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Transgenerational inheritance

or resetting of stress-induced
epigenetic modifications: two sides
of the same coin

Penny J. Tricker*

Australian Centre for Plant Functional Genomics, School of Agriculture, Food and Wine, University of Adelaide, Urrbrae, SA,
Australia

The transgenerational inheritance of stress-induced epigenetic modifications is still
controversial. Despite several examples of defense “priming” and induced genetic
rearrangements, the involvement and persistence of transgenerational epigenetic
modifications is not known to be general. Here | argue that non-transmission of epigenetic
marks through meiosis may be regarded as an epigenetic modification in itself, and
that we should understand the implications for plant evolution in the context of both
selection for and selection against transgenerational epigenetic memory. Recent data
suggest that both epigenetic inheritance and resetting are mechanistically directed and
targeted. Stress-induced epigenetic modifications may buffer against DNA sequence-
based evolution to maintain plasticity, or may form part of plasticity’s adaptive potential.
To date we have tended to concentrate on the question of whether and for how long
epigenetic memory persists. | argue that we should now re-direct our question to
investigate the differences between where it persists and where it does not, to understand
the higher order evolutionary methods in play and their contribution.

Keywords: transgenerational, epigenetic, stress, re-setting, evolution, methylation, transposable elements

Introduction

Molinier et al. (2006) demonstrated that stress-induced epigenetic modification could be inherited
through several generations in plants, causing considerable excitement. It had long been recognized
that such capacity could allow for epigenetic priming of the progeny with important implications
for improving crop plants (Mirouze and Paszkowski, 2011; Rodriguez Lépez and Wilkinson,
2015), releasing cryptic variation (Grant-Downton and Dickinson, 2006), for population level
adaptation (Richards, 2008) and adaptive evolution (Jablonka and Raz, 2009). Further examples
of transgenerational epigenetic effects have been discovered including phenotypic inheritance
(Verhoeven and Van Gurp, 2012) and the inheritance of gene expression (Scoville et al,
2011). Although we now have greater mechanistic understanding of transgenerational epigenetic
inheritance (e.g., Crevillén et al., 2014; Kuhlmann et al., 2014) there are still few, multi-generational
population or species-level studies (Richards, 2006; Bossdorfet al., 2008; Johannes et al., 2008). These
few, however, have allowed us to begin to understand the evolutionary importance of stress-induced
epigenetic modifications (Rapp and Wendel, 2005; Brautigam et al., 2013; Kooke et al., 2015).

DNA cytosine methylation is an important epigenetic modification and is demonstrably heritable
through mitosis. Arabidopsis epigenetic recombinant inbred line (epiRIL) populations that have no
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DNA sequence variation but epigenetic variation in DNA
methylation were created by crossing wild-type “Columbia” with
mutants deficient in DNA methylation. The patterns created by
recombination in these Arabidopsis epiRILs led to a range of
stress-tolerance and phenotypes similar to the natural range in
accessions within six to nine generations (Roux et al., 2011).
Highly heritable epigenetic quantitative trait loci (epiQTL) for
flowering time and primary root length were found, associated
with the loss of DNA methylation at differentially methylated
regions in the founder line (Cortijo et al.,, 2014) and amenable
for artificial selection. These epiRILs also displayed increased
plasticity in response to drought, nutrient and salt stresses (Zhang
etal,, 2013; Kooke et al., 2015) and associated epiQTL were highly
heritable, illustrating the stability of epigenetic modification.

Stress-Induced Priming

Biotic and abiotic stresses trigger epigenetic modifications in
the genome. In particular these modifications regulate the
“open-ness” of chromatin to suppress or allow gene transcription,
transposition of transposable elements (TEs), nucleosome
occupancy and recombination. The effect is an altered epigenome
that regulates stress response. In some cases the signature of
the stress experience remains in the epigenome after relief from
the stress, providing a “memory.” If this memory conditions the
response to stress during subsequent development, the organism
is said to be epigenetically primed. If the memory of the stress
experienced by a parent conditions the response of its progeny,
this epigenetic priming may be transgenerational. Following
Molinier et al’s (2006) demonstration of heritable epigenetic
response to both biotic and abiotic stresses, transgenerational
epigenetic priming of plants has been reported in response to
pest and pathogen attacks (Luna et al, 2012; Rasmann et al,
2012; Slaughter et al, 2012) and to abiotic stresses including
growth in high salt, UVC, heavy metal contamination, increased
evaporative demand, heat and oxidative stresses (Boyko et al.,
2010; Rahavi et al.,, 2011; Tricker et al., 2013; Matsunaga et al,,
2015). Experimenters typically repeat experiments with clean
seed stocks in controlled conditions and yet reproduce the same
epigenetic responses, for example the priming of antibacterial
defense (Dowen et al., 2012; Yu et al., 2013). These results suggest
that epigenetic priming is targeted.

In Arabidopsis, priming for antibacterial defense involves active
demethylation of TEs that leads to transcriptional activation
of defense regulators via hormonal signals (Yu et al., 2013).
DNA hyper- and hypo-methylation are observed epigenetic
changes in stress response and priming (Boyko et al, 2010;
Verhoeven et al., 2010; Tricker et al., 2012), and the recruitment
of stress-induced methylation is regulated by small, non-coding
RNAs (short-interfering RNAs/siRNAs; Boyko et al., 2010). This
RNA-directed DNA methylation (RADM) may provide DNA
sequence specificity to epigenetic modifications via sequence-
complementarity of the siRNAs that recruit DNA methylation.
However, DNA methylation is reversible and demethylation is
also an important response and priming strategy (Yu et al,
2013; Iwasaki and Paszkowski, 2014). Molecular mechanisms
that prevent the transgenerational memory of stress have been

discovered (Iwasaki and Paszkowski, 2014) and these can be
entrained by repeated cycles of stress (Sanchez and Paszkowski,
2014).

The challenge is to understand the dynamics of epigenetic
modifications in response to stress and how these interplay with
intra- or inter-generational memory to target priming.

Epigenetic Inheritance of Memory

The regulation of response to plant growth environment is clearly
heritable when heritable is defined as passed from the parent to
the progeny. One of the best-known examples is the regulation of
vernalization requirement in winter annual Arabidopsis thaliana.
The requirement for vernalizing temperatures to induce flowering
is determined in the pathway involving the flowering repressor
FLOWERING LOCUS C (FLCQ), its silencing and the epigenetic
maintenance of silencing during warmer temperatures (reviewed
in Baulcombe and Dean, 2014). The epigenetic regulation of
vernalization in Arabidopsis is passed from parent to progeny, i.e.,
it is an inherited pathway. However, the accumulated epigenetic
modifications themselves are reset in each sexual generation, and
it is this re-setting that determines the vernalization requirement
anew.

The heritable memory of epigenomic regulation is open to
selection. In breeding for the epigenetic component of energy
efficiency and stress tolerance in Brassica rapa (Hauben et al.,
2009), the efficiency advantage of the original population and its
epigenome component (phenotype, methylome, transcriptome,
histone modification) was highly heritable in successive
generations undergoing recurrent selection. High and low
efficiency selections had distinct profiles of DNA methylation,
histone methylation and acetylation different from the parent
and from each other. Epigenomic profiles changed during
development in opposite directions but were heritable in a cross.
This did not indicate that the epigenomic profile had reached
reproductive cells because it could not be fixed in the first rounds
of selection. The influence of fluctuations in the environment was
not explicitly investigated during this experiment, but lines bred
for the epigenetic component of energy efficiency were also more
drought tolerant.

Re-Setting the Epigenome

Transcriptional gene silencing is maintained by DNA methylation
and histone modifications. These epigenetic modifiers are
regulated during gametogenesis and are correlated with the
dynamics of chromatin condensation that produce permissive
and repressive states of transcriptional activation. At imprinted
genes that display parent-of-origin, allele-specific expression,
regulation by cytosine methylation and a Polycomb-Repressive
Complex determines differential expression through cell
divisions with time (reviewed in Garcia-Aguilar and Gillmor,
2015). Methylation is re-programmed in the different nuclei
during gametogenesis (Calarco et al, 2012; Jullien et al,
2012). It has been suggested that this re-programming allows
the generation of mobile siRNA signals in companion cells
that reinforce silencing of TEs in the embryo. In sperm and
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male germline microspore cells, asymmetric (CHH sequence)
methylation is reduced and 24 nucleotide siRNA from imprinted,
maternally expressed genes accumulate in sperm cells. CHH
methylation is restored after fertilization, during embryogenesis,
and the pattern of DNA methylation and silencing is restored
at many TEs and epialleles. However, this inheritance of
silencing is progressive and incomplete in the male germline
cells before fertilization (Calarco et al., 2012). Likewise,
the transitions from spore mother cell to megaspore and
gametophyte in the female reproductive lineage are also marked
by different repressive and permissive histone composition and
by chromatin remodeling, suggesting a pre-meiotic epigenetic
influence on post-meiotic development (reviewed in Baroux
and Autran, 2015). This re-setting during gametogenesis
might allow for the removal of epigenetic modifications
accumulated in response to stress or growth conditions during
development of the parent. Additionally, it provides a window of
opportunity to relax epigenetic suppression of transcription and
transposition.

The Genomic Basis of Transgenerational
Epigenetic Response to Stress

Natural variation in DNA methylation has been assayed genome-
wide in Arabidopsis accessions, maize and soybean inbred lines
(Vaughn et al., 2007; Eichten et al., 2013; Schmitz et al., 2013a).
Along with other repressive chromatin states, DNA methylation is
often associated with transposon-rich centromeric regions of the
genomes, recently inserted TEs or duplicated regions, and often
accompanied by high concentrations of siRNAs that generate
RdADM at retrotransposons (Lister et al., 2008). It has been
proposed that these epigenetic mechanisms exist primarily as
defenses against potentially harmful genomic elements such as
TEs (reviewed in Johnson, 2007).

A number of stresses can mobilize TEs (Grandbastien, 1998)
and suppression of heat stress-induced retrotransposition of
the ONSEN element requires the siRNA biogenesis pathway
(Ito et al., 2011). Transposons may cycle between active and
silenced states and the invasion of a new TE and eventual
silencing can establish epiallelism at proximal genes (Mari-
Ordonez et al.,, 2013). Variation from new insertions may also
create new, regulatory inserts responsive to the inducing stress
(Ito et al., 2011) or even new, environmentally-responsive genes
(reviewed in Oliver et al, 2013). Federoff (2012) has argued
eloquently that, in contrast to the view that epigenetic mechanisms
exist to suppress TEs, they have evolved and been preserved
precisely to allow expansion, duplication and complexity derived
from transposition within genomes, whilst repressing illegitimate
recombination. Such a scenario requires that the suppression of
TE activation by epigenetic means is relaxed or fluctuating. Mari-
Ordonez et al. (2013) found that the epigenetic suppression of
the newly invasive retrotransposon Evadé (EVD) was sequential
so that initial, incomplete post-transcriptional silencing shifted to
transcriptional silencing over generations once a copy number of
40 was reached. EVD bore the seeds of its own destruction; its
molecular suppression of post-transcriptional silencing generated
RdDM that led to its transcriptional silencing. These findings (and

others reviewed in Ito and Kakutani, 2014) are consistent with the
idea that TE-activation and epigenetic suppressors act in concert
to allow fluctuation and complexity. It can be proposed that the
re-setting of epigenetic states at gametogenesis exists to allow this
relaxation.

The Adaptive Potential of
Transgenerational Epigenetic Responses

Although the majority of stress-induced chromatin modifications
do not persist past gametogenesis (reviewed in Pecinka and
Mittelsten Scheid, 2012), others are faithfully re-acquired, albeit
limited to one or a few progeny generations not exposed to
the same stress (Boyko et al., 2010; Lang-Mladek et al., 2010).
Pecinka and Mittelsten Scheid (2012) argued cogently that
there is no conclusive evidence yet for the transgenerational
epigenetic inheritance of stress-induced memory in plants, and
that such evidence would need to document long-lasting changes
of more than two generations that significantly influenced the
plant’s stress-responsiveness or adaptation. I argue that there is
evidence for long-lasting epigenetically-induced change in stress-
responsiveness encoded in the genome, but that it is hard to
spot.

If the re-setting of stress-induced epigenetic modification
at gametogenesis exists to allow encoding of transgenerational
memory at new, responsive elements how might we see its
signature in the genome? In some known cases, the epigenetic
regulation of stress response is fixed in the genome at TE-
derived sequences and heritable: Examples include the siRNA-
based silencing of the UBPIb gene in Arabidopsis, the AltSB
aluminum tolerance locus of sorghum, and the regulation of
desiccation tolerance via inducible siRNAs at the CDT-1 element
of Craterostigma plantagineum (Magalhaes et al., 2007; Hilbricht
et al, 2008; McCue et al.,, 2012). In addition, the feedback
system that generated the Mu killer locus in maize may be
highly prevalent. Via siRNAs, Mu killer heritably silences the
MuDR transposon (Slotkin et al., 2003). Mu killer derives from
an inverted duplication of a partially deleted MuDR element
(Slotkin et al., 2005) and this derivation of the means of epigenetic
silencing from the target is common in many genomes (reviewed
in Lisch, 2013) and is subject to purifying selection, at least in rice
(Hanada et al., 2009). Coupled with evidence that TE insertions
increase the number of stress-responsive genes (Naito et al., 2009)
these reports suggest that the relaxation of epigenetic suppression
of TEs forms part of an evolvable genomic memory, but that this
is largely invisible over evolutionary timescales (Lisch, 2013).

Reversible epigenetic regulation may have advantages in
fluctuating environments. Burggren (2015) suggested that
the immediate “sunsetting” of a stress-induced epigenetic
modification once the stress was removed, could allow for bet-
hedging against the possible return of the stress. The progeny of
one generation exposed to a stress would maintain the epigenetic
capacity to respond but not the stressed phenotype. Being poised
for fluctuation—that is having an extra layer of regulation ready
for release—would benefit survival if the stress was encountered
again. Alternatively, epigenetic phenotypic modifications might
“wash-out” over generations so that the phenotypic effects would
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FIGURE 1 | A model of the distance between epigenetic and genetic variation when epigenetic modifications accumulate following stress and are
re-set between generations. Phenotypic variation is only visible above the gold, horizontal line. The distance between epigenetic modifications and accumulating
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GENERATIONS

Genetic

become undetectable or disappear at population scale (Burggren,
2015).

Epigenetic and genetic variation co-evolve (Schmitz et al,
2013b). This needs to happen so that epigenetic plasticity does
not completely buffer evolvability and reduce the correlation
between fitness and genotype, slowing selection. Klironomos et al.
(2013) modeled the effect of selection on epigenetic as well as
genetic variation. They showed that early selection of epigenetic
variation could allow for the build-up of neutral genetic variation
and faster adaptation in comparison with selection via genetic
variation alone. This would allow for population survival by
epigenetic adaptation following stress, and act as a stepping-stone
to increased genetic fitness. Once genetic fitness had increased and
been fixed, epigenetic variations would accumulate neutrally.

These models might account for the seeming variability
in observations of epigenetic phenotypic plasticity and
transgenerational epigenetic responses to stress. A rapid
accumulation of epigenetic variation in response to stress would
be visible in the phenotype of the first one or several generations
if washed-out or rapidly sunset. Alternatively, a stress-induced
burst of epigenetic modification might be visible in the first
generation but largely disappear after re-setting with only a
proportion fixed following the re-set generation. A rapid re-
setting of stress-induced epigenetic variation followed by neutral
accumulation to a new fitness maximum would only become

visible once epigenetic variation exceeded genetic variation, or
following another stress-induced burst. This model is illustrated
in Figure 1.

Theoretically a brief, transgenerational epigenetic memory
ensures plasticity, but the dual inheritance of genetic and
epigenetic variation ensures adaptation (Pal, 1998). If re-setting
allows a window of opportunity for increased epigenetic variation
in response to stress, then it could form a vital part of a species’
evolvability. Importantly, mechanistic investigation of re-setting
over only a few generations should elucidate the contribution
of re-setting to adaptation where, over longer timescales, the
evidence of new stress-responsiveness from the activation or
exaption of TEs will be invisible. Likewise the recent discovery of
molecular mechanisms that restrict transgenerational epigenetic
inheritance (Iwasaki and Paszkowski, 2014) will contribute to
our understanding of the targeting of epigenetic re-setting or
inheritance.

Conclusion

When we consider the evidence for epigenetic transgenerational
inheritance in response to stress we should consider whether it will
be visible in an individual epigenome and whether the ebb and
flow of visible epigenetic modifications limits or contributes to
plasticity. The framework for population and species-level studies
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of genetics can now be applied in epigenetics to inform our
understanding (Richards, 2006; Johnson and Tricker, 2010). It is
to be hoped that the combination of mechanistic and theoretical
understanding advancing side by side, and the recognition that
the persistence or reversibility of transgenerational epigenetic
modifications are really two sides of the same coin, will allow us to
exploit the undoubted potential of epigenetic regulation of plant
stress response for the future.
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