., 2013). Both Arabidopsis and rice genomes contain two Sir2
family genes (Pandey et al., 2002). Knockdown of OsSRT1 by
RNAi in rice plants enhances histone H3K9 acetylation on the
promoters of HR-related genes, which leads to hydrogen peroxide
accumulation, DNA fragmentation, and cell death, suggesting a
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negative role of OsSRT1 in defense (Huang et al., 2007). Highly
divergent in sequence from OsSRT1, AtSRT2 is down-regulated
by Pseudomonas syringae pv. tomato DC3000 (Pst DC3000)
infection and negatively regulates the plant basal defense and PR1
expression, possibly by suppressing pathogen-induced expression
of PAD4, EDS5, and SID2 and thereby regulating SA synthesis
(Wang et al., 2010).

In addition to local resistance, SAR is also related to
priming for stronger activation of various defense responses
that are induced following an attack by microbial pathogens
(van Hulten et al., 2006). Priming of innate immunity is
correlated with chromatin modification of the promoter region
of WRKY TF genes (Jaskiewicz et al., 2011) and SA- and
PTI-responsive genes (Luna et al., 2012; Po-Wen et al., 2013).
Researchers recently showed that repetitive abiotic stress causes
the priming of PTI in Arabidopsis, leading to enhanced
resistance to bacterial pathogens. This elevated defense after
repeated exposure to environmental stress is compromised in
the hac1 mutant, establishing a link between open chromatin
configuration such as HAC1-dependent histone acetylation and
primed Arabidopsis innate immunity and bacterial resistance
(Singh et al., 2014a).

Histone Methylation
The Arabidopsis genome encodes 37 putative SET-domain group
proteins, some of which have been experimentally demonstrated
to harbor histone methyltransferase (HMT) activity (Thorstensen
et al., 2011). For the removal of methyl residues from the
methylated histones, the lysine-specific demethylase 1 (LSD1)-
like proteins and Jomonji C-domain (JmjC) proteins are
effective in histone demethylation in plants (Chen et al.,
2011). Dynamic histone methylation and de-methylation are
involved in many cellular processes such as gene imprinting and
DNA methylation (Kohler et al., 2012), and in developmental
events such as vernalization (Kim and Sung, 2014). Recent
findings indicate that histone methylation contributes to plant
immunity against both necrotrophic and biotrophic pathogens
by affecting the expression of specific NBS-LRR proteins, WRKY
family TFs, as well as TFs involved in defense signaling
pathways.

The first study of immune responses involving histone
methylation concerned Arabidopsis trithrox 1 (ATX1), also
known as SDG27. Loss of ATX1 function affects the transcription
of a subset of pathogen- and disease resistance-associated genes,
including those encoding members of the TIR-NBS-LRR classes
of disease resistance proteins, lectins, and heat shock proteins,
as well as several WRKY family TFs (Alvarez-Venegas et al.,
2006). Further findings revealed that ATX1 directly controls
H3K4me3 levels at the promoter of WRKY70 and also controls
the expression of WRKY70, a positive regulator of SA-mediated
defense signaling against bacterial pathogens (Alvarez-Venegas
et al., 2007; Saleh et al., 2008). Arabidopsis trithorax-related
7 (Atxr7), another histone H3K4 methyltransferase in the
trithrox1 group, physically associates with the modifier of snc1 9
(MOS9), which is a plant-specific protein with unknown function
discovered in a forward genetic screening of the snc1 mutant.
Together with MOS9, Atxr7 is required for both maintaining the

H3K4me3 levels at the promoter of the NBS-LRR genes Snc1 and
Rpp4 and expression of these R genes residing in the RPP4 cluster
(Xia et al., 2013).

In Arabidopsis, another important active signature of histone
modification, H3K36 tri-methylation, is catalyzed by the SET
domain group 8 (SDG8, also known as EFS, LAZ2, and Ashh2;
Xu et al., 2008). SDG8 is a homolog of SET2 in yeast and ASH1 in
Drosophila. Mutation in SDG8 causes pleiotropic developmental
phenotypes such as early flowering time, reduced organ size,
and enhanced branch shooting (Zhao et al., 2005; Dong et al.,
2008; Cazzonelli et al., 2009). A recent study revealed that sdg8
mutant plants have reduced resistance to the necrotrophic fungal
pathogens A. brassicicola and Botrytis cinerea, indicating that
SDG8 plays a crucial role in plant defense through H3K36me3-
mediated activation of a subset of genes (including ERF1,
PDF1.2a, and VSP2) in the JA/ET signaling pathways (Berr et al.,
2010). Another study showed that SDG8 is required for both basal
and R-protein-mediated resistance and that SDG8 maintains the
LAZ5 locus in a transcriptionally active state by modifying its
H3K36me3 level. LAZ5 is a member of an immune receptor class
involved in the detection of specific pathogens and subsequent
cell death (Palma et al., 2010). In a comparative analysis of three
ArabidopsisASH1 family mutants, loss of function ofASHH2 and
ASHR1 resulted in more rapid HRs to both a non-pathogenic
strain (hrpA-) and a pathogenic strain (DC3000) of P. syringae. In
contrast, the ashr3mutant is more resistant to the infection than
the ashr1 and ashh2 mutants. Furthermore, PR1 gene expression
was highest in the ashr3mutant, while H3K4me2 levels at the PR1
promoter region are reduced in both the ashr1 and ashh2mutants
upon infection by DC3000 (De-La-Pena et al., 2012). This result
demonstrates that the ASH1 group H3K4 methyltransferases
have both overlapping and distinct roles in the plant defense
against pathogens.

Collectively, the active H3K4 and H3K36 methylation states,
which are catalyzed by SET domain protein, have been implicated
in the SA- and JA-mediated plant defense in Arabidopsis. These
markers act as permissive marks for the basal expression of
the defense genes or establishing the chromatin status for
prompt induction when plants are challenged. In contrast,
the removal of the repressive histone H3K27me3 state by the
JmjC protein JMJ705 in rice also plays important roles in
defense-related gene expression. When induced by a stress
signal or pathogen infection, JMJ705 is involved in the methyl
jasmonate-induced removal of H3K27me3 and preferential biotic
stress-responsive gene activation, supporting the hypothesis that
H3K27me3 maintains the resting state of defense genes under
normal conditions (Li et al., 2013). FLD, a homolog of the
human LSD1, was originally discovered to promote flowering
time by negatively regulating the expression of flower repressor
FLC (He et al., 2003; Liu et al., 2007). A forward genetic
screen revealed that Arabidopsis requires FLD in order to
respond to the SAR signals leading to the systemic accumulation
of SA; the screen also revealed that FLD influences histone
modifications at the promoters of WRKY29 and WRKY6 and
thereby enables a robust activation of SA signaling in response
to subsequent exposure to virulent pathogens (Singh et al., 2013,
2014b).
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Histone Mono-Ubiquitination
In Arabidopsis, histone H2B mono-ubiquitination is catalyzed
by the RING E3 ligases histone mono-ubqutinatio1 (HUB1)
and HUB2, which participate in various developmental process
such as the control of flowering time, the cell cycle, seed
dormancy, and circadian clock (Xu et al., 2009; Lolas et al.,
2010; Bourbousse et al., 2012). Additionally, HUB1 is a
regulatory component of plant defense against necrotrophic
fungal pathogens. Arabidopsis plants with mutations in the
HUB1 alleles are extremely susceptible to the necrotrophic fungi
B. cinerea and A. brassicicola. Consistent with the plant cell wall
functioning in resistance to necrotrophic fungi by acting as a
physical barrier, the thickness of epidermal cell walls is reduced in
the hub1 mutant. This suggests that HUB1 may enhance defense
by increasing the thickness or otherwise modifying epidermal cell
walls. Interestingly, HUB1 interacts withMED21, a subunit of the
Mediator complex, in regulating the function of RNA polymerase
II. Arabidopsis MED21 couples critical roles in disease resistance
and embryo development based on the disease susceptibility and
embryo-lethal phenotypes of plant lines with reduced MED21
gene expression. Thus, MED21 together with HUB1 controls
critical components involved in the regulation of defense against
necrotrophic fungal pathogens, suggesting a transcriptional
role of Hub1-mediated histone mono-ubiquitination in defense
(Dhawan et al., 2009). In contrast, responses to the bacterial

pathogen P. syringae are unaltered in hub1 plants. However, a
recent report showed that both Hub1 and Hub2 regulate the
expression of the R genes SNC1 and Rpp4 (Zou et al., 2014). In
the auto-immunity mutant bon1, which is a negative regulator
of the NB-LRR-encoding R gene SNC1 and other R-like genes
(Yang and Hua, 2004; Li et al., 2007), loss of function in HUB1 or
HUB2 reduces SNC1 up-regulation and suppresses the bon1 auto-
immune phenotypes. Thus, HUB1 andHUB2mediate histone 2B
(H2B) mono-ubiquitination directly at the SNC1 R gene locus
to regulate its expression. This is another example of how the
immune response can be fine-tuned by histone modifications at
an R gene locus (Zou et al., 2014).

Chromatin Remodeling
In addition to being affected by covalent histone modifications,
plant defense can also be affected by chromatin-remodeling
factors that regulate R gene function and specific JA or
SA pathways. The Arabidopsis genome encodes more than
40 ATP-dependent chromatin-remodeling factors, which can
be subdivided into at least five families based on their
ATPase subunits. In the broad SWI2/SNF2 protein family,
DDM1 functions antagonistically to MOS1 in regulating the
expression of the R gene SNC1 (Li et al., 2010). SWR1,
a component of the Arabidopsis SWR1-like complex that
replaces the histone H2A with the histone variant H2A.Z, is

FIGURE 1 | Simplified model for participation of chromatin modification in regulating plant immunity against biotic stress. Histone modification changes
in defense-related gene can be achieved through methylation/demethylation and/or acetylation/deacetylation by antagonistic interaction between HMT and HDM or
HAT and HDAC Each enzymes catalyzed different modification in regarding its roles in plant immunity is described in literature. The hypothetical involvement of the
IncRNA in regulating the dynamin defense gene expression through the modulation of chromatin architecture is proposed as well. ActMe, active methylation marker;
RepMe, Repressive methylation marker; HMT, histone methyltransferase; HDM, histone demethylase; HAC, histone acetylase; HDAC, histone de acetylase; IncRNA,
long non-coding RNA; PR, pathogenesis-related; R, Resistance.
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required for maintaining the repression of SA-dependent
defense genes in unstressed plants (March-Diaz et al., 2008).
SWI/SNF class chromatin remodeling ATPase SPLAYED
(SYD) can be directly recruited to the promoters of selected
genes, i.e., PDF1.2a, VSP2, and MYC2, downstream of
the JA and ET signaling pathways. Therefore, SYD is
required for the expression of these genes and for resistance
against the necrotrophic pathogen B. cinerea but is not
required for resistance against P. syringae (Walley et al.,
2008).

Concluding Remarks and Perspectives

Recent research has increased our understanding of how
chromatin modifications and remodeling affect defense in the
model plants Arabidopsis and rice. Based on current evidence
and as summarized in Figure 1, histone modifications in
plant defense responses can be grouped as follows: (1) active
histone marks that establish a basal expression level of the
defense genes to enable an effective induction when the plant
is challenged; (2) repressive histone modifications that prevent
unnecessary activation of defense-related genes under normal
growth conditions; (3) histone modifications that are induced
after pathogen infection and that induce or reinforce the
expression of defense-related genes; and (4) histone/chromatin
changes that occur in response to biotic or abiotic stresses and
that can be transmitted to the next generation. In the future, a
combination of new genomic and proteomic approaches should
be used to identify the targets of the epigenetic-related enzymes
and other factors that are involved in the regulation of plant

immunity. In addition, only a few histone-modifying enzymes
have been investigated. Large-scale screens and characterization
of epigenetic mutants should help increase our understanding
of the histone-modifying enzymes involved in the chromatin
changes that occur when plants defend against pathogens.
Moreover, three-dimensional structure plasticity of genomes
establishes fine-tune feature in gene expression modulation
rather than defined by its linear context. Emerging evidence
showed that lncRNAs (long non-coding RNAs) and chromatin
remodeling complexes are shaping the dynamic genome topology
through chromatin loops to regulate dynamic gene expression in
response to the environmental cues (Ariel et al., 2014; Jegu et al.,
2014). Considering that the global genome structure is impacted
in many diseases in animal systems and the participation of
lncRNAs in nuclear architecture, the association between non-
coding RNAs and the genome topology related to chromatin
marks and organization remains an unexplored area in plant
immunity.
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