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Despite their sessile lifestyle, seed plants are able to utilize differential growth rates to
move their organs in response to their environment. Asymmetrical growth is the cause
for the formation and maintenance of the apical hook—a structure of dicotyledonous
plants shaped by the bended hypocotyl that eases the penetration through the covering
soil. As predicted by the Cholodny–Went theory, the cause for differential growth is the
unequal distribution of the phytohormone auxin. The PIN-FORMED proteins transport
auxin from cell-to-cell and control the distribution of auxin in the plant. Their localization
and activity are regulated by two subfamilies of AGCVIII protein kinases: the D6 PROTEIN
KINASEs as well as PINOID and its two closely related WAG kinases. This mini-review
focuses on the regulatory mechanism of these AGCVIII kinases as well as their role in
apical hook development of Arabidopsis thaliana.
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Introduction

Despite their sessile life-style, land plants are capable of executing a broad range of movements,
including extremely fast actions based on the release of stored elastic energy (Edwards et al.,
2005) and movements based on the differential growth of plant organs (Gilroy, 2008). In
the latter case, one side of an organ elongates faster than the opposing side, leading to
organ bending. One example for such a plant movement is the apical hook formation. In
etiolated dicotyledonous seedlings, the reduced growth of one side of the hypocotyl leads to
the formation of a bended structure, which eases the shoot’s penetration through the covering
soil and simultaneously protects its meristem, which will give rise to all postembryonic above-
ground organs. The importance of the apical hook for soil penetration was demonstrated
by analyses of Arabidopsis mutants exhibiting defects in hook development (Harpham et al.,
1991).

As predicted by the broadly accepted Cholodny–Went theory, the differential elongation inducing
plant movements is dependent on the phytohormone auxin (e.g., indole-3-acetic acid) and its
unequal distribution (Cholodny, 1927; Went, 1928). Auxin movement is facilitated by members of
three different auxin transporter families (Zazímalová et al., 2010). One of these families is formed
by the PIN-FORMED (PIN) auxin efflux transporters (Paponov et al., 2005). Auxin streams and
asymmetric growth are regulated by AGCVIII kinases that are able to phosphorylate PINs (Barbosa
and Schwechheimer, 2014). The present mini-review summarizes recent research in Arabidopsis
thaliana pointing out the regulatory mechanisms of two AGCVIII sub-families and the current
knowledge of their involvement in the apical hook development.
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Auxin and its Transport by PINs

The phytohormone auxin is involved in virtually all processes
of plant growth and development of seed plants. It is mainly
synthesized in young leaves as well as the shoot and root apices
(Ljung et al., 2001, 2005). The following model describes how the
perceived auxin is transferred into transcriptional responses: The
soluble receptor TRANSPORT INHIBITOR RESPONSE 1 (TIR1)
and its paralogous AUXIN SIGNALING F-BOX (AFB) proteins
bind in combination with AUXIN/INDOLE-3-ACETIC ACIDs
(Aux/IAAs) auxin and subsequently initiate Aux/IAAdegradation
by the ubiquitin–proteasome system. Since Aux/IAAs inhibit
AUXIN RESPONSE FACTORs (ARFs) by forming heterodimers,
their degradation releases the ARFs and allows them to initiate or
repress transcription (Mockaitis and Estelle, 2008).

Depending on tissue sensitivity and concentration, auxin can
stimulate or inhibit cell growth (Thimann, 1939). This might
be explained by the finding that different TIR1/AFB-Aux/IAA
combinations have varying auxin affinities. Therefore, growth
inhibiting Aux/IAAs might be less stable than growth promoting
family members (Calderón Villalobos et al., 2012).

Auxin transport is essential for forming local auxin gradients,
maxima and minima and is the consequence of the activity
of diverse transporter systems. In the weakly acidic apoplast,
a portion of indole-3-acetic acid is protonated which in
consequence can pass the apolar cell membrane by diffusion.
Nevertheless, the larger proportion of the extracellular indole-3-
acetic acid occurs as anion and its import is facilitated by AUXIN
RESISTANT1 (AUX1) and LIKE AUXIN RESISTANT1 (LAX)
proteins (Marchant et al., 1999; Kramer and Bennett, 2006; Péret
et al., 2012). Inside the cells, indole-3-acetic acid is deprotonated
and its export is mediated by PIN proteins. PIN1, 2, 3, 4, and 7
are present in the cell membrane and are involved in cell-to-cell
auxin transport. The N- and C-termini of PINs consist of clusters
of transmembrane domains that are divided by a central soluble
domain. This hydrophilic loop is phosphorylated by AGCVIII
kinases regulating PIN localization and activity (Vanneste and
Friml, 2009; Zazímalová et al., 2010; Barbosa and Schwechheimer,
2014).

AGCVIII Kinases Phosphorylate PINs

AGC kinases are named after the cAMP-dependent protein
kinase A (PKA), cGMP-dependent protein kinase G (PKG)
and phospholipid-dependent protein kinase C (PKC) described
in animals and yeasts. The genome of Arabidopsis encodes
for 37 AGC kinases and 23 of them form the plant specific
AGCVIII group distinguished from other AGC kinases by a
varying insertion in the kinase domain and a conserved and
functional mutation in the Mg2+ chelating motif necessary for
ATP binding (Bögre et al., 2003; Galván-Ampudia and Offringa,
2007; Rademacher and Offringa, 2012).

Two groups of AGCVIII kinases were shown to phosphorylate
PIN proteins: PINOID (PID) and the two closely related kinases
WAG1 and WAG2 are members of the PID sub-family, while
the functionally redundant D6 PROTEIN KINASEs (D6PK
and D6 PROTEIN KINASE LIKE1 to 3) form the other group

(Michniewicz et al., 2007; Zourelidou et al., 2009; Dhonukshe
et al., 2010). The involvement of both sub-families in auxin-
dependent processes was suggested by knock-out mutations
that cause developmental defects. For example, the shoot
apical meristem of pid mutants is impaired in the formation of
reproductive organs and therefore give rise to naked pin-shaped
shoot apices. Defects in embryogenesis can be observed in
mutants of both families, while impaired lateral root formation
is characteristic for knock-outs of D6PK sub-family members.
All of these phenotypic characteristics can also be observed in
pin mutants, pointing to a functional relationship between PIN
facilitated auxin transport and AGCVIII kinases (Okada et al.,
1991; Bennett et al., 1995; Benková et al., 2003; Zourelidou et al.,
2009).

PIN Polarity is Regulated by PID and WAG
Kinases

Depending on tissue and cell type, PIN auxin efflux carriers are
polarly localized in the cell membrane, potentially allowing them
to dictate the direction of auxin fluxes. For example, PIN1 is
basally (the root apex facing) localized in the parenchyma tissue
of stems and roots and is involved in the downward transport of
auxin (Gälweiler et al., 1998; Friml et al., 2002; Benková et al.,
2003).

PID overexpressors and mutants argue for a model that
describes PID as a regulator of PIN localization (Figures 1A,B):
Root cells that show a basal localization of PINs in the wild-
type possess an accumulation of apically localized PINs in PID
overexpressors. Furthermore, the apically located PIN1 protein of
the shoot apex is basally localized in pid mutants (Friml et al.,
2004).

In order to understand the relationship between PID and
PINs, in vitro phosphorylation studies were performed. Here, it
was found that PID phosphorylates the conserved serine residue
of three TPRXS(N/S) motifs in the central hydrophilic loop of
PIN1. This motif is highly conserved between PIN1 to 4 and 7.
Mimicking phosphorylation of all three sites in PIN1 leads to a,
although not complete, basal to apical polarity shift in root cells.
Additionally, serine to alanine mutations in the phospho-motifs
replicate the apical to basal shift of PIN1 observed in shoot apices
of pid mutants (Huang et al., 2010). These observations indicate a
link between PIN phosphorylation by PID, PIN localization and
the potential direction of auxin transport.

Overexpression and in vitro phosphorylation studies analyzing
WAG1 and 2 indicate that both kinases utilize the same or a
similar mechanism like PID to control PIN polarity. Conversely,
the overexpression ofD6PKs does not influence PIN polarity. This
suggests that these proteins utilize are different mechanism to
modify auxin transport (Zourelidou et al., 2009; Dhonukshe et al.,
2010).

PIN Efflux Activity is Triggered by D6PK
and PID Family Members

Mutations ofD6PKs can lead to strongly impaired basipetal auxin
transport, indicating a role of the kinases in stimulating auxin
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FIGURE 1 | Models describing the effects of AGCVIII kinase activity on
PIN-dependent auxin efflux. Black arrows represent the direction of auxin
streams. (A) and (B) Older model of PID function. (A) In cells with low PID
activity (e.g., in pid loss-of-function mutants) or in cells expressing PINs with
Ser to Ala mutations in the TPRXS(N/S) motifs, PINs are basally localized and
therefore facilitate the downward transport of auxin. (B) In cells with high PID
activity (e.g., in PID overexpressors) or in cells expressing PINs mimicking
phosphorylation of the TPRXS(N/S) motifs, PIN polarity and hence the
direction of auxin transport is changed. (C) to (E) Newer models of PID and
D6PK functions. (C) Unphosphorylated PINs are inactive and do not facilitate
auxin efflux. (D) PID kinase activity modifies PIN localization as well as PIN
activity. (E) PIN phosphorylation by D6PK activates PINs without regulating
PIN polarity.

streams. Similar to PID, D6PK is also capable of phosphorylating
the hydrophilic loop of PIN proteins, but both kinases show
a differential preference regarding their targeted phospho-sites:
the TPRXS(N/S) motifs are weaker phosphorylated by D6PK
and phosphorylation mainly takes place at two additional sites.
Conversely, the latter two sites are only poorly phosphorylated by
PID. Both sites favored by D6PK are conserved in PIN3, 4, and 7,
while only one of the two sites is preserved in PIN1 (Zourelidou
et al., 2009, 2014).

To test the role of D6PK, PID, and WAG2 in regulating auxin
transport activity, Xenopus oocytes were used as a heterologous
expression system. Here, PIN1, or PIN3 alone were unable to
enhance auxin efflux, whereas their co-expression with one of
the three AGCVIII kinases stimulates the outward transport of
auxin. This activation seems to be completely dependent on
PIN phosphorylation, as mutating the phospho-sites blocked the
activation of auxin transport by the AGCVIII kinases (Zourelidou
et al., 2014).

In summary, both sub-families seem to have an overlapping
but distinct function in regulating auxin transport. This is also
supported by promoter swap experiments showing that PID and
D6PK are not functionally replaceable (Zourelidou et al., 2014).
PID and the WAGs modulate PIN localization and activity and
both events are seemingly not separable, because phosphorylation
of the TPRXS(N/S) motifs control both properties (Dhonukshe
et al., 2010; Huang et al., 2010; Zourelidou et al., 2014;
Figures 1C,D). Unlike PID, D6PK does not modify PIN polarity
and shows an exclusively basal localization (Zourelidou et al.,
2009; Dhonukshe et al., 2010; Barbosa et al., 2014). This indicates
that D6PK controls the strength of the PIN-dependent downward
auxin transport, which is the proposed major polar auxin route in
the plant body (Figures 1C,E).

Potential PIN-dependent Auxin Routes
Mediating Apical Hook Development

The development of the apical hook can be divided into
three phases: formation, maintenance and opening. During the
formation phase, the apical hypocotyl bends downwards till the
hook forms an angle of about 180°. The apical hook retains this
angle during the subsequentmaintenance phase. These twophases
take about 24 h each. Eventually, the hook opens gradually. This
takes several days in the dark, but only a couple of hours after
light exposure (Liscum andHangarter, 1993; Raz and Ecker, 1999;
Vandenbussche et al., 2010; Zádníková et al., 2010).

The hook’s bending and its maintenance are mainly based
on unequal cell elongation between the inner (concave) and
outer (convex) side (Silk and Erickson, 1978; Raz and Ecker,
1999). Additionally, the convex side consists of slightly more cells
than the concave side (Raz and Koornneef, 2001). The supposed
prerequisite for the inhibited cell elongation in the inner side is the
formation andmaintenance of a local auxinmaximum, which was
demonstrated by auxin measurements and by the visualization of
DR5 auxin signaling reporters (Schwark and Schierle, 1992; Friml
et al., 2002; De Grauwe et al., 2005). Several tissues have been
proposed to be the source of auxin for this maximum: auxin is
produced in the cotyledons, but biosynthesis might also occur
in the shoot apical meristem and the apical hook region itself
(Ljung et al., 2001; Stepanova et al., 2008; Vandenbussche et al.,
2010). Nevertheless, studies using auxin transport inhibitors and
auxin transport mutants clearly demonstrate that the formation of
the apical hook and the repression of its opening are dependent
on auxin transport. At least PIN1, 3, 4, and 7 are involved
in apical hook formation and maintenance, with PIN3 having
a predominant role (Lehman et al., 1996; Friml et al., 2002;
Vandenbussche et al., 2010; Zádníková et al., 2010).

How these PINs direct the auxin flow to generate the auxin
maximum in the concave side of the hook and how the
auxin streams change to induce the opening phase is not fully
understood. This is partly based on the attenuation of fluorescent
signal intensities in whole-mount apical hooks using confocal
microscopy. It is only in the hook, but not in the more basal
hypocotyl, that fluorescence signals of tagged PIN proteins are
merely visible in the outer cell files of confocal sections. For
example, PIN3 promoter GUS analyses as well as cross sections
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FIGURE 2 | Potential PIN-dependent auxin transport routes for
establishing the apical hook’s auxin maximum. Gray arrows represent
basipetal auxin transport in the stele, whereas red arrows illustrate the
potential auxin routes establishing and maintaining the maximum in the apical
hook. (A) Model proposed by Zádníková et al. (2010): Higher PIN abundance
in the cortex and epidermis of the convex side of the hook enhances the
draining of auxin to establish an auxin gradient between both sides. (B)
Differential PIN abundance, activity or localization might lead to a preferential
auxin transport from the stele through the endodermis into the outer cell files
of the concave side. (C) Independent of the basipetal auxin transport in the
stele, auxin might be transported through the epidermis from the cotyledons
into the concave side of the apical hook. (D) In addition to the other potential
auxin routes, polar transport might trap the hormone in order to maintain a
local maximum. cot.: cotyledons, hook: apical hook, hyp.: hypocotyl.

and epifluorescence studies of natively expressed PIN3:GFP
clearly demonstrate its expression in the stele and the endodermis
of the apical hook (Zádníková et al., 2010; Gallego-Bartolomé
et al., 2011; Willige et al., 2012). In contrast, longitudinal confocal
sections of the same region only show fluorescence signals in the
epidermis and the cortex cells (Zádníková et al., 2010;Willige et al.,
2012; Boutté et al., 2013). The cause for this effect is probably
the opaqueness of the hook region leading to scattering of the
incoming laser light.

Nevertheless, the following mechanism was proposed based on
the observation of higher PIN levels in the epidermis and cortex
of the convex side: In the hook, auxin transported in the stele
is transferred laterally through the endodermis to the outer cell
files. Here, the increased PIN levels on the convex side raise the
draining of auxin from the outer side out of the hook and hence
establish an auxin gradient between both sides (Zádníková et al.,
2010, Figure 2A).

Alternatively, but not necessarily in conflict with this proposed
model, the formation of the auxin maximum could be the
consequence of auxin fluxes specifically targeting the concave side
to selectively raise the local auxin concentration. This is a strong
possibility because the auxin located in the apical hook supposedly
reaches a concentration surpassing growth promoting levels. To
achieve this, following transport routes are conceivable: PIN3 in
the endodermis may preferentially direct the auxin transported
in the stele into the inner side of the hook (Figure 2B). This
mechanism could be based on PIN3 polarity and would resemble
the proposed mechanism for gravi- and phototropic hypocotyl
bending (Ding et al., 2011; Rakusová et al., 2011). Otherwise, it
could be based on higher PIN3 activity or protein levels in the

endodermal cells facing the inner side. Additionally, auxin fluxes
along the outer cell layers are proposed transport routes during
hypocotyl phototropism and root gravitropism (Ottenschläger
et al., 2003; Abas et al., 2006; Christie et al., 2011). Having this in
mind, a basipetal auxin flux along the outer cells of the cotyledons
and the cotyledon petioles and eventually into the epidermis
of the inner side of the apical hook may form a conceivable
auxin transport route (Figure 2C). Furthermore, PINs in the cells
forming and surrounding the concave side of the hook might trap
auxin by pumping the escaping hormone back into this region
(Figure 2D).

Apical Hook Development is Dependent on
AGCVIII Kinases

Currently, there is no study available focusing on the role of
D6PKs in apical hook development. Nevertheless, 3 days old
etiolated d6pk d6pkl1 double and d6pk d6pkl1 d6pkl2 triple
mutants exhibit a completely opened hook. This indicates a
necessity of D6PK activity for the formation or maintenance of
the apical hook. This is supported by DR5 reporter analyses:
Instead of the auxin signaling maximum in the concave side
of the apical hook evident in wild-type seedlings, d6pk triple
mutants possess an increased signal in the cotyledons, but no
DR5 activity in the potential hook region (Willige et al., 2013;
Barbosa et al., 2014). The open apical hook and the intensified
DR5 expression in the cotyledons strongly resemble the effect of
auxin transport inhibitors (Lehman et al., 1996; Vandenbussche
et al., 2010;Willige et al., 2012). This indicates that these inhibitors
and the reduced D6PK action impair the auxin flux out of the
cotyledons, which supposedly serves as auxin source for the apical
hook.

The PID sub-family member WAG2 is expressed in the
cotyledons and the inner side of the apical hook. While the apical
hook formation is not affected in wag2, hook opening appears
faster in the mutant, indicating that WAG2 represses apical hook
opening. This role of WAG2 later in hook development is further
reflected by a strong reduction of DR5 activity in the concave
side of the hook. This difference is much less pronounced earlier
in hook development. Interestingly, also the cotyledons show a
strong reduction of the DR5 signal, which is restricted to the
cotyledon tips and overlaps with a local expression maximum
of WAG2 (Willige et al., 2012). Based on all these observations,
WAG2 might be involved in the following functions by regulating
PIN polarity and/or activity: In the cotyledons, the kinase may
participate in transmitting auxin from the tip into the direction
of the cotyledon base and the hypocotyl, while WAG2 action in
the concave side of the hook is probably involved in maintaining
a high local auxin concentration.

In contrast to wag2 mutants, loss of WAG1 function does
not interfere with hook development (Willige et al., 2012).
Nevertheless, pid quadruple mutants (carrying mutations in PID,
its closest homolog PID2 and the two WAGs) have a slightly
opened hook early in development (Haga et al., 2014). This
may indicate a redundant function of PID sub-family members
in apical hook formation, or might be the consequence of the
quadruple mutant’s defective embryogenesis: these mutants lack
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cotyledons and likely produce less auxin for the apical hook
formation (Cheng et al., 2008; Dhonukshe et al., 2010).

Regulation of WAG2 Expression During
Apical Hook Development

WAG2 is transcriptionally activated by gibberellins, a class of
phytohormones indispensable for the formation andmaintenance
of the apical hook (Achard et al., 2003; Vriezen et al., 2004;
Gallego-Bartolomé et al., 2011; Willige et al., 2012). Additionally,
WAG2 expression diminishes after exposure to light. Interestingly,
a block of gibberellin signaling or exposure to light disrupts the
hook’s auxin maximum in the concave side (Wu et al., 2010;
Gallego-Bartolomé et al., 2011; Willige et al., 2012).

PHYTOCHROME INTERACTING FACTORs (PIFs) are
integrators of gibberellin and light signaling, since their activity
is repressed by DELLA proteins (the negative regulators of
gibberellin signaling) and their degradation is induced after
exposure to light (Schwechheimer and Willige, 2009). Multiple pif
mutants show a de-etiolated phenotype in the dark, including a
strongly impaired apical hook development (Leivar et al., 2008).
Furthermore, the loss of PIFs leads to a reducedWAG2 expression.
PIF5 plays a major role in the transcriptional activation of WAG2
and was shown to directly bind to its promoter (Willige et al.,
2012). Altogether, these data suggest followingmodel for aWAG2-
dependent hook opening after the seedling’s penetration of the
covering soil: The perceived light induces PIF degradation and
lowers gibberellin levels (Ait-Ali et al., 1999; Achard et al., 2007;
Alabadí et al., 2008), which then leads to a repression of WAG2
promoter activity. This decrease in WAG2 abundance lowers the
PIN-dependent auxin streams that are necessary for maintaining
the hook’s auxin maximum. As a result, auxin levels drop below a
growth inhibiting concentration and induce cell elongation in the
concave side.

Perspective

The finding that AGCVIII kinases do not only regulate
PIN localization, but also transporter activity, indicates that
knowledge of PIN polarity is insufficient to predict auxin

streams. Nevertheless, a complete picture about auxin transporter
distribution is necessary to understand the auxin fluxes leading
to the maximum in the concave side of the apical hook. These
studies should not be limited to the hook region, since it
is necessary to include auxin producing organs such as the
cotyledons. As described above for the apical hook, analyzing
fluorescent tagged proteins in deeper tissues of whole-mount
cotyledons using confocal microscopy is challenging, due to
low light transmission. This problem might be circumvented
by analyzing cross-sections, but the use of perfluorocarbons
(PFCs) allows to image intact leaves by diminishing the issue
of attenuated excitation laser intensity (Littlejohn et al., 2010,
2014). PFCs might also improve the microscopy in the apical
hook region itself. Alternatively, clearing techniques to enhance
transmission of light through the cotyledons and the apical
hook should help to improve our understanding of auxin
transporter polarity in these opaque tissues (Warner et al., 2014).
These studies should not be restricted to PINs since it was
demonstrated that the auxin transporters AUX1, LAX3 as well
as ATP-BINDING CASSETTE B1 and B19 are also involved in
apical hook development (Vandenbussche et al., 2010; Wu et al.,
2010).

Furthermore, the use of phospho-site specific PIN antibodies
for immunostainings (Marhavý et al., 2014; Zourelidou et al.,
2014) might give us an idea about the PIN activity in the
cells forming the apical hook. Altogether, the understanding
of PIN polarity and activity with complementary studies
of the other auxin transporter families should deliver a
comprehensive understanding of auxin fluxes during apical
hook formation, maintenance and opening. Additionally, the
analyses of uncharacterized AGCVIII kinases might lead to the
identification of important auxin transport regulators during
hook development.
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