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Soil salinity is one of the main constraints affecting production of rice worldwide,
by reducing growth, pollen viability as well as yield of the plant. Therefore, detailed
understanding of the response of rice towards soil salinity at the physiological and
molecular level is a prerequisite for its effective management. Various approaches have
been adopted by molecular biologists or breeders to understand the mechanism for
salinity tolerance in plants and to develop salt tolerant rice cultivars. Genome wide
analysis using ‘omics-based’ tools followed by identification and functional validation
of individual genes is becoming one of the popular approaches to tackle this task. On
the other hand, mutation breeding and insertional mutagenesis has also been exploited
to obtain salinity tolerant crop plants. This review looks into various responses at cellular
and whole plant level generated in rice plants toward salinity stress thus, evaluating
the suitability of intervention of functional genomics to raise stress tolerant plants. We
have tried to highlight the usefulness of the contemporary ‘omics-based’ approaches
such as genomics, proteomics, transcriptomics and phenomics towards dissecting out
the salinity tolerance trait in rice. In addition, we have highlighted the importance of
integration of various ‘omics’ approaches to develop an understanding of the machinery
involved in salinity response in rice and to move forward to develop salt tolerant cultivars
of rice.

Keywords: genomics, Oryza sativa, proteomics, salinity, transcriptomics, yield

Introduction

Today’s agriculture faces a daunting task of ensuring food security to the increasing human
population on this planet (FAO, 2009). A great proportion (more than 60%) of this population
depends on rice (Oryza sativa L.) as their staple food. Rice contributes up to 20% of the calories
consumed by human nutrition worldwide. Therefore, rice production must increase during the
coming time in order to keep pace with increasing world population. Asia is known as the main rice
producer in the world by yielding more than 650 million tons (90% of total rice yield worldwide)
grown in 145 million ha land.
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Rice is grown in a diverse range of environments characterized
by various climates and soil-water conditions. However, adverse
environmental conditions critically threaten rice production and
causes significant yield loss in large areas of main productive
sectors. Both abiotic and biotic stresses frequently prevent the
attainment of optimum growth and yield of rice. These stresses
include high salinity, drought, heat, and cold which have negative
effect on the yield and vegetative production of rice, and cause a
key risk to worldwide food safety (Pareek et al., 2010;Mantri et al.,
2012).

Amongst the various environmental stress factors, salinity is
the main hazardous factor limiting crop productivity. Rice has
been grouped as salinity susceptible cereal at its young stage
(Lutts et al., 1995) and confines its efficiency of production at
mature stage (Todaka et al., 2012). To increase the grain yield of
rice under salinity, it is imperative to first understand the basic
molecular machineries of salt tolerance in this plant. Tolerance
toward salinity is a quantitative attribute in plants, regulated
by a host of genes (Chinnusamy et al., 2005). Since the last
decade, numerous genes imparting salinity tolerance in plants
(including rice) have been identified and characterized such as
those involved in transcription regulation, signal transduction,
ion transportation and metabolic homeostasis (Verma et al.,
2007; Singh et al., 2008; Singla-Pareek et al., 2008; Kumari et al.,
2009). In the present text, we present our current understanding
about effects of soil salinity on rice crop and the approaches used
to increase the tolerance of this crop toward salinity. Further,
critical evaluation of progress made toward raising salinity
tolerant rice using functional genomics tools is also presented.

Soil Salinity as an Obstacle in Plant
Growth, Photosynthesis, and Grain Yield

Salinization is one of the severe soil degradation factors.
Approximately 6.5% of world’s total area and about 20 percent
of the cultivated area is already affected by soil salinity (Hakim
et al., 2014). Saline area is increasing due to various factors
including natural reasons as well as human activities. As per
Reynolds et al. (2001), accretion of salts in the soil surface is
caused by different factors in different geological and climatic
regions. Salinity is frequently accompanied by water logging
and alkalinity, which apply their individual specific effects on
plant development (Yeo, 1999). Crop plants show a spectrum
of reactions toward salinity including reduced growth and yield.
Plants responses toward salinity is the collective outcome of
the intricate communications among various processes linked to
plant morphology, biochemistry, and physiology.

In most of the plants, obvious signs of damage by salinity are
growth inhibition, senescence and death through long-standing
exposure. Inhibition in seedling/plant growth is the initial step
that leads to other indications, even though, programmed cell
death may also take place under severe salinity. Salinity induces
abscisic acid synthesis which leads to stomatal closure, reduced
photosynthesis and photoinhibition. An instant outcome of
salinity on plant development is inhibition of cell growth through
abscisic acid synthesis.

Overloaded sodium ions around the root exterior disturb
uptake of potassium. Because of the identical chemical properties
of Na+ and K+, Na+ has a negative effect on K+ uptake. Under
Na+ stress, it is essential for plants to activate and maintain
high-affinity K+ uptake machinary rather than low affinity K+
uptake one in order to uphold sufficient K+ concentration in the
cell. Shortage of potassium inside the cell unavoidably leads to
decrease in plant growth, as K+ is the most abundant cellular
cation which plays an important role in preserving membrane
potential, enzyme activities and cell turgor (Xiong and Zhu,
2002). After entering the cytosol, Na+ inhibits the activity of
an array of enzymes/proteins (Xiong and Zhu, 2002). This
inhibition is K+ dependent in the cell: a high Na+/K+ ratio
cause damage to the cell. Accretion of Na+ in the apoplast
slowly increases the osmotic gradient connecting the out- and in-
side of the cell. To attain balance, water from inside of the cell
moves outward into the intracellular spaces which cause cellular
dehydration and ultimately, cell death. Constant contact of root
with high salinity gradually decreases leaf size (Munns and Tester,
2008).

The effect of soil salinity upon photosynthesis process
at its vegetative as well as reproductive stage has been
studied by many researchers (Yeo et al., 1985; Dionisio-
Sese and Tobita, 2000; Senguttuvel et al., 2014). It has been
established that photosynthesis and chlorophyll concentration
are inversely correlated with level of salt stress (Senguttuvel et al.,
2014). Furthermore, it has also been reported that particular
concentration of sodium chloride in the leaf causes reduction in
photosynthesis to its half without affecting the concentration of
chlorophyll (Dionisio-Sese and Tobita, 2000). Tolerance of crops
to abiotic stresses depends upon their chlorophyll stability index.
Salinity did not have much effect on the chlorophyll contents
of the tolerant cultivars because they contain high chlorophyll
stability index (Mohan et al., 2000; Sikuku et al., 2010). Similarly,
ratio of chlorophyll-a and -b in plants also decrease due to
salt stress (Senguttuvel et al., 2014). Unlike salinity susceptible
varieties, tolerant varieties always maintain chlorophyll a/b ratio
under salt stress conditions. Chlorophyll fluorescence parameters
have also been found to disturbed due to salinity. It has been
observed that the tolerant cultivars maintain a high Fv/Fm ratio
than the susceptible one (Senguttuvel et al., 2014).

In plants, the harvest index (amount of shoot mass and yield)
can fluctuate from 0.2 to 0.5, depending on the harshness of
salinity (Husain et al., 2003). A small concentration of salt do not
decrease plant’s reproductive yield (although the plant’s vegetative
biomass is decreased) which is revealed in harvest index that
goes up with salt stress. It has been established that grain yield
in many crops do not reduce until a threshold salinity level is
reached (‘bent stick’ relationship; USDA-ARS, 2005). A survey
in USA (USDA-ARS, 2005) has shown that the yield of rice
starts to decrease at 30 mM NaCl whereas in wheat, 60–80 mM
NaCl could result in decline of the grain yield. This study
shows the genetic difference among species. For instance, huge
genetic dissimilarity has been found in durum wheat and barley,
developed by irrigation with altered salt levels (up to 250 mM;
Royo and Abio, 2003). These experiments show a sigmoidal curve
instead of a ‘bent stick’ association between the level of salinity
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and the crop yield. It has been reported that salinity reduces the
efficiency of yield by reducing the formation of tillers (Maas and
Hoffman, 1977). For various soils, salinity and waterlogging are
interlinked. In Pakistan, use of high salt containing irrigation
water causes poor soil texture and poor permeation of water
(Qureshi and Barrett-Lennard, 1998). Secondary salinity occurs
in Australia, where water-table increases to two meters of the
soil layer which is near to the root sector. Moreover, as the
porosity of soil is around 10 percent, it needs a little (∼100 mm)
rainfall for water-table to increase up to the exterior surface to
cause salinity and waterlogging stresses simultaneously (Barrett-
Lennard, 2002).

Salinity Response is Highly Complex and
Determined by Developmental Stages of
the Rice Plant

Salinity is one of the key obstructions of rice production
worldwide. Rice is especially grouped under salt-sensitive crop
(Shannon et al., 1998). There are two important factors (threshold
and slope) enough for determining salinity tolerance. Threshold
indicates highest permissible salt without reduction in yield and
slope indicates percent of reduction in yield per unit rise in salt
level ahead of the threshold. The threshold of rice is 3.0 dsm−1

and slope is 12% per dsm−1 (Maas and Hoffman, 1977). In
addition, rice is also differentially affected by salt stress at
various growth stages. Moreover, the adverse effect of salinity on
development of rice plant has been found to be related to different
growth stages of the plant, type of salt, concentration of salt,
exposure period of salt, water regime, pH of soil, humidity, solar
radiation and temperature (Akbar, 1986). It has been established
that rice plant is comparatively tolerant to salt stress during
seedling stage, as at this stage, the injury can be considerably
overcome in the later phases of development (Akbar and Yabuno,
1974). Hence, seedling stage is the ideal stage to categorize the rice
genotypes into various groups based on their tolerance toward
salinity. The rice genotypes have been categorized into different
groups from extremely tolerant (score 1) to extremely sensitive
(score 9) (Table 1). Janaguiraman et al. (2003) have shown that
salinity tolerant rice varieties have higher rate of germination,
shoot length, root length, and vigor index.

Besides the seedling stage, flowering stage is another highly
sensitive growth stage in the life cycle of crop plants which
is affected by salinity stress (Singh et al., 2004). This stage is
vital as it determines grain yield. Salinity stress at booting stage
affects the pollen viability which results in poor fertilization and
consequent reduction in the percentage of filled grains and hence,
the total plant yield. In a recent study targeting to access the
effect of salinity on the pollen viability and grain yield in rice
using various genotypes of rice (Table 1) (Mohammadi-Nejad
et al., 2010). It has been found that most of the rice varieties
show reduced pollen viability under salinity but those which have
severe reduction in the pollen viability, along with severe decrease
in plant yield, were classified as the salinity-susceptible genotypes
for flowering stage (Khatun and Flowers, 1995). Some landraces
such as Kalarata, Cheriviruppu, Pokkali, and Bhirpala have been

found to be comparatively tolerant at flowering stage due to better
viability of pollens and higher grain yield (upto 49%) under salt
stress. Similarly, some of the other rice varieties i.e., IR72046-B-R-
7-3-1-2, IR4630-22-2-5-1-3, and CN499-160-13-6 have also been
categorized as salt tolerant at flowering stage based on their pollen
viability and grain yield. Two rice genotypes (IR66946-3R-178-
1-1 and IR65858-4B-11-1-2) which show high pollen viability
and less grain yield have been categorized as sensitive for the
flowering stage.

Seedling-stage salt tolerance is independent of
flowering/reproductive stage tolerance (Singh et al., 2004),
and has been established by the behavior of CN499-160-13-6
genotype which is a confirmed susceptible genotype at the
juvenile stage but tolerant at the flowering stage. This analysis
by Mohammadi-Nejad et al. (2010) indicate that seedling
and flowering stage salt tolerance is determined by altogether
different set of genes in rice. Recently, another group of rice
researcher has analyzed the dry mass of rice shoot and root
along with the grain yield under various levels of salinity (Hakim

TABLE 1 | Phenotypic trends of various rice genotypes under control and
salinity treatment (Source; Mohammadi-Nejad et al., 2010).

Rice variety Score Pollen viability Grain yield (g)

Control Salinity Control Salinity

IR65209-3B-6-3-1 1 46.7 14.6 1.4 1.0

IR65858-4B-11-1-2 1 48.1 48.0 4.4 0.8

IR69588-4R-P-11-3 1 36.6 18.8 2.0 0.5

IR72046-B-R-7-3-1-2 1 49.4 24.7 1.3 0.1

IR71832-3R-2-2-1 1 19.5 12.3 1.7 0.4

IR71899-2-1-1 1 34 14.9 2.6 1.1

IR71991-3R-2-6-1 1 27.8 22.1 3.6 1.4

IR71995-3R-1-2-2 1 38.2 15.7 3.8 2.6

IR74099-3R-3-3 1 52.3 19.7 1.9 0.8

IR74105-3R-2-1 1 54.9 19.5 0.6 0.2

IR70023-4B-R-12-3-1 1 81.2 46.2 2.7 1.9

Cheriviruppu 3 59.4 20.8 6.8 4.2

Kala Rata 1-24 1 69 48.6 3.1 1.5

Bhirpala 5 45.1 26.2 2.1 1.4

IR4630-22-2-5-1-3 5 60.1 45.6 1 0.7

Pokkali (Ac.108921) 1 67.7 29.6 5.5 5.2

IR66946-3R-178-1-1 1 73 47.4 2.7 0.5

IR64 3 46.6 8.2 0.9 0.9

IR65185-3B-8-3-2 5 16 19.7 2.7 0.6

IR72046-B-R-4-3-2-1-2B-1 3 48.8 18.2 2.2 0.1

IR72043-B-R-6-3-3-3 5 39.3 15.4 1.5 0.3

IR72046-B-R-8-3-1-3 5 47.4 17.2 3.8 0.8

IR75000-69-2-1 5 50.6 26.4 1.8 1.6

IR29 9 24.7 18.3 0.2 0.2

Mojang Kor 7 57.9 27.6 1 0.5

Bao thai 9 24.9 13.8 0.3 0.3

CN499-160-13-6 9 42.2 26.9 3.9 2.0

Karuna 9 36 33.4 0.6 0.2

TCA4 7 29.8 16.5 2.1 0.6

Kinandang Patong 7 56.4 27.4 1.2 0.5

Frontiers in Plant Science | www.frontiersin.org 3 September 2015 | Volume 6 | Article 712

http://www.frontiersin.org/Plant_Science/
http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Science/archive


Das et al. Understanding salinity responses

et al., 2014). In their report, it has been shown that the level of
salinity is inversely proportional to the rice grain yield (Figure 1,
Table 2). It has also been observed that the dry mass of shoot and
root in rice decreases with the increase in the level of salinity.
The grain yield reduction in rice by salinity stress might be due
to the modification in flexibility of the cell wall, and subsequent
reduction in the turgor pressure effectiveness in cell growth
(Hakim et al., 2014). However, it is evident that increased salt
level in soil disturbs the photosynthesis, causes shrinkage of cell
contents, reduces growth and differentiation of tissues, cause
imbalance in nutrition, injury of membranes, and ultimately,
affects the yield contributing characters (Mahmod et al., 2009;
Nejad et al., 2010; Hakim et al., 2014).

FIGURE 1 | Percentage decline in yield (g Hill−1) of various
germplasms of rice (IR-20, Pokkali, MR33, MR52, and BRRI dhan29) in
response to salinity. Web digram was constructed taking yield of each
genotype under non-stress condition (0 ds m−1) as 100%. Note that Pokkali
appears to be most tolerant genotype among the ones studied here, as it
could give 10% yield even at 12 ds m−1. (Source; Hakim et al., 2014).

TABLE 2 | Effect of salinity stress on plant growth as reported for different
rice varieties (numbers in the bracket indicate the percentage relative to
the control; Source; Hakim et al., 2014).

Rice variety Salinity level
(ds m−1)

Shoot Dry
wt. (g)

Root Dry
wt. (g)

IR-20 0 21.6 2.7

4 16.4 (76) 1.56 (56)

12 4.1 (19) 0.57 (20)

Pokkali 0 24.2 2.09

4 21.2 (87) 1.60 (76)

12 7.9 (32) 0.85 (41)

MR33 0 2.8 3.28

4 15.9 (70) 2.28 (69)

12 6.2 (27) 0.87 (26)

MR52 0 21.0 2.51

4 16.9 (80) 1.90 (76)

12 6.1 (29) 0.74 (29)

BRRI dhan29 0 2.9 2.87

4 14.6 (64) 1.7 (62)

12 3.9 (17) 0.52 (18)

Adaptive Mechanisms in Rice for Salinity
Tolerance

Under salt stress conditions, rice plants exhibit various
mechanisms to overcome the damage such as controlling the
seedling vigor, reducing the intake of salt through roots, efficient
intra cellular compartmentation and transport of salt.

Seedling Vigor
Salt stress leads to higher accumulation of Na+ in shoots, mainly
in mature leaves. Various reports have shown that limiting Na+
accretion in shoot part under salt stress is linked to salinity
tolerance of barley and wheat (Munns and James, 2003). In rice,
it has also been verified that sodium ion accretion in shoot part is
comparatively well linked with its growth under salt stress (Yeo
et al., 1990). Rice varieties differ considerably in their rate of
development with the most vigorous one being the conventional
landraces and the shorter ones are the cultivated high yielding
varieties. Naturally occurring salt tolerant varieties like Pokkali,
Nona Bokora etc. belong to these conventional tall varieties. In
spite of having comparable net transport of Na+ ion through their
roots as partially dwarf salt susceptible cultivars, the high vigor of
land races permit them to tolerate growth decline by diluting the
Na+ content in rice cells.

Root Permeability and Selectivity
The lethal ions enter into the root along with water that travels
from soil to the vascular part of the root by two routes, i.e.,
symplastic and apoplastic. In apoplastic pathway which is a
non-energy driven pathway, water travels through intracellular
regions to deliver the salt in xylem. In symplastic pathway, water
enters in the roots through epidermal plasma membranes and
then travels cell-to-cell through plasmodesmata until discharging
to the xylem. Rice is a salinity susceptible crop and it has been
revealed that a major quantity of sodium ion transported to the
rice shoot parts at the time of salt stress is via apoplastic pathway
(Krishnamurthy et al., 2009). Munns (1985) reported that, under
100 mM of sodium chloride stress, the transport rate of Na+
ion toward shoots of salt tolerant barley is quite lower (only
20%) in relation to salt sensitive rice plants. This observation
indicates that a major involvement of Na+ bypass movement
in salt stress-induced shoot causes sodium ion accretion in rice
shoots.

Although water can passively move from roots through
intercellular space, but there are morphological components
called as suberin lamellae and Casparian band at the root endo-
and exo-dermis, which restricts the apoplastic flow of ions and
water to go inside the stele (Schreiber et al., 1999; Enstone et al.,
2003). Casparian bands are formed by transverse and radial
walls infusing the pores of primary cell wall with aromatic and
lipophilic materials and suberin lamellae is deposited to the inside
surface of cell walls (Ranathunge et al., 2004). Chemical nature
of the root apoplastic barrier is crucial for their performance
(Schreiber et al., 1999). It was observed that in roots, apoplastic
barriers suberization was most common in salinity tolerant
plants, which also has the least Na+ accretion in the shoot parts
(Krishnamurthy et al., 2009; Cai et al., 2011). Krishnamurthy et al.
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(2009) have also revealed that in both susceptible and tolerant
varieties, the expression of suberin biosynthetic genes was
induced under salinity stress, which increased the reinforcement
of these barriers in roots of rice. Though the mechanism of
apoplastic movement of Na+ has not been clear, Na+ over-
accretion through bypass movement in rice shoots is supposed
to be the result of Na+ reflexive flow into the xylem. Roots with
weak barrier areas like lateral root originating sites and cell walls
of root tip area were expected to be the possible entrance sites for
Na+ bypass movement (Yeo et al., 1987). Ranathunge et al. (2005)
reported the disruption of the endodermal Casparian stripes, and
ultimately crack through the fence in the exodermis at the time of
lateral roots emergence at the pericycle region next to the phloem
in the root of monocot. It was also shown that suberin lamella
and casparian stripes in both endodermis and exodermis are not
detectable at the apices of root (Ranathunge et al., 2003; Schreiber
et al., 2005), signifying a weak fence at root apices of rice plants.

Symplastic movement of ions in root involves various ion
selective channels/transporters present on the plasma membrane
of the root cell which selectively allow the movement of ions
inside the cell and maintain ionic balances under salinity. Plants
have different defense machinery at the boundary of cell-xylem
apoplast. A report has shown that Na+ re-intake takes place
from the xylem flow by adjacent tissues, and as a consequence,
decreases flow of Na+ into the shoot parts (Lacan and Durand,
1996). HKT is a Na+/K+ symporter found in the plant cell

membrane which regulates transportation of Na+ and K+. Class
1 HKT transporter in rice removes excess Na+ from xylem, thus
protecting the photosynthetic leaf tissues from the toxic effect of
Na+ (Schroeder et al., 2013). This mechanism of salt tolerance
has been depicted in Figure 2A.

Intracellular Compartmentation
Based on osmotic potential, plant can check Na+ ion to go into
the cell by energy driven process. K+ and Na+ are interceded by
dissimilar transporters which have been verified by Garciadeblás
et al. (2003). Cell ion homeostasis is maintained by the ion pumps
like symporters, antiporters, and carrier proteins present on the
membranes. In cereals, Na+ exclusion systems were suggested to
be composed of several transporters present on cell membrane
like H+-pump ATPases, Na+/H+ antiporter and the high-affinity
uptake of K+ ion (Jeschke, 1984). Salt Overly Sensitive or
SOS pathway of homeostasis is an excellent example of ion
management which is turned ‘on’ following the activation of the
receptor in response to salinity and transcriptional induction
of genes by signaling intermediate compounds (Sanders, 2000).
Zhu et al. (1998) first reported three sos mutants of Arabidopsis
which were hypersensitive to specific salt-NaCl. These three sos1,
sos2, and sos3 mutants exhibit altered phenotype with reference
to Na+ accretion. In SOS pathway, calcium binding protein
SOS3 directly interacts and activates SOS2, a serine/threonine
protein kinase (Liu and Zhu, 1998; Halfter et al., 2000). SOS3

FIGURE 2 | Schematic representation of Na+ influx in roots, its sequestration pathways and primary protective mechanisms as mediated by the
transporters present on plasma membrane and tonoplast of the cell. (A) Influx of Na+ through plant root. Red arrows represent probable Na+ entry sites for
the apoplastic bypass flow and blue arrow represents the path for symplastic movement. (B) Various transporters (NHX, HKT, SOS1) responsible for ion movement
localized on the biological membranes have been shown for an individual cell of the plant. The energy providing (vacuolar H+-ATPase or V-ATPase, vacuolar
H+-translocating pyrophosphatase or V-PPase) and activating molecules (SOS3, SOS2) are also shown.
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recruits SOS2 on the cell membrane, where SOS2–SOS3 complex
phosphorylates SOS1, a Na+/H+ antiporter on cell membrane,
which extrudes Na+ out of the cell (Quintero et al., 2002; Guo
et al., 2004). Ma et al. (2012) have shown that under salinity stress
in Arabidopsis, NADPH oxidases also work in ROS-mediated
regulation of Na+/K+ balance.

When higher accumulation of Na+ in cytosol occurs, Na+
get sequested into the vacuole before it arrives to a toxic point
for enzymatic reactions. This pumping action is regulated by
vacuolar Na+/H+ antiporters (Blumwald, 2000). Increase in level
of salt induces the Na+/H+ antiporter action but it amplifies
more in salinity tolerant varieties than salinity susceptible
ones (Staal et al., 1991). The Na+/H+ exchange in vacuole is
determined through two separate proton pumps, i.e., vacuolar
H+-ATPase and vacuolar H+-translocating pyrophosphatase
(Blumwald, 1987). Manipulation in the levels of vacuolar
transporter (NHX1) leads to improve salinity tolerance in
rice, Arabidopsis, Brassica and Tomato (Apse et al., 1999;
Zhang et al., 2001; Fukuda et al., 2004). Bassil et al. (2012)
have reported one endosomal Na+/H+ antiporter (OsNHX5)
and four vacuolar Na+/H+ antiporters (OsNHX1-4) in rice
(Figure 2B).

Osmoprotectants
Most of the organisms including plants and bacteria accumulate
certain organic solutes (such as sugars, proline etc.) due to
osmotic stress. These compounds are called osmoprotectants
because even when present in high concentrations they do
not hinder with cellular enzymatic reactions (Johnson et al.,
1968). These are found in cell cytoplasm and the inorganic
ions like Cl− and Na+ are preferentially seized into the
vacuole, consequently leading to the turgor preservation for
the cell under osmotic pressure (Bohnert et al., 1995). The
non-reducing sugar trehalose possesses a distinctive feature
of reversible water storage ability to guard cellular molecules
from dehydration stress. Garg et al. (2002) have reported
that the trehalose biosynthesis and accumulation in transgenic
rice can provide tolerance to salinity and drought stresses.
Role of other osmoprotectants such as proline (Ahmed et al.,
2010; Deivanai et al., 2011), glycine betaine (Makela et al.,
2000; Ahmad et al., 2013), mannitol (Thomas et al., 1995)
etc. in salt stress tolerance in plants has also been well
documented.

Approaches for Improving Salinity
Tolerance in Rice

Conventional Methods
Plant breeding methods have been adopted since long time to
generate stress tolerant and high yielding rice varieties. Breeders
have made genetic alterations in rice crops, at intergeneric,
intraspecific and site-specific levels to generate salinity tolerant
cultivars. It has been established that source(s) of salt tolerance
are still to be explored within the cultivated germplasm of rice
(Flowers et al., 1990). Nevertheless, there are evident signals that
some conventional rice landraces and varieties (e.g., Pokkali,

Bura Rata, and Nona Bokra) are better salinity tolerant than
many prominent varieties. Pokkali has been popular as a gene
donor in plant breeding programs to develop salinity tolerant
cultivars. The better tolerance to salinity in Pokkali is generally
credited to both its capacity to preserve low ratio of Na+/K+
in plants and its quicker expansion rate under salinity. Using
IR29 and Pokkali a recombinant inbred population has been
produced at the International Rice Research Institute, Philippines
(Bonilla et al., 2002). A number of other salt-sensitive and salt-
tolerant inbred lines have also been documented during screening
for salt tolerance (Gregorio et al., 2002). Many salt tolerant
cultivars of rice have been generated in various countries by
breeding which includes CSR13, CSR10 and CSR27, IR2151,
Pobbeli, PSBRc 84, PSBRc 48, PSBRc 50, PSBRc 86, PSBRc 88,
and NSIC 106.

However, the fact is that the wild types or the landraces
discussed here are connected with a host of innate difficulties of
reduced agronomic characters like photo-sensitivity, tallness, low
yield and poor grain quality. Hence, breeding for enhanced salt
tolerance using these wild germplasm is a real challenge. Other
problem with traditional plant breeding is reproductive difficulty
where it is really problematic that if the gene is present in a wild
counterpart of the crop, breeder faces trouble in introducing it
to the domesticated variety. Therefore, keeping these in mind,
several modern approaches have been adopted for production of
salinity stress tolerant rice.

Omics-Based Approaches in the Modern Era
Plant molecular biology seeks to study biological and cellular
processes like plant development, its genome organization,
and communications with its surroundings. These multi-
dimensional detailed studies require large-scale experimentation
linking the whole genetic, functional and structural components.
These large scale experimentations are known as ‘omics.’
Chief contributors of ‘omics’ include genomics, transcriptomics,
proteomics, metabolomics, and phenomics. ‘Omics’ approaches
are regularly used in various research disciplines of crop
plants, including rice. These approaches have enhanced very fast
during the last decade as the technologies advance. Following
section describes how ‘omics-based’ approaches have helped in
understanding and dissecting out the mechanism of salinity
tolerance in rice and helped in generating several salt tolerant
germplasms.

Genomics-Based Approach
Molecular marker resources and quantitative trait loci
(QTL) mapping for rice salinity tolerance
Accessibility of the whole genome sequence of rice (Matsumoto
et al., 2005) has contributed to the rapid development in
the area of functional genomics of salinity tolerance in rice.
This information further supported by development of a
number of single nucleotide polymorphism (SNP) markers and
simple sequence repeat (SSR) markers. Both SSR and SNP
marker analysis have been successfully used to discover salt
tolerant cultivars of rice (Dhar et al., 2011). In the recent
past, development of next generation sequencing (NGS) has
enabled the sequencing based genotyping way more efficient
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(Ray and Satya, 2014). QTL studies for salt stress tolerance
have been investigated by several researchers (Bonilla et al.,
2002; Gregorio et al., 2002; Lin et al., 2004). Genetic maps
of rice have been generated using recombinant inbreed lines
developed from genetically distant varieties, such as indica and
japonica rice as parents. Such combinations generate appreciably
more polymorphism than that between the same subspecies.
McCouch et al. (1988) published the first rice genetic map by
restriction fragment length polymorphism technique; different
fine maps have since been generated using various markers
such as amplified SSR, random amplified polymorphic DNA and
fragment length polymorphism (Kurata et al., 1994; Harushima
et al., 1998). Moreover, the genomic tools [expressed sequence
tags (ESTs) from salinity-stressed libraries, expression profiling
by microarrays, whole genome sequence information, targeted or
random mutation breeding, and complementation and promoter
trapping approach] and methods that have become available
offer chances to differentiate the salinity-tolerance-likned gene
networks in more depth (Bohnert et al., 2001; Kumari et al.,
2009; Soda et al., 2013). Seven QTL linked with salinity have
been recognized for rice seedlings and mapped to different
chromosomes (Prasad et al., 2000). Using F2 population obtained
from a salinity tolerant mutant of rice (M-20) and the salinity
susceptible wild variety (77–170A), a key gene for salinity
tolerance has been mapped on chromosome 7 (Zhang et al.,
1995). Koyama et al. (2001) showed the chromosomal location
selectivity traits of an ion transport which are companionable
with agronomic demands. Gregorio et al. (2002) have mapped
a major Saltol QTL which is flanked by markers RM23 and
RM140 on chromosome 1, using a population raised from a
cross among Pokkali and IR29. More than 70% of the difference
in salt uptake has been accounted by this QTL (Bonilla et al.,
2002). Pokkali was the basis of positive alleles for this QTL,
which accounted for decreased sodium and potassium ratio
under salinity (Bonilla et al., 2002; Gregorio et al., 2002).
Lin et al. (2004) have shown a QTL for increased shoot
K+ under salt stress in the similar position of chromosome
1. Mapping SKC1 on chromosome 1 was a breakthrough
which preserves K+ ion homeostasis in the salinity-tolerant
cultivar (Nona Bokra) under salinity conditions (Ren et al.,
2005).

Introduction of desired gene/genes into the rice genome
for salinity tolerance – the ‘reverse-genetic’ approach
Plants react to salinity by limiting the intake of toxic ions like Na+
and regulate their osmotic potential by producing compatible
solutes (sugars, glycinebetaine, proline etc.) and partitioning
toxic ions into the tonoplasts to maintain low Na+ levels in
the cytoplasm (Blumwald and Grover, 2006). Salinity tolerant
transgenic rice plants were generated by getting ideas from
the above observation (Kumar et al., 2013). Xu et al. (1996)
produced transgenic rice by introduction and over-expression of
late embryogenesis abundant (LEA) protein from barley. Their
study demonstrated that the transgenic rice possessed a better
growth rate under 200 mM of salinity and better recovery upon
removal of stress. Similarly, genetically engineered rice has also
been developed with the capacity to produce glycinebetaine by

a gene (codA) encodes choline oxidase and it has been found
to have better salt (150 mM NaCl) tolerance than the WT
(Mohanty et al., 2002). Transgenic rice plants developed by
over-expressing OsCDPK7 (a calcium-dependent protein kinase)
gene were found to have the youngest leaf drooped 3 days
after treatment with 200 mM sodium chloride in wild type
plants, whereas transgenic plants showed better tolerance (Saijo
et al., 2000). Several latest reports have shown a host of other
genes related to antioxidants, transcription factors, signaling, ion
homeotasis and transporters found to have key role in salinity
tolerance (Garg et al., 2002; Blumwald and Grover, 2006; Zhao
et al., 2006a; Jiang et al., 2012; Kumar et al., 2012; Kumari et al.,
2013; Liu et al., 2014a; Rachmat et al., 2014).

Genome modification through mutation breeding for
salinity tolerance in rice – the ‘forward-genetics’
approach
Although efforts to advance stress tolerance in plant by genetic
manipulation have resulted in some significant achievements,
mutation breeding technique has been accepted as a foremost
strategy to obtain stress tolerant varieties as well as varieties with
other desired traits (Wang et al., 2003; Flowers, 2004). Mutation
breeding has a significant contribution toward production of
high yielding and salt stress tolerant rice varieties (Cassells and
Doyle, 2003; Parry et al., 2009; Das et al., 2014). There are
many reports where mutation breeding has resulted in enhanced
salinity tolerance in various rice cultivars. For example, rice seeds
irradiated with carbon (C) or neon (Ne) ions have generated
mutant variety with high salt tolerance (Hayashi et al., 2007).
The Azolla-Anabaena symbiotic system provides green manure
for flooded crops, mainly rice. Mutation breeding has produced
Azolla variants tolerant to high salinity, toxic aluminum levels,
and to herbicides (Novak and Brunner, 1992). Many such
varieties of salinity tolerant mutant rice have been released in
many countries all over the world so far and some of them have
been listed in Table 3.

TABLE 3 | Salinity tolerant rice varieties produced through mutation
breeding.

Crop variety Mutation technique References

Rice (6 B) γ irradiation Singh (2000)

Rice (A- 20) γ irradiation Singh (2000)

Rice (Atomita 2) γ irradiation Singh (2000)

Rice (Changwei 19) γ irradiation Singh (2000)

Rice (Emai No. 9) γ irradiation Singh (2000)

Rice (Fuxuan No. 1) γ irradiation Singh (2000)

Rice (Liaoyan 2) γ irradiation Singh (2000)

Rice (Mohan = CSR 4) γ irradiation Singh (2000)

Rice (Jiaxuan No. 1) γ irradiation Singh (2000)

Rice (Nipponbare) γ irradiation Hayashi et al. (2008)

Rice γ irradiation Jain et al. (1998), Jain and
Suprasanna (2011)

Rice (Niab-irri-9) γ irradiation www.niab.org.pk/

Rice (Shua 92) γ irradiation Baloch et al. (2003)

Rice (Basmati 370) γ irradiation Saleem et al. (2005)
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Transcriptomics Approach
Transcriptomics, also called as expression profiling, generally
require a systematic and entire study of all the RNA transcripts
that signifies the spatial and temporal gene expression of
a cell, tissue of an organism under a certain biological
circumstance (Thompson and Goggin, 2006). This technique
leads to identification of a large number of differentially regulated
transcripts due to cross talks and overlapping pathways under
particular stress/environmental situations (Sahi et al., 2006;Walia
et al., 2007). Microarrays have become one of the standard
tools in molecular biology and have taken as commanding
approach for the analysis of genome wide transcriptional
response by studying the expression of all the expressed genes
in a single experiment. The complete transcriptome at a
given time point allow us to detect any stress-inducible genes
which can suggest the specific biological processes and/or the
regulation of transcriptional and translational machineries that
are induced (Gracey and Cossins, 2003). In rice, EST based
cDNA arrays and oligonucleotide microarrays have been used
to understand the underlying biological meaning by studying
and comparing the global gene expression patterns (Eyidogan
and Öz, 2007). In the recent past, stress (including salinity)-
inducible transcripts in rice were identified by using microarray
technology (Wilson et al., 2007; Kumari et al., 2009; Plett
et al., 2011; Garg et al., 2013). It is well documented that
the mechanisms involved in salinity tolerance is complex and
polygenic trait (Munns and Tester, 2008). Introduction of
a single gene is least likely to improve the salt tolerance
considerably. As an alternative, multiple genes involved in the
key mechanism of the processes such as signaling, osmotic
adjustment, ion homeostasis, vacuolar compartmentalisation
of ions, restoration of enzymatic activity and oxygen free
radical scavenging should be used (Bohnert et al., 2001).
The transcription factors having a cascade effect that can
regulate many other downstream genes may also prove vital
in this regard. The main challenge is that it is not yet
clear what are the genes that are needed to be studied and
manipulated (Cuartero and Bolarin, 2010). Salt tolerance in
rice is advantageous in this regard as rice is particularly
salt sensitive at seedling and reproductive phase and a few
QTLs having large effects are known to control the trait
(Leung, 2008). The traits, though, have low heritability and
are usually inherited quantitatively (Cuartero et al., 2006).
The measurements of these traits in segregating populations
are not always easy which demands careful coordination of
environmental conditions over seasons and locations. The
capability to evaluate the expression levels of whole genome in
a single experiment by microarray technique allows biologists
to see what are the genes induced or repressed under specific
environmental extremes. The constraint is that in addition to
the actual genes that control the stress response, it detects
enormous number of related genes which might be involved
in secondary or irrelevant downstream functions (Cuartero
et al., 2006). Beside the challenge of recognizing the relevant
target genes, the transcriptomic approach offers an efficient tool
of identifying the gene(s) involved in specific stress tolerance
mechanism.

Proteomics Approach
The study of a protein is the shortest and direct way to
describe the role of the gene linked with the particular protein.
Nevertheless, it must be noted that the proteome and genome
of an organism do not always communicate to each other
directly (Komatsu et al., 2009). Thus, the investigation done
at the metabolome and proteome levels are evenly significant
as the study of genomics. Proteomics study gives a platform
to analyze complex biological functions which includes huge
numbers of proteins as well as the interacting network of
various proteins. Proteomics can serve as a main technique
for exposing the molecular machineries that are concerned in
interactions among the plant and diverse stresses including salt
stress. Salinity stress induces the expression of various genes
which are eventually reflected in the profile of the proteins. The
function of salinity- and other stress-induced proteins has been
extended by proteomic study in different tissue parts of rice
(Fukuda et al., 2003; Chen et al., 2009; Lee et al., 2009; Liu and
Bennett, 2011).

A scheme for direct recognition of proteins by differential
display approach has been established and the proteins structure
can be recognized by evaluation with the proteome database of
rice or by Edman sequencing and mass spectrometry (MS). It
has been shown that the present rice proteomic studies have
so far concentrated on the recognition of polypeptides based
on their available quantity upon subjecting to different stresses
(Ma et al., 2013). The complex physiological response data of
proteomics study were found to change over the severity of stress,
therefore, making the data evaluation and integration analyses
complicated. Henceforth, post-translational modification (PTM)
could be a substitute to examine stress signaling functions.
Many strategies have been created to distinguish PTM in plants.
Particularly, the use of two dimensional PAGE method joined
with the application of 5′-iodoacetamidofluorescein (5′IAF) or
2D-fluorescence difference gel electrophoresis (DIGE) allows
the recognition of oxidized and reduced stress-linked proteins
(Cuddihy et al., 2008; Fu et al., 2008). Several gel-free methods
have also been identified for differential analysis of proteome.
Instances are: multidimensional protein identification method
that successfully recognizes individual protein components by
eliminating band broadening for chromatographic recognition
(Koller et al., 2002), isobaric tags for relative and absolute
quantification and isotope-coded affinity tags (Griffin et al.,
2001). These methods are considered as targeted techniques to
recognize alteration in proteins by mass difference mean, among
different proteomes.

Metabolomics Approach
Metabolites are the final product of cellular reactions which
reflect the reaction of biological systems to environmental
fluctuations (Royuela et al., 2000). The present movement in
metabolomic analysis is to describe the cellular position at a
specific stage by assessment of the whole metabolites in the cell
(Hollywood et al., 2006). Metabolomics techniques complement
proteomics and transcriptomics technique and show exact figures
of the whole cellular course. A sequence of investigative method
is accessible for the study of plant metabolome (Okazaki and
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Saito, 2012), along with the application of modern and high
throughput methods such as Fourier transform infrared (FT-IR;
Johnson et al., 2003), ultra high-resolution fourier transform-
ion cyclotron MS (Hirai et al., 2004), gas chromatography-MS
(GC-MS; Kaplan et al., 2004), and nuclear magnetic resonance
(NMR; Kim et al., 2010). Metabolomics came into view as an
important tool for the study of environmental responses in plants
(Bundy et al., 2009). Rice metabolomics studies have so far
determined the types and the quality of metabolites which can
endorse the germination of seed (Shu et al., 2008), the variation
of metabolites among wild type and mutant plants (Wakasa et al.,
2006), the metabolome profiling at various stages of development
(Tarpley et al., 2005), and the examination of natural metabolite
dissimilarity among different rice varieties (Kusano et al., 2007).
Few studies have shown the metabolic impact of salinity on crop
plants such as rice, tomato, grape vine, Solanum lycopersicon
and Arabidopsis (Johnson et al., 2003; Gong et al., 2005; Zuther
et al., 2007). Plants react to adverse situations by a sequential
modification of their metabolism with transient, sustained, early
reactive and late reactive metabolic changes. For instance, proline
and raffinose gather to increased levels upon several days of
exposure to salinity, cold, or drought, while central carbohydrate
metabolism changes quickly in a time-dependent and complex
way (Kaplan et al., 2004; Urano et al., 2009; Lugan et al., 2010).
Some metabolic alterations are common to all the abiotic stress
types, but others are particular. For instance, levels of sugars,
sugar alcohols and amino acids usually amplify with response to
different stresses. Remarkably, proline accumulates upon salinity,
drought and cold stress but not upon heat stress (Kaplan et al.,
2004; Gagneul et al., 2007; Kempa et al., 2008; Usadel et al.,
2008; Urano et al., 2009; Lugan et al., 2010). In most of the
studies, amount of TCA-cycle intermediates and organic acids
got declined in glycophytes after salinity stress (Gong et al., 2005;
Zuther et al., 2007; Gagneul et al., 2007), but got enhanced upon
drought or temperature stress (Kaplan et al., 2004; Usadel et al.,
2008; Urano et al., 2009). Usually, sugars are essential compatible
solutes gathered in cells during stress response. Fumagalli et al.
(2009) studied the metabolite profile of two different cultivars
(Nipponbare and Arborio) of rice under salinity (150 mM) and
showed enhanced sugar contents during salinity stress in both
the cultivars. Their results also showed that salt stress altered
the accumulation of various metabolites (glutamate, aspartate,
proline, valine, lactate, alanine, malate etc.) in rice which have
vital role in salt tolerance. They also suggested that NMR coupled
with principal component analysis (PCA) is a commanding tool
to characterize rice varieties under salinity or any other stress.

Phenomics Approach
Plant phenomics is advanced screening method which includes
the study of plant phenotype, growth, and performance and
eventually, identification of the required trait. Couple of
screening methods for various morpho-physiological traits have
been used to measure the tolerance to salinity in rice, including
plant weight, Na+ concentration, the ratio of Na+/K+ in shoot,
leaf injury, survival rate of leaf following injury, leaf area and
bypass movement in the root (Yeo et al., 1990; Asch et al.,
2000; Zeng et al., 2003; Faiyue et al., 2012). However, most

protocols that measure plant biomass are destructive, therefore
making it difficult to measure active responses in plant growth
in response to salt application and to collect seed from the
individuals being measured. Current progress in image-based
phenotyping have enabled the non-destructive assessment of
plant responses to salinity over time and allow determination
of shoot biomass measurements without having to harvest
the whole plant (Rajendran et al., 2009; Berger et al., 2012;
Hairmansis et al., 2014; Jansen et al., 2014). Upon salinity stress,
growth of rice plants immediately slows due to stress, and plants
produce fewer tillers (Munns and Tester, 2008; Rajendran et al.,
2009; Horie et al., 2012). Over time, Cl− and Na+ accumulate
to lethal concentrations in the plant, resulting in premature
senescence of leaf and subsequent death (Munns and Tester,
2008; Munns et al., 2010; Horie et al., 2012). Notably, image-
based phenotyping can differentiate among the effects of the
osmotic and ionic components of salt stress in growing plants. It
can be done by growth response measurement immediately after
application of salt, before the increase in accumulation of toxic
ions in the shoot. This permits for at least some analysis of salinity
tolerance mechanisms (Rajendran et al., 2009; Sirault et al., 2009).
A non-destructive image-based phenotyping method to analyze
the responses of rice to different levels of salinity stress has been
developed and revealed differences in the effects of salinity in two
cultivars of rice, IR64 and Fatmawati (Hairmansis et al., 2014).

Automation of the phenotyping process in combination
with automated plant handling and watering allows large
numbers of plants to be screened efficiently with short handling.
Entire populations of plant can be grown in soil media,
emulating field conditions (at least for the earlier growth stages),
hence permitting the transfer of knowledge from controlled
environment to field growth conditions. Screening of 100s
of mapping lines and/or rice accessions for bi-parental or
association mapping studies can now be done relatively quickly
for traits that require time course growth assessments. The use
of these populations has the prospective to reveal the underlying
genetic mechanisms of salinity tolerance in a forward genetics
screen. As costs decrease, so the power of this approach will
also increase, to allow more detailed characterization of rice
genotypes (e.g., stomatal behavior) in response to salinity [e.g., by
combination of infrared (IR), Red–Green–Blue (RGB) imaging
and fluorescence techniques]. Use of non-destructive imaging
technologies, in combination with measurements of tissue ion
concentration, allows the differentiation between the osmotic
and ionic components of salt stress in rice. This will allow the
detection of new traits and sources of salinity tolerance genes that
can be used to pyramid different salinity tolerance mechanisms
into elite rice breeding lines.

Integration of ‘Omics’ Approach
‘Omics’ approaches seems to be overlapping and dependent
on each other, and integration of all the ‘omics’ approaches
is necessary to reach at an ultimate step i.e., raising of
stress tolerant cultivars (Figure 3). Proteomic studies show
vast overlapping in vital metabolism (e.g., Calvin cycle and
carbohydrate metabolism) under salt stress. However, different
metabolic pathways have been found to control and regulate
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FIGURE 3 | ‘Omics-based’ approaches and their integration to develop salinity tolerant rice cultivars. Flow of information from various ‘omics-based’
platforms such as phenomics, genomics, transcriptomics, proteomics, and metabolomics needs to be integrated to understand complex traits such as salinity
tolerance. Ultimately, the key genes/regulators responsible for salt tolerance need identification and validation using the tools of functional genomics.

under metabolomic level, mostly the biosynthesis of amino acid,
photorespiration and citric acid pathway (Ma et al., 2013). This
is probably due to the participation of downstream enzymatic
reaction instead of cellular injury reactions, which encourage
the pathways of complex metabolites. The proteomic approach
presumes that the raise in quantity of protein amount is always
escorted by biologically active compound, but in fact it may
include the factors by posttranslational alterations, that may
alter characteristics of the proteins. So, the function of the
metabolite changing occured at the metabolomic point is not
very much clear. Hence, it can be said that the growth of
bioinformatics, in linking to the response at transcription level
to either metabolomic or proteomic alterations, is yet to be
done. The quick evolution in ‘omics’ research has led to more
and more generation of data sets throughout all branches in
life science studies. Different investigative applications, that are
vital for the efficient incorporation of data resources, have been
published in various databases. These huge datasets are found

via four main stages: (a) data generation (b) data processing (c)
data integration and the final step is (d) data analysis (Mochida
and Shinozaki, 2011). The dispute in the incorporation of omics
data investigation has been argued (Edwards and Batley, 2004).
It was shown that the main trouble occurred from the partial
and dissimilar form of information accessible on bioinformatics
data sources. Hence, algorithmic methods have been planned as
the solution for this kind of trouble (Ge et al., 2003). Currently,
many servers have been established which allows the integration
of high-throughput data and these servers also able to display the
outcomes in a meaningful pathway of biology (Tuncbag et al.,
2012).

The ultimate aim of integration of ‘omics-based’ approaches is
to find out key stress responsive genes/proteins and introduction
of those genes/proteins for generation of improved stress
tolerant crop varieties. A list of transgenic salt tolerant rice
cultivars generated by the introduction of key salt responsive
genes/proteins has been listed in Table 4.
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TABLE 4 | Transgenic rice cultivars developed by introduction of genes/proteins identified through ‘omics-based’ approach.

Source organism Gene/Protein Target rice cultivar Reference

Oryza sativa Glutamine synthetase Kinuhikari Hoshida et al. (2000)

Avena sativa Arginine decarboxylase TNG-67 Roy and Wu (2001)

Arthrobacter globiformis Choline oxidase Pusa Basmati-1 Mohanty et al. (2002)

Hordeum vulgare LEA protein Pusa Basmati 1 Rohila et al. (2002)

Atriplex gmelini Vacuolar Na+/H+ antiporter Kinuhikari Ohta et al. (2002)

O. sativa MAP kinase Nipponbare Xiong and Yang (2003)

Escherichia coli Trehalose -6- phosphate synthase and
Trehalose -6- phosphate phosphatase

Nakdong Jang et al. (2003)

Vigna aconitifolia �1-pyrroline-5-carboxylate synthetase Kenfong Su and Wu (2004)

O. sativa Vacuolar Na+/H+ antiporter Nipponbare Fukuda et al. (2004)

Mouse Calcineurin Xiushui 04 Ma et al. (2005)

Arabidopsis thaliana MYB transcription factor TNG-67 Malik and Wu (2005)

Suaeda salsa Catalase Zhonghua No. 11 Zhao and Zhang (2006)

A. thaliana and O. sativa DREB transcription factor Kita-ake Ito et al. (2006)

O. sativa NAC transcription factor Nipponbare Hu et al. (2006)

Suaeda salsa Vacuolar Na+/H+ antiporter Zhonghua-11 Zhao et al. (2006b)

Schizosaccharo- myces pombe Plasma membrane Na+/H+ antiporter Zhonghua-11 Zhao et al. (2006a)

Arthrobacter pascens Choline oxidase TNG-67 Su et al. (2006)

Avicennia marina SOD Pusa Basmati-1 Prashanth et al. (2008)

E. coli Catalase Nipponbare Nagamiya et al. (2007)

O. sativa Glyoxalase II Pusa Basmati-1 Singla-Pareek et al. (2008)

Pennisetum glaucum Vacuolar Na+/H+ antiporter Pusa Basmati-1 Verma et al. (2007)

O. sativa Shaker potassium channel Nipponbare Obata et al. (2007)

E. coli Catalase Nipponbare Motohashi et al. (2010)

O. sativa Ribosome-inactivating protein gene 18 Nipponbare Jiang et al. (2012)

O. sativa Calmodulin-like gene Pei’ai 64S Xu et al. (2013)

O. sativa Heat shock transcription factor A7 Nipponbare Liu et al. (2013)

O. sativa Vesicle trafficking gene Zhonghua 11 Peng et al. (2014)

O. sativa bZIP transcription factor Zhonghua 11 Liu et al. (2014b)

Bermudagrass DREB transcription factor Jonghua 11 Chen et al. (2015)

Citrus tristeza virus Heat shock protein 70 Nipponbare Hoang et al. (2015)

A. thaliana Bcl-2 associated gene product Nipponbare Hoang et al. (2015)

Baculovirus p35 Nipponbare Hoang et al. (2015)

Conclusion

The world population is increasing with fast pace supplemented
with reducing cultivable land due to salinization of arable land
naturally or by improper irrigation practices. Altogether, this
leads to decrease in the production of salt sensitive cereal crop
rice, a staple food grain of developing world. Presently, a lot
of methods have been implicated for modifying the genetic
makeup of rice plant to withstand high salinity and lesser yield
compromise. Plant breeding and genetic engineering are two
major adopted methods.

Plant breeding is an important tool for crop improvement to
develop environmental stress tolerant crops and several salinity
tolerant varieties for diverse rice plants were developed till the
present date. Nevertheless, this technology has its own limitations
on which it is based i.e., reproductive obstacle and fine genetic
variations of rice. However, mutation breeding has come up
as a robust tool to substitute the traditional breeding method.
Genetic engineering and mutation breeding have effectively used

the genetic alterations available for salinity tolerance in the wild
counterparts as well as in other organisms for the generation
of salt tolerant rice. Although, genome sequencing of rice plant
was completed a decade back, but the function of a large group
of genes is not known yet. Not only from rice, many genes
of unidentified role (20–30% in each genome sequenced) from
other plants can convey multiple stress tolerance and can be used
for raising salinity tolerant transgenic rice. There is also lack
of the integration of information from genomic, transcriptomic,
proteomic, metabolomic as well phenomic studies, which is very
important for the determination of key pathways or processes
involved in complex trait like salinity tolerance. Additionally,
even after significant development in the understanding of
responses of plant stress, there is still a huge gap in our
understanding of sensor and receptor in the signal transduction,
signaling molecules and ion transporter. The use of “omics” tool
along with genetic engineering andmutation breeding techniques
have promising role in delineating gene response and gene
function in plants under salinity stress.
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Salt tolerance is a multigenic trait, which involves a complex
of responses at metabolic, cellular, molecular, physiological
and whole-plant levels. Till date, scientists around the
world have developed a number of salt tolerant transgenic
rice by altering genes involved in various salinity reaction
mechanisms such as ion transport and balance, hormone
metabolism, osmotic regulation, antioxidant metabolism, and
stress signaling. In spite of successful raising of transgenic
rice for salinity tolerance in plants, attainment has not been
realized at field level yet. The future focus should be on
in-depth study of intercellular and intracellular molecular
interactions involved in salinity stress response and genetic
engineering with key genes coding components of salt tolerance
machinery in rice. Last but not the least, the salt tolerant
transgenic rice should be in the hand of final user i.e.,
farmer.
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