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Cauliflower (Brassica oleracea var. botrytis) is a vernalization-responsive crop. High
ambient temperatures delay harvest time. The elucidation of the genetic regulation
of floral transition is highly interesting for a precise harvest scheduling and to ensure
stable market supply. This study aims at genetic dissection of temperature-dependent
curd induction in cauliflower by genome-wide association studies and gene expression
analysis. To assess temperature-dependent curd induction, two greenhouse trials
under distinct temperature regimes were conducted on a diversity panel consisting
of 111 cauliflower commercial parent lines, genotyped with 14,385 SNPs. Broad
phenotypic variation and high heritability (0.93) were observed for temperature-related
curd induction within the cauliflower population. GWA mapping identified a total of
18 QTL localized on chromosomes O1, O2, O3, O4, O6, O8, and O9 for curding
time under two distinct temperature regimes. Among those, several QTL are localized
within regions of promising candidate flowering genes. Inferring population structure
and genetic relatedness among the diversity set assigned three main genetic clusters.
Linkage disequilibrium (LD) patterns estimated global LD extent of r2 = 0.06 and a
maximum physical distance of 400 kb for genetic linkage. Transcriptional profiling of
flowering genes FLOWERING LOCUS C (BoFLC) and VERNALIZATION 2 (BoVRN2) was
performed, showing increased expression levels of BoVRN2 in genotypes with faster
curding. However, functional relevance of BoVRN2 and BoFLC2 could not consistently
be supported, which probably suggests to act facultative and/or might evidence for
BoVRN2/BoFLC-independent mechanisms in temperature-regulated floral transition
in cauliflower. Genetic insights in temperature-regulated curd induction can underpin
genetically informed phenology models and benefit molecular breeding strategies
toward the development of thermo-tolerant cultivars.

Keywords: genome-wide association study (GWAS), quantitative trait loci (QTL), transcriptional profiling, single
nucleotide polymorphism (SNP), linkage disequilibrium (LD), vernalization, cauliflower, curd induction
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Introduction

In cauliflower, curd development is regulated by temperature
since vernalization is obligatory to promote the transition from
the vegetative to the generative phase and thus, to induce
the formation of the edible curd as marketable plant organ.
Vernalization requirements can only be fulfilled after passing
through a juvenile vegetative phase during which plants are
insensitive to vernalization (Wurr et al., 1993). The length of
the juvenile phase as well as vernalization rates and temperature
optima considerably vary among ecotypes, while vernalization
requirements have been reported to range from obligate (e.g.,
cool-temperate spring cultivars) to facultative (e.g., tropical
cultivars; Friend, 1985). High ambient temperature can prolong
the vegetative development phase by delayed vernalization and
strongly impair harvest traits leading to high fluctuations in
market supply and pricing. Moreover, exposure to excessive heat
during the vernalization-sensitive phase often results in bracting
(Fujime and Okuda, 1996; Grevsen et al., 2003), whereas low
temperature can induce premature flower bud development that
causes riciness (Grevsen et al., 2003), both accounting for highly
reduced curd qualities. Due to the strong impact of temperature
on curd development that defines economic value, evaluating
temperature-regulated curd induction is of serious agronomic
interest in cauliflower production. However, genetic mechanisms
of floral transition are poorly understood and available phenology
models intended to predict vernalization and harvest traits still
hold inaccuracy. Thus, dissecting the genetic basis of flowering
time is essential to predict and manage harvest traits. The
identification of genomic markers associated with temperature
response and flowering stability will accelerate marker-assisted
breeding efforts toward the development of uniformly developing
cultivars with predictable harvest traits adapted to a wide range of
environments.

Flowering time is a complex trait that is regulated by an
intricate signaling network of multiple genes that integrates
endogenous and exogenous stimuli, such as vernalization and
photoperiod, to induce flowering at themost favorable conditions
(Boss et al., 2004; Amasino, 2005). The molecular mechanisms
underlying floral transition in plants have been mainly elucidated
in Arabidopsis thaliana (Mouradov et al., 2002; He and Amasino,
2005). However, the understanding of the genetic and epigenetic
basis of floral transition still requires a sizable body of
investigation. Benefiting from genetic analysis of mutants and
natural variation in Arabidopsis, several flowering genes have
been identified. General flowering pathways and main flowering
time genes seem to be conserved in several agronomically
important crops, among them the closely related Brassica species,
including cauliflower (Lagercrantz et al., 1996; Schranz et al.,
2006). Consequently, these findings enable the transfer of
proposed flowering time models from Arabidopsis to important
crop species. In the vernalization pathway, FLOWERING LOCUS
C (FLC) and VERNALIZATION 2 (VRN2) play a pivotal
role in the regulation of the transition from vegetative to
generative phase (Schmitz and Amasino, 2007). FLC encodes
a MADS-box protein that prevents floral transition by directly
repressing floral integrators, among them FLOWERING TIME

(FT), FLOWERING LOCUS D (FD), and SUPPRESSOR OF
OVEREXPRESSION OF CONSTANS 1 (SOC1; Michaels and
Amasino, 1999; Alexandre and Henning, 2008; Deng et al., 2011).
In response to vernalization-inductive temperature, expression of
VERNALIZATION 2 (VRN2), together with VERNALIZATION
1 (VRN1) and VERNALIZATION INSENSITIVE 3 (VIN3) is
induced, which mediates repression of FLC and thus releases
flowering genes FT, FD, and SOC1 from FLC suppression (He
and Amasino, 2005; Jung and Müller, 2009). This in turn, results
in subsequent activation of meristem identity genes, e.g., LEAFY
(LFY) and APETALA 2 (AP2) that promote floral induction
(Sung and Amasino, 2004; Jung and Müller, 2009). Comparative
analysis revealed several homologs of flowering time genes in
Brassica crops with conserved regulatory function (Lagercrantz
et al., 1996; Schranz et al., 2006). In Brassica oleracea, four FLC
homologs have been identified, while only BoFLC2 has been
suggested to be of regulatory relevance in vernalization-induced
flowering (Okazaki et al., 2007).

Numerous studies on floral transition in Brassica crops
identified several quantitative trait loci (QTL) for flowering time
that mapped to genomic regions displaying synteny to the region
of Arabidopsis chromosome 5 harboring several flowering genes
(Rae et al., 1999; Okazaki et al., 2007; Razi et al., 2008). In a
doubled haploid (DH) population of B. oleracea, flowering time
QTLs were detected on chromosomes O2, O3, O5 and O9, which
are syntenic to Arabidopsis chromosome At5 (Bohuon et al.,
1998). In a mapping population of a B. oleracea var. italica x
B. oleracea var. capitata cross, a major QTL for flowering time was
located on O2, where BoFLC2 is mapped, suggesting its potential
role in controlling floral transition (Okazaki et al., 2007). In
contrast, other studies on flowering time variability in B. oleracea,
observed no co-segregation of the BoFLC locus with flowering
time and suggested FLC-independent pathways (Ridge et al.,
2014). However, a FLC-independent vernalization pathway for
flowering in B. oleracea has not been described yet.

Beyond QTL mapping, genome-wide association studies
(GWAS) have advanced as a promising approach recently
emerged in crop improvement to identify genes and distinct
genetic variants controlling complex traits with respect to natural
variation (Korte and Farlow, 2013). GWAS has been successful
implemented in A. thaliana to elucidate the impact of natural
variation on genetic variance of flowering time pathways (Atwell
et al., 2010; Brachi et al., 2010) but also to study quantitative traits
in other agronomically relevant crops, like rice, barley and maize
(Buckler et al., 2009; Huang et al., 2012; Rode et al., 2012; Wang
et al., 2012).

The present study aims at genetic dissection of temperature-
related curd induction in cauliflower by combining genome-wide
association mapping and gene expression analysis conducted
on a cauliflower diversity set, consisting of 111 accessions. In
particular, the main objectives of the study are (i) assessment
of phenotypic variation of curd induction in dependence on
temperature, (ii) detection of genomic markers significantly
associated with flowering time by GWAS, (iii) identification
of promising QTL regions and putative candidate genes,
(iv) evaluation of genetic diversity and linkage disequilibrium
(LD) patterns among the cauliflower diversity set, and (v)
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transcriptional analysis of flowering time genes to examine its
functional relevance during vernalization and curd induction in
cauliflower. Results will give insights in genetic regulation of
temperature-related curd induction in cauliflower and further
contribute to the elucidation of molecular pathways underlying
floral transition. Especially, as interest in the development of
genetically informed models describing flowering is recently
raised (Wilczek et al., 2009), the high potential of combining
GWAS and linkage mapping, additionally underpinned with
gene expression data, is demonstrated as a promising step
forward toward the understanding of genetic traits that
determine natural variation and inform plant breeding.

Materials and Methods

Plant Material and Genotyping
For the experiments, a diversity set consisting of 111 B. oleracea
var. botrytis commercial parent lines was used. The diversity
panel included lines from the temperate zone (n = 99),
comprising early (n = 5), medium (n = 63) and medium-
long (n = 31) time to harvest varieties and accessions from the
subtropical (n = 3) and tropical (n = 9) zones. These materials
display variation in temperature-related curd induction and
harvest time reliability. For genotyping, DNA was extracted from
freeze-dried leaf tissue and hybridized to an Illumina Infinium
iSelect (B. oleracea 20k) array according to the manufacturer’s
protocol. Array hybridization resulted in 14,385 polymorphic
SNPmarkers used for genotyping, covering the whole cauliflower
genome and being equally distributed among all linkage groups
(O1–O9).

Greenhouse Trials and Phenotyping
Two independent greenhouse trials under distinct temperature
regimes were carried out on the whole cauliflower diversity
set, conducted under: (i) semi-controlled conditions, where
plants were cultivated in the greenhouse under natural light
and photoperiod conditions with average daily minimum and
maximum temperature of 15.0 ± 4.0◦C and 30.7 ± 6.3◦C,
respectively (GH-T1) and (ii) controlled temperature conditions
applying high ambient stress temperature, consistently not lower
than 22.5◦C with a photoperiod of 12/12 h day/night (GH-T2).
In GH-T1, plants were sown on 6th May 2013, in GH-T2 on
10th October 2013, in trays filled with modular tray substrate
(Klasmann-Deilmann GmbH; Geeste, Germany) and cultivated
in the greenhouse. After four weeks, plants were potted in 1.7
l pots filled with clay substrate (Klasmann-Deilmann GmbH;
Geeste, Germany). Plants were fertigated frequently including
application of Universol Orange fertilizer (16% total N, 5%
P2O5, 25% K2O; Everris, The Netherlands) with increasing
concentrations from 5 to 26 g x l−1. Plants were treated
with SpinTor (Dow AgroSciences; Indianapolis, IN, USA) and
KARATE ZEON (Syngenta Seeds; Basel, Switzerland) against
cabbage root fly and cabbage whitefly. Temperature was recorded
hourly with a Tinytag Ultra 2 data logger (Gemini Data Loggers,
Ltd; Chichester, UK). Experimental trials were performed with
four plants per accession in a randomized complete block design

with two replications. Plants were phenotyped frequently, at least
three times a week, until visible curd induction occurred. The
onset of visible curd initiation was recorded by the number of
days after sowing (DAS). For accessions which did not induce a
curd at the end of the experiment, the termination date of the
experiments (105 DAS for GH-T1 and 112 DAS for GH-T2) was
assigned, since data elimination of non-curding genotypes under
high temperaturesmight limit GWASpower in terms of detecting
key loci. Accessions with less than three plants per line where
excluded from data analysis.

Statistical Analysis of Phenotype Data
Statistical analysis of phenotypic data was performed by Kruskal-
Wallis test with statistical software SPSS Statistics 22. Statistical
significance was assumed at P < 0.05. One-way analysis of
variance (ANOVA) was carried out with statistical software
R1 and variance components were calculated as functions of
the mean squares estimated from the ANOVA. Broad-sense
heritability (h2) was calculated according to Hill et al. (1998) as
follows:

h2 = σ2G
σ2G + σ2GxE/e + σ2ε/re

where σ2G is the genetic variance, σ2GxE is the genotype x
environment interaction variance, σ2ε is the residual variance and
e and r are the numbers of environments and replications per
environment, respectively.

Population Structure and Kinship
The population structure of the diversity panel was estimated
with STRUCTURE software 2.3.4 (Pritchard et al., 2000a)
applying a model-based Bayesian approach. This approach also
allows for correction in terms of population substructure and
genetic relatedness in order to avoid false-positive associations
in association mapping studies (Pritchard et al., 2000b).
STRUCTURE analysis was performed for K = 1–10 clusters
with five replications for each K-value comprising 100,000 burn-
in period iterations followed by 100,000 Markov Chain Monte
Carlo iterations while using a population admixture ancestry
model. The determination of the most probable number of
subpopulations (K) within the diversity panel was based on the
calculation of �K according to Evanno et al. (2005). Genotypes
were then assigned to the respective subpopulation showing
the highest estimated membership coefficient (Q). Admixture
was assumed if the Q-value for the probability to belong to
one subgroup was < 100%. The cluster analysis was performed
with the neighbor-joining algorithm (Saitou and Nei, 1987)
implemented in TASSEL software 4.0 (Bradbury et al., 2007).

Association Mapping and Linkage
Disequilibrium
Genome wide association (GWA) analysis was performed with
TASSEL 4.0 (Bradbury et al., 2007) by applying a mixed linear
model (MLM), accounting for population structure previously
estimated with STRUCTURE as a fixed effect matrix (Q-
matrix) and kinship (K-matrix), calculated with TASSEL, as

1http://www.r-project.org
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a random effect matrix accounting for genetic relatedness
to reduce false-positive results. For performing association
analysis, SNPs were filtered according to minor allele frequency
(MAF) and call rate, excluding those with a MAF < 0.05
and a minimum call rate < 0.9, finally resulting in 4,758
out of 14,385 SNPs considered in GWA mapping. Significant
marker association with the phenotypic trait was assumed for
markers exhibiting a P-value < 0.01. Candidate gene search
was performed by using the publicly available B. oleracea var.
capitata genome database (Oil Crops Research Institute2; Yu
et al., 2013) and the Arabidopsis Information Resource (TAIR3).
LD as represented by squared allele frequency correlations (r2),
between each pair of marker loci (Pritchard and Przeworski,
2001) was estimated with TASSEL 4.0 (Bradbury et al., 2007).
Only alleles with a frequency >0.05 were considered for the
calculation of LD because r2 exhibits large variances if rare
alleles are considered (Wen et al., 2009). Pairs of loci were
considered to be in significant LD if r2 values were significant at
P < 0.05. The LD was estimated separately for loci on the same
chromosome (intrachromosomal marker pairs) and for unlinked
loci (interchromosomal marker pairs). LD decay was estimated
by using second-degree locally weighted polynomial regression
(LOESS; Cleveland, 1979), obtained with the statistical software
R1, of intrachromosomal r2 values plotted against physical
distance. LD between interchromosomal markers (unlinked) was
estimated to determine critical r2 value, as a population-specific
threshold above which LD is assumed to be caused by genetic
linkage (Breseghello and Sorrells, 2006). Critical r2 results from
the 95% percentile of the distribution of root-transformed r2
estimates. The determination of the physical distance at which the
LOESS curve intercepts the critical r2 defines the LD decay rate.
In addition, SNPs significantly associated with the trait obtained
from GWAS were analyzed for local LD patterns. Physically
neighbored SNPs exhibiting genetic linkage were clustered in
order to correct for total number of significant marker-trait
associations. The LD plot was constructed with Haploview
software 4.2 (Barrett et al., 2005).

RNA Isolation, Reverse Transcription, and
qRT-PCR Analysis
For qRT-PCR analysis, fresh leaf samples were collected at seven
time points, starting after germination until the onset of visible
curd induction. In detail, sampling dates were 22, 36, 43, 57, 64,
71, 78 DAS. At each time point, samples of ∼100 mg of fresh
tissue of the lateral tip of the second fully developed leaf were
harvested, immediately frozen in liquid nitrogen and stored at
−80◦C. Standardized sampling conditions were applied in order
to avoid circadian or diurnal variation in gene expression.

Total RNAwas isolated from leaf tissue using the NucleoSpin R©

RNA plant isolation kit (Macherey-Nagel, Düren, Germany)
according to the manufacturer’s instruction. In addition to the
standard protocol, a second DNA digestion step with DNase
I (Thermo Scientific, Braunschweig, Germany) was added to
completely remove genomic DNA. Absence of genomic DNA

2www.ocri-genomics.org/bolbase
3https://www.arabidopsis.org/

contamination was confirmed by PCR analysis using the isolated
RNA as a template as suggested by Udvardi et al. (2008).
RNA integrity was assessed by visualizing 28S and 18S rRNA
bands under UV light in a denaturing agarose gel stained with
ethidium bromide. RNA concentration was measured using a
Nanodrop ND-1000 spectrophotometer4 . Complementary DNA
(cDNA) was synthesized from 2.5 μg of total leaf RNA
using the RevertAid First Strand cDNA Synthesis Kit (Thermo
Scientific, Braunschweig, Germany) following the manufacturer’s
protocol. qRT-PCR of temperature-related flowering time genes
BoFLC2 and BoVRN2 was performed using the CFX96 Real
Time PCR Detection System and SYBR fluorescence (Bio-Rad
Laboratories, München, Germany) for detection. To normalize
gene expression, the constitutively expressed 18S was selected
as internal reference (Pfaffl, 2001). Gene-specific primers
(Supplementary Table S1) were designed using Primer 3 software5
based on the published genome sequence of B. oleracea var.
capitata (Oil Crops Research Institute2; Yu et al., 2013) and
the B. oleracea var. italica Short Read Archive6 (SRA accession
SRX032205, BioSample ID SAMN001138238). Primers were
synthesized by Biolegio (Nijmegen, TheNetherlands). To exclude
cross-binding to other targets than to the genes of interest,
in silico designed primer sequences were again subjected to
BLAST analysis in the B. oleracea var. capitata genome database
and cross-validated with the B. oleracea var. italica Short Read
Archive. Additionally, high resolution melting curve analysis was
performed after each qPCR assay to verify that qPCR assays
have amplified single, specific products and thus to ensure gene-
specificity of the primers. Melt curve was generated within
the range of 65–95◦C in increments of 0.5◦C per 0.05 s. Gel
electrophoresis further was conducted to reconfirm that a single
amplicon was amplified.

The qRT-PCR reaction mixtures were prepared according to
the protocol of MaximaTM SYBR Green qPCR Master Mix kit
(Thermo Scientific, Braunschweig, Germany). Three technical
replicates of qPCR assay were performed for each gene, while
comprising three biological replicates, respectively. The data were
analyzed using the Bio-Rad CFX Manager software (Bio-Rad
Laboratories, München, Germany). Relative gene expression was
calculated according to the ��CT method. The average CT of
the reference control gene was used to normalize gene expression
data; CT values of candidate genes were subtracted by CT of the
reference gene (�CT). To calculate ��CT, �CT of interest was
subtracted by the�CT of control. These results were transformed
to log2 scale to obtain the fold-change values.

Results

Phenotypic Variation in Temperature-Related
Curd Induction in Cauliflower
Phenotypic data is summarized in Table 1. Lines which did not
induce a curd at the end of the experiment or lines with less

4www.nanodrop.com/
5www.ncbi.nlm.nih.gov/tools/primer-blast
6www.ncbi.nlm.nih.gov/sra
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TABLE 1 | Summary statistics of variation of curd induction as measured
in days after sowing (DAS) under natural temperature regime (GH-T1) and
high ambient temperature (GH-T2) in the greenhouse including
coefficients of variance and heritability (∗∗∗P < 0.001).

GH-T1 GH-T2

Curd induction (DAS)

Mean ± SD 61.9 ± 9.7 079.7 ± 15.5

Minimum ± SD 32.0 ± 0.0 040.3 ± 2.80

Maximum ± SD 84.0 ± 0.0 106.3 ± 2.90

Variance components

σ2
G 879.4∗∗∗

σ2
GxE 62.6∗∗∗

σ2
ε 126.3

h2 0.93

σ2
G Genotypic variance

σ2
GxE Genotype x environment variance

σ2
ε Error variance

h2 Heritability
SD Standard deviation

than three plants were excluded, resulting in 107 lines from
greenhouse trial GH-T1 and 88 lines from GH-T2 remained for
final data analysis. With regard to distinct temperature regimes,
mean time to curd induction among all accessions of the diversity
set was lower in GH-T1 with 61.9 ± 9.7 DAS compared to
79.7 ± 15.5 DAS in GH-T2, performed under high ambient
temperature of constantly not lower than 22.5◦C. Minimum and
maximum time to curd induction ranged from 32.0 to 84.0 DAS
in GH-T1 compared to 40.3 to 106.3 DAS in GH-T2. The latter
generally showed higher phenotypic variation in time to curd
induction (Figure 1). Broad-sense heritability for time to curd
induction was high as estimated with h2 = 0.93.

Classifying the plant material into tropical, subtropical and
early, medium, and medium-long harvest time lines from
the temperate zone, the mean time to curd induction was
higher under the high ambient temperatures of GH-T2 for all
groups (Figure 2). In particular, mean time to curd induction
was shortest for those accessions selected in the tropical and
subtropical climate with 45.9 ± 7.2 and 47.7 ± 8.6 DAS for GH-
T1 and 57.4 ± 10.9 and 62.3 ± 10.1 for GH-T2, respectively.
Mean time to curd induction of lines from the temperate zone
was generally higher.

Population Structure and Genetic Relatedness
Analysis of population structure by admixture model-based
simulations, determines K = 3 as the most likely number of
subpopulations calculated according to Evanno et al. (2005;
Supplementary Figure S1). STRUCTURE analysis assigned the
accessions of the diversity set to three main subpopulations,
denoted as G1, G2 and G3 comprising 61, 38 and 12
accessions, respectively (Figure 3). Thereby, a distinct separation
of accessions from the temperate zone (clustering in G1 and
G2) from those of the tropical/subtropical zone (G3) could
be observed. In detail, G1 (n = 61) was composed of early
(n = 5), medium (n = 27) and medium-long (n = 29) term
varieties from the temperate zone, whereas G2 (n = 38) mainly

FIGURE 1 | Frequency of days after sowing (DAS) to visible curd
induction among the cauliflower diversity set under semi-controlled
temperature conditions (GH-T1) and under high ambient temperatures
of 22.5◦C (GH-T2).

comprises medium varieties from the temperate zone (n = 36)
and twomedium-long term accessions. G3 (n= 12) includes only
tropical and subtropical lines. A total of 42 accessions (37.8%)
showed a clear relationship each with one single cluster based
on their inferred ancestry value of 100%, while the remaining
69 accessions (62.2%) were categorized as admixtures. Neighbor-
joining analysis based on Nei’s genetic distance was performed
to display the genetic relationships among the 111 cauliflower
accessions (Figure 4). Neighbor-joining analysis showed similar
classification into three subpopulations widely in consistency
with STRUCTURE analysis. The neighbor-joining tree consists
of three main branches. Two of the main branches nearly exactly
display the subpopulations G1 and G2 of the STRUCTURE
analysis. The third main cluster consists of two distinct branches,
one of them comprises all of the G3 genotypes, the other one
consists of five genotypes, belonging to G1 andG2.When looking
at the estimatedmembership coefficients (Q) for those genotypes,
it becomes obvious, that they display a relatively high degree of
admixture.

Whole Genome Patterns of Linkage
Disequilibrium (LD)
Global extent of LD decay as well as local LD for each
of the linkage groups O1–O9 was inferred by pairwise
comparison of LD estimates (r2) of interchromosomal (unlinked)
and intrachromosomal (linked) marker pairs (Figure 5).
Average global LD was estimated at r2 = 0.06 with 20.71%
interchromosomal marker pairs in significant LD (P < 0.05).
Average intrachromosomal LD for significant marker pairs values
at r2 = 0.23 (P < 0.05), while ranging from 0.18 to 0.28 among
the linkage groups. LD estimates were significant for 38.40%
intrachromosomal marker pairs (P < 0.05), with 2.87% marker
pairs that were completely linked (r2 = 1). However, r2 decreased
as the physical distance between loci increased, indicating that
the probability of LD was low between distant marker pairs.
Estimation of LD between interchromosomal markers (unlinked)
was inferred to determine critical r2 value, as a population-
specific threshold above which LD is assumed to be caused by
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FIGURE 2 | Phenotypic variation of curd induction (measured in DAS) among the cauliflower diversity set according to the classification into distinct
groups consisting of early, medium, medium-long, subtropical and tropical accessions under a natural temperature regime (GH-T1) and high
ambient temperatures of 22.5◦C (GH-T2; mean ± SD, P < 0.05, Kruskal–Wallis test; similar letters indicate no significant statistical differences).

FIGURE 3 | Bayesian analysis of population structure in the cauliflower diversity panel assigning the accessions to three subpopulations. Each
genotype is represented by a vertical bar, which is partitioned into K colored segments that represent the individual’s estimated membership coefficient (Q) to the K
clusters (STRUCTURE 2.3.4).

genetic linkage (Breseghello and Sorrells, 2006). Critical r2 was
estimated at r2 = 0.33. The intersection point of critical r2
with the non-linear regression LOESS curve was at ∼400 kb,
describing LD decay, i.e., maximum physical marker distance
for genetically linked markers. While considering critical LD at
r2 = 0.33, 20.5% marker pairs were in LD since their r2 values
were higher than 0.33.

GWA Mapping on Temperature-Related Floral
Induction
Association mapping revealed a total of 44 significant marker-
trait associations (P < 0.01) for curd induction under

both temperature regimes. Chromosomal position, P-level
of significance and allele effects for all detected markers
significantly associated with temperature-related curd induction
are summarized in Supplementary Table S2. For GH-T1, a total
number of 37 significant SNPs were detected (P < 0.01) on
chromosomes O1 (n = 5), O2 (n = 2), O3 (n = 2), O4 (n = 17),
O6 (n = 3), O8 (n = 4), and O9 (n = 4). For GH-T2, 7 significant
markers on O3 (n = 1) and O8 (n = 6) associated with days to
curd induction were detected. Genetic linkage between physically
neighbored SNPs was assumed at r2 = 0.33 (critical r2 for genetic
linkage, based on LD estimation in the cauliflower diversity set).
By taking genetic linkage between intrachromosomal markers
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FIGURE 4 | Neighbor-joining dendrogram showing genetic relatedness among the 111 cauliflower accessions of the diversity panel based on 4,758
SNP markers. Accessions are color-coded according to the populations’ substructure assignment to cluster G1, G2, and G3 based on STRUTURE results (see
Figure 3).

into account, it finally resulted in an adjusted number of 16
significant QTL regions for curd induction in GH-T1 (P < 0.01),
localized on chromosomes O1 (n = 1), O2 (n = 1), O3 (n = 2),
O4 (n = 4), O6 (n = 2), O8 (n = 3), and O9 (n = 3), and two
QTL one each on O3 and O8 for GH-T2 (Figure 6). Among
them, QTL positions on O3 and O8 in GH-T1 were not similar
or overlapping with those detected in GH-T2. Local LD analysis
for all detected significantly associated markers showed that
suites of markers on O1, O2, O4, O6, O8, and O9 are in high
intrachromosomal LD and could be assigned to a total of seven

haplotype blocks (Figure 7) spanning marker intervals from 1 to
346 kb. In detail, haplotype blocks could be assigned to markers
on O1 (n = 1; 1 kb), O2 (n = 1; 11 kb), O4 (n = 2; 190 and
10 kb), O6 (n = 1; 39 kb), O8 (n = 1; 346 kb), O9 (n = 1;
1 kb). In addition, LD analysis indicates genetic linkage among
two significant QTL for GH-T1 detected on chromosomes O4
and O8 with r2 = 0.7. In contrast, detected QTL on O3 and O8
in GH-T2 were not in LD and represent two individual QTL.
A summary of the most promising QTL regions and putative
candidate genes is shown in Table 2. A total of 9 QTL, detected
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FIGURE 5 | Linkage disequilibrium (LD) represented as r2 of all intrachromosomal marker pairs plotted against physical distance among all linkage
groups (O1–O9). The horizontal line (red) marks critical r2 (r2 = 0.33) as threshold beyond which LD is assumed to result from genetic linkage. The intersection point
with the non-linear regression LOESS curve (green), which determines LD decay, marks the physical distance as threshold for the maximum distance between
genetically linked markers.

in GH-T1 and GH-T2, could be found in genomic regions
close to candidate genes involved in flowering regulation and
vernalization response, located on chromosomes O1, O2, O3, O4,
and O8. Among them, QTL for GH-T1 were found to be co-
localized with, e.g., BoFLC2 on O3, BoVRN1 on O1 and BoFLD
on O8. The QTL for GH-T2 on chromosome O3 was found in
the genomic region close to BoVIN3.

Transcriptional Profiling of Flowering Time
Genes
Quantitative real time PCR was carried out to analyze relative
expression patterns of flowering time genes FLOWERING
LOCUS C 2 (BoFLC2) and VERNALIZATION 2 (BoVRN2) and
validate its functional relevance in temperature-related curd
induction in cauliflower. Transcriptional profiling was conducted
in four genotypes (A–D) comprising medium (A), medium-long
(B) and early (C) variety from temperate zone and tropical
climate (D) with diverging flowering phenotype with mean time
to curd induction of 59.3 ± 4.0, 104.5 ± 3.5, 78.5 ± 5.9,
67.5 ± 5.4 DAS under high ambient temperature regime (GH-
T2), respectively. These genotypes include both parental lines
of the DH population on which previous QTL study has
been conducted (unpublished data), referred to as genotype A
(reliable parent) and genotype B (unreliable parent). Relative
gene expression was analyzed in regard to temporal variation
under high ambient temperature (GH-T2) at seven different time
points ranging from 22, 36, 43, 57, 64, 71, 78 DAS (Figure 8).
Genotype A (reliable parent) with the shortest time to curd
induction under high ambient temperature (GH-T2) exhibits
increased expression levels of both, BoFLC2 and BoVRN2 until
the onset of visible curd induction (59.3 DAS), while BoFLC2
transcript level was 9.88- to 6.5-fold higher in comparison to
the control time point (22 DAS). In genotype C (early cultivar),
similar expression patterns of BoFLC2 and BoVRN2, possessing
higher transcript levels until the onset of curd induction, were

observed. After visible curd induction has occurred, BoFLC2 and
BoVRN2 expression in genotype A and C decreased to a level
similar to those of the control time point. In contrast, in genotype
B (unreliable parent with the longest time to curd induction
under high ambient temperature), relative gene expression of
BoFLC2 and BoVRN2 was consistently reduced, while showing
highly diminished values ranging between 0.01 and 0.59-fold
expression compared to the control time point. In genotype D
no general expression trends among BoFLC2 and BoVRN2 could
be demonstrated.

Discussion

Phenotypic analysis on curd induction under distinct
temperature regimes in controlled greenhouse experiments
displayed considerable variation in curd induction among the
cauliflower diversity set. Mean time to visible curd induction
was shorter under natural temperature regime (GH-T1) than
under high ambient stress temperature (GH-T2). Similarly,
time range for curding was smaller in GH-T1 when compared
to GH-T2, consequently showing higher phenotypic variation
and delayed curd induction under high ambient temperatures,
which is consistent with available vernalization models, generally
describing delayed vernalization with higher temperature
(Wiebe, 1972a,b; Krug et al., 2002). Delay in curd induction
under high ambient temperature (GH-T2) was lowest for
varieties from tropical and subtropical climate, which indicates
more tolerance to high temperature and/or less obligate
vernalization requirements in contrast to those varieties
originated from the temperate zone. The difference might be
due to adaptation to distinct geographic habitats following
selective breeding. A generally observed relation between the
onset of curd induction and classification into groups, i.e., earlier
curd induction for tropical and subtropical lines under high
temperature than for varieties from the temperate zone, is in

Frontiers in Plant Science | www.frontiersin.org 8 September 2015 | Volume 6 | Article 720

http://www.frontiersin.org/Plant_Science/
http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Science/archive


Matschegewski et al. Dissecting curd induction in cauliflower

FIGURE 6 | Physical map and chromosomal position of significant QTL
(P < 0.01) associated with temperature-related curd induction in
cauliflower under natural temperature regime (GH-T1) and under high
ambient temperatures of 22.5◦C (GH-T2), denoted as FT-T1 (dark red)
and FT-T2 (red), respectively. Significant QTL are located on chromosomes
O1, O2, O3, O4, O6, O8, and O9 (left: physical position in bp). Two significant
FT-T1 QTL on O4 and O8, marked with an asterisk (FT-T1∗ ), were genetically
linked (r2 = 0.7).

accordance to published phenology models describing cultivar-
specific vernalization rates in dependence to temperature,
while proposing a more broad range of vernalization-inductive
temperature as well as a higher maximum vernalization rate at
temperature optima for varieties derived from warmer climates
than for those from the temperate zone (Wiebe, 1972a,b;
Krug et al., 2002). High heritability (0.93) was estimated for
temperature-related curd induction in the cauliflower diversity
set, which is consistent with generally high heritability estimates
for flowering in several crops, such as 0.7–0.9 in rapeseed (Long
et al., 2007; Chaghakaboodi et al., 2012), 0.9 in rice (Seyoum
et al., 2012; Ogunbayo et al., 2014) and 0.9 in barley (Maurer
et al., 2015).

The observed variation in curd induction among the
cauliflower diversity set regarding prior classification according
to distinct geographical habitats corresponds well with the
population structure estimated with STRUCTURE analysis.
Tropical and subtropical accessions could be assigned to
one cluster that clearly distinguished from accessions from
the temperate zone, which clustered in two distinct groups.
These results reconfirm that variation in flowering might
be primarily based on genetic differences arising from
artificial selection in different geographical areas or distinct
environmental niches. The neighbor-joining dendrogram

confirmed the STRUCTURE results by revealing similar clusters.
Additionally, neighbor-joining analysis showed high genetic
distance for tropical/subtropical accessions to accessions from
the temperate zone, presenting less genetic relatedness between
those accessions that might explain the high phenotypic variation
in curd induction among those groups. For accessions from
the temperate zone, a closer genetic relationship was observed,
although two subgroups could be classified. However, a relatively
large number of accessions were categorized as admixtures, with
different proportion of mixed ancestry among the cauliflower
population.

To dissect genetic variation in temperature-related curd
induction, GWAS was conducted on the cauliflower diversity set.
GWA analysis identified 16 QTL for temperature-related curding
under natural temperature regime (GH-T1), whereby, under
high ambient temperatures (GH-T2), only two loci significantly
associated with the trait could be detected. In particular,
genomic loci conferring temperature-regulated floral transition
in cauliflower were mapped on B. oleracea chromosomes O1,
O2, O3, O4, O6, O8, and O9 under temperature regime GH-
T1 and 2 QTL one each on O3 and O8 under high ambient
temperature (GH-T2). Thereby, QTL position on chromosomes
O3 and O8 was not consistent among both temperature regimes
suggesting that the QTL, solely expressed in GH-T2, might be
specific for floral transition in terms of high ambient stress
temperature. The results show, that under natural temperature
conditions (GH-T1), curding and floral induction is controlled
by several individual QTL, all of which might contribute with
variable allelic effect. That is consistent with the concept that
flowering is a multigenic trait, which is controlled by multiple
QTL often with small genetic effects (Ferreira et al., 1995; Long
et al., 2007; Zou et al., 2012; Raman et al., 2013). Previous
QTL studies carried out on flowering time in B. oleracea give
evidence for all of the detected QTL positions in this study. QTL
analysis on a segregating population of F1-derived DH lines of
B. oleracea var. alboglabra x B. oleracea var. italica identified
QTL for temperature-regulated flowering on chromosomes O2,
O3, O4, O5, O6, and O9 (Uptmoor et al., 2008). In a cross
of cauliflower and Brussels sprout, QTL for flowering were
detected on chromosomes O7 and O8, the latter being reported
to account for maintenance of vernalization (Sebastian et al.,
2002). Axelsson et al. (2001) mapped FLC homologs on O3 and
O9 and identified flowering time QTL near this candidate gene.
These results are consistent with the present study, representing,
that many flowering time genes or temperature-associated genes
were localized within significant marker intervals, suggesting
that these genes may account for genetic variation in floral
induction of cauliflower. However, these genes were localized
within marker intervals of a few (1 kb) to several bp (346 kb).
Consequently, high-resolution mapping of the identified QTL
regions should be applied to reveal candidate genes putatively
accounting for flowering time variation. But, as candidate gene
search revealed, evidence is given for several flowering time
genes, among them FLC and VRN as putative candidates to be
involved in the regulation of floral transition and vernalization
response in cauliflower, since some of the detected QTL could be
found in genomic regions harboring those flowering genes.

Frontiers in Plant Science | www.frontiersin.org 9 September 2015 | Volume 6 | Article 720

http://www.frontiersin.org/Plant_Science/
http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Science/archive


Matschegewski et al. Dissecting curd induction in cauliflower

FIGURE 7 | Linkage disequilibrium plot showing LD patterns among significant SNPs for temperature-related curd induction. The LD between the
SNPs is measured as r2 and shown (×100) in the square at the intersection of the diagonals from each SNP. r2 = 0 is shown in white, 0 < r2 < 1 is shown in gray
and r2 = 1 is shown in black. The analysis track at the top shows the SNPs according to their chromosomal location; while separating linkage groups by O1-, O2-,
O3-, O4-, O6-, O8-, and O9- prefix, respectively. Seven haplotype blocks (outlined in bold black line) indicate markers that are in high LD.

TABLE 2 | Summary of the most promising QTL and putative candidate genes involved in the regulation of flowering and vernalization response, located
within detected QTL regions.

Chr. QTL Position (Mb) Bolbase# Start position
(Mb)

Ortholog Arabidopsis
thaliana

Gene name

1 FT-T1 30.35 Bol030990 30.98 AT3G18990 VRN1, VERNALIZATION 1

2 FT-T1 26.37–26.38 Bol016519 24.29 AT4G02560 LD, LUMINIDEPENDENS

3 FT-T1 1.96 Bol008758 1.89 AT5G10140 FLC, FLOWERING LOCUS C

Bol034237 2.25 AT5G13480 FY

FT-T2 6.66 Bol026036 5.91 AT5G57380 VIN3, VERNALIZATION INSENSITIVE 3

FT-T1 54.11 Bol017452 54.09 AT4G31610 REM1/-34, REPRODUCTIVE MERISTEM
1/-34

Bol013020 54.96 AT4G29830 VIP3, VERNALIZATION INDEPENDENCE 3

4 FT-T1 14.65–14.85 Bol038616 13.54 AT5G17690 TFL2, TERMINAL FLOWER 2

Bol008371 16.07 AT2G28550 RAP2.7, RELATED TO AP2.7

FT-T1 34.49–34.5 Bol014112 34.24 AT5G16320 FRL1, FRIGIDA LIKE 1

Bol037895 35.54 AT2G33810 SPL3, SQUAMOSA PROMOTER BINDING
PROTEIN-LIKE 3

8 FT-T1 3.14 Bol011554 2.47 AT3G10390 FLD, FLOWERING LOCUS D

FT-T1 10.88–11.10 Bol027103 12.13 AT1G30970 SUF4, SUPPRESSOR OF FRIGIDA 4

The extent of LD, describing the non-random association of
alleles between two loci in a population (Flint-Garcia et al., 2003)
is affected mainly by factors such as genetic drift, population
admixture, and selection as well as mating system, population
size (Flint-Garcia et al., 2003; Gaut and Long, 2003; Yu and

Buckler, 2006) and marker system (Stich et al., 2006). The
analysis of LD patterns among the cauliflower diversity set
showed that global LD is moderate as indicated by an average of
r2 = 0.06, while 20.71% of all marker pairs showing significant
LD estimates (P < 0.05). In other crops, for instance, global
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FIGURE 8 | Time-dependent relative changes in transcript levels of BoFLC2 and BoVRN2 during curd induction in medium (A), medium-long (B), early
(C) and cauliflower accession from the temperate zone and the tropics (D). Values represent mean relative changes in gene expression normalized to the
control time point (22 DAS).

LD has been reported with an average of r2 = 0.019 to 0.029
in wheat populations (Neumann et al., 2011; Laidò et al.,
2014; self-pollinating) or r2 = 0.027 in rapeseed (Ecke et al.,
2010; predominantly self-pollinating) and r2 = 0.07 in maize
(cross-pollinating; Hoyle et al., 2007; Abrol, 2012). Cauliflower
is predominantly cross-pollinating, while expressing variability
in self-incompatability (Hadj-Arab et al., 2010). The observed
average LD extent in cauliflower is comparable to the values
of maize. As it holds true for maize, nearly all commercial
cauliflower cultivars are hybrids and parental lines are strongly
homozygous inbreds or doubled-haploids (DHs), which may
result in the slightly higher global LD compared to self-
pollinating species like wheat. Generally, higher LDs are assumed
for self-pollinating species than for cross-pollinating species.
However, since LD is a population-based phenomenon, the
higher LD extent within the cauliflower population might result
from reduced genetic diversity due to the population bottleneck
in breeding populations compared to those in landraces or
crop wild relatives and in particular might also be based on
the potential effect of assortative mating based on flowering
time, since crosses are made between plants of similar flowering
time, while the variation in flowering time within cauliflower
is very large. Lines with long and very long maturing time
(100–280 DAS) were, for instance, excluded in this study. In
addition, differences in population size might also lead to

variation in LD extent, since small population sizes often result
in an overestimation of background LD (Bouchet et al., 2012).
Comparison of mean r2 of linked and unlinked markers with
significant LD estimates (P < 0.05) with average values of
r2 = 0.23 and r2 = 0.06, clearly shows that the major cause
for LD in the cauliflower genome is intrachromosomal linkage.
Estimation of LD decay, i.e., the rate of return to random
association between two given alleles, revealed LD decay in the
cauliflower population is relatively slow for cross-pollinating
cultivars but comparable to crops with a similar breeding system.
Studies in maize reported LD decay ranges from less than
1 kb (Tenaillon et al., 2001) in landraces to >100 kb in elite
(more closely related) breeding lines (Ching et al., 2002). Since
LD decay defines resolution power of association mapping,
cauliflower population has to be mapped with an average of
one informative marker per 400 kb to ensure sufficient marker
density for performing unbiased GWAS. In cases of low LD
extent, a candidate gene approach might be preferred in order to
perform association studies because otherwise marker quantity
has to be extensively increased to cover the variation in the entire
genome.

Gene expression analysis of flowering time genes BoFLC2 and
BoVRN2 was carried out to evaluate their functional relevance
in temperature-regulated curd induction in cauliflower. Results
showed increased transcript level of both genes until the onset
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of curd induction in the medium accession (reliable parent)
as well as in the early accession, both exhibiting short time
to curding. In contrast, in medium-long accession (unreliable
parent), transcript levels of BoFLC2 and BoVRN2 were generally
lower. Thus, results indicate a positive relation between BoVRN2
expression and reliability in curd induction under high ambient
temperature. That could be attributed to higher capacity of
suppressing floral inhibitors like BoFLC2; although BoFLC2
expression levels were generally high. FLC is the major repressor
of flowering by inhibiting transcription of downstream floral
integrator genes, such as FT and AP (Schmitz and Amasino,
2007). In contrast, expression of VRN2 accelerates flowering by
inhibiting FLC und thus releases meristem identity genes from
FLC repression (Alexandre and Henning, 2008; Deng et al.,
2011). In the present study, no consistent reduction in BoFLC2
transcript level over time could be observed, which gives evidence
that different alleles of the various BoFLC paralogs may exert
different effects on flowering time and/or BoFLC-independent
signaling pathways regulating floral transition might exist. In
B. oleracea four different homologs of BoFLC had been reported
(Okazaki et al., 2007). Recently, Ridge et al. (2014) identified a
functional allele of BoFLC2, along with a mutated boflc2 allele
(predicted with a loss-of-function) that largely accounts for
flowering time variation in cauliflower. BoFLC2 transcription
was reduced with vernalization, inversely with BoFT-expression,
which is a floral integrator gene. However, no significant
contribution of other homologs than BoFLC2 to flowering time
could be proofed yet. Hypothesis that other genes than BoFLC
might be responsible for flowering time variation in cauliflower
could be strengthened by previous QTL study on flowering time
variability in a B. oleracea DH population primarily based on
differences in vernalization response (Uptmoor et al., 2012),
although, no co-segregation of BoFLC locus with flowering
time could be observed. Irwin et al. (2012) suggested other
candidate genes like a FRIGIDA ortholog to be involved in
temperature-driven floral transition. These findings suggest that
FLC-independent vernalization pathways, like already reported
in Arabidopsis (Caicedo et al., 2004; Alexandre and Henning,
2008) might exist and might give explanation that in the present

study no consistent BoFLC-transcription patterns, generally
correlating with variation in curd induction among different
genotypes, could be detected.

Conclusion

The present study indicates high phenotypic variation in
temperature-related curd induction among the cauliflower
diversity set. GWA mapping revealed significant loci associated
with floral transition with respect to different temperature
regimes, which possesses basis for selection of genomic loci
useful for marker-assisted breeding. Thereby, the investigation
of global and local LD patterns defined resolution power of
association mapping. Promising QTL regions and candidate
genes putatively being involved in vernalization and floral
transition were identified and further candidate gene approaches
can help to dissect allelic diversity and thus, to elucidate
genetic variation in temperature response and floral transition
in cauliflower. Understanding of vernalization-induced flowering
would potentially accelerate predicting and managing harvest
traits in cauliflower production and enforce breeders to integrate
marker-assisted strategies that benefit the development of elite
cauliflower cultivars adapted to a wide geographical range of
cultivation.
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