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Fungal plant pathogens produce secreted proteins adapted to function outside fungal

cells to facilitate colonization of their hosts. In many cases such as for fungi from

the Sclerotiniaceae family the repertoire and function of secreted proteins remains

elusive. In the Sclerotiniaceae, whereas Sclerotinia sclerotiorum and Botrytis cinerea are

cosmopolitan broad host-range plant pathogens, Sclerotinia borealis has a psychrophilic

lifestyle with a low optimal growth temperature, a narrow host range and geographic

distribution. To spread successfully, S. borealis must synthesize proteins adapted to

function in its specific environment. The search for signatures of adaptation to S. borealis

lifestyle may therefore help revealing proteins critical for colonization of the environment

by Sclerotiniaceae fungi. Here, we analyzed amino acids usage and intrinsic protein

disorder in alignments of groups of orthologous proteins from the three Sclerotiniaceae

species. We found that enrichment in Thr, depletion in Glu and Lys, and low disorder

frequency in hot loops are significantly associated with S. borealis proteins. We designed

an index to report bias in these properties and found that high index proteins were

enriched among secreted proteins in the three Sclerotiniaceae fungi. High index proteins

were also enriched in function associated with plant colonization in S. borealis, and

in in planta-induced genes in S. sclerotiorum. We highlight a novel putative antifreeze

protein and a novel putative lytic polysaccharide monooxygenase identified through

our pipeline as candidate proteins involved in colonization of the environment. Our

findings suggest that similar protein signatures associate with S. borealis lifestyle and with

secretion in the Sclerotiniaceae. These signatures may be useful for identifying proteins

of interest as targets for the management of plant diseases.
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Introduction

Fungi from the Sclerotiniaceae family include several devastating
plant pathogens with a broad host range. Among those are
Botrytis cinerea, the causal agent of gray rot, and Sclerotinia
sclerotiorum, causal agent of white and stem rot, each able
to infect several hundreds of plant genera and causing multi-
billion dollar losses in agriculture every year (Figure 1A) (Bolton
et al., 2006; Dean et al., 2012). The geographic distribution
of these two fungi is also remarkably broad since they have
been reported across five continents (Figure 1B). Sequencing of
the genome of B. cinerea and S. sclerotiorum (Amselem et al.,
2011) opened the way to systematic searches for the molecular
bases of pathogenicity in these fungi (Guyon et al., 2014; Heard
et al., 2015). However, the repertoire of molecules contributing
to the ability of plant pathogenic fungi, such as fungi from the
Sclerotiniaceae family, to colonize a wide range of hosts and
environments remains elusive.

Fungal pathogens secrete diverse sets of degrading enzymes
and toxins to facilitate colonization of their hosts (Möbius
and Hertweck, 2009; Kubicek et al., 2014). In addition, fungal
pathogens use molecules designated as effectors to manipulate
host cells and achieve successful infection. Their activities
include the inactivation of plant defenses, interference with plant
hormone balance, or dismantling of the plant cell. However,
effectors may also trigger specific plant defense responses, leading
to plant resistance, when recognized directly or indirectly by
the plant immune system (Jones and Dangl, 2006). Typical
effectors are small secreted proteins, but secondary metabolites
and small RNAs can also play the role of effectors (Schardl et al.,
2013; Weiberg et al., 2013). Although a subset of bacterial and
oomycete protein effectors can be identified based on conserved
N-terminal targeting signals and other sequence signatures
(Schornack et al., 2009; McDermott et al., 2011; Meyer et al.,
2013), this is not the case in fungi. Effector detection in fungal
pathogens relies largely on specific host responses revealing
effector recognition, and bioinformatics approaches based on
whole genome sequences and deduced protein repertoires remain
challenging (Sperschneider et al., 2015). Genes involved in
host-parasite interactions such as pathogen effectors are often
subject to strong balancing or directional selection. For example,
oomycete effectors commonly evolve rapidly, and natural
selection can maintain many different alleles in a population
(Raffaele et al., 2010; Oliva et al., 2015). Therefore, signatures
of positive selection are frequent in effector genes and this
property has been used to identify novel effector candidates
(Wicker et al., 2013; Rech et al., 2014; Sperschneider et al.,
2014). However, most of our understanding of the molecular
evolution of effector genes and genes involved in colonization
of the environment comes from studies of the pairwise co-
evolution of a given pathogen with a single host plant. By
contrast, fungal pathogens in the Sclerotiniaceae interact with a
wide range of hosts in multiple environmental conditions and
should therefore be considered as evolving under “diffuse” (or
“generalized”) interactions (Juenger and Bergelson, 1998). In the
Ascomycete genus Metarhizium, signatures of positive selection
were observed less frequently in the genome of fungal pathogens

FIGURE 1 | Sclerotinia borealis colonizes different niches than its close

relatives S. sclerotiorum and Botrytis cinerea. Number of host plant

genera (A) and geographic distribution (B) of the three fungal species

according to the USDA Systematic Mycology and Microbiology Laboratory

Fungus-Host Database (Farr and Rossman, 2015).

under diffuse co-evolution compared to Metarhizium acridum
evolving under pairwise co-evolution (Hu et al., 2014). It is thus
expected that in the Sclerotiniaceae, some genes important for
colonization of environment, including fungal effectors involved
in diffuse interactions, may escape detection by positive selection
analysis, and additional detection criteria would be useful.

Compared to B. cinerea and S. sclerotiorum, the snow mold
pathogen Sclerotinia borealis colonizes a reduced range of
environments. Indeed, according to the Fungus-Host database of
the U.S. Department of Agriculture (Farr and Rossman, 2015),
S. borealis has been reported to infect 14 plant genera only,
compared to 332 and 469 for S. sclerotiorum and B. cinerea
respectively (Figure 1A). S. borealis host plants include notably
Agropyron, Agrostis, Elymus, and Festuca species that have not
been reported as hosts for S. sclerotiorum or B. cinerea to
date. S. borealis has an economic impact in countries with cold
climates, where it causes snow mold on winter cereals and
grasses (Schneider and Seaman, 1987). Its geographic range is
restricted to the Arctic Circle, including North of Japan, North
America, Scandinavia, and Russia, whereas B. cinerea and S.
sclerotiorum are cosmopolitan fungi found in arctic, temperate
and tropical climates (Figure 1B). Consistently, S. borealis is a
psychrophile, with an optimal growth temperature about 4–10◦C,
whereas optimal growth temperature is∼23◦C for B. cinerea and
S. sclerotiorum (mesophiles) (Wu et al., 2008; Hoshino et al.,
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2010; Judet-Correia et al., 2010). To successfully thrive in cold
environments, psychrophilic pathogensmust synthesize enzymes
and effectors that perform effectively at low temperatures.
Cold-temperature environments present several challenges, in
particular reduced reaction rates, increased viscosity, and phase
changes of the surrounding medium. A draft genome sequence
of S. borealis strain F-4128 has recently been released (Mardanov
et al., 2014a,b) providing an opportunity to better understand
its adaptation to its ecological niche and particularly to cold
environment. The total size of the assembled genome of S.
borealis is 39.3 Mb, with a G+C content of 42%, including
10,171 predicted protein coding sequences (Mardanov et al.,
2014a). These characteristics are similar for the genomes of
S. sclerotiorum 1980 and B. cinerea B05.10 with total sizes of
38.3Mb and 42.3Mb respectively, G+C content of 41.8 and
43.1% respectively, and 14,503 and 16,448 predicted protein
coding genes respectively (Amselem et al., 2011).

Cellular adaptations to low temperatures and the underlying
molecular mechanisms are not fully understood but include
membrane fluidity, the production of cold-acclimation and
antifreeze proteins and maintenance of enzyme-catalyzed
reactions and protein-protein interactions involved in essential
cellular processes (Feller, 2003; Casanueva et al., 2010).
Attempts to correlate protein thermal adaptation with sequence
and structure derived features have accumulated with the
multiplication of genomic sequencing programs. For instance,
analysis of the complete predicted proteome of the psychrophilic
bacterium Colwellia psychrerythraea supported the view that
psychrophilic lifestyle probably involves specific sets of genes in
addition to changes in the overall genome content and amino
acid composition (Methé et al., 2005). Because microorganisms
are at complete thermal equilibrium with their environment, it
is indeed conceivable that adaptation to low temperature lead
to global alterations of proteomes in psychrophiles. Comparative
genomic andmetagenomic analyses in prokaryotes demonstrated
that the summed frequency of amino acids Ile, Val, Tyr, Trp,
Arg, Glu, Leu (IVYWREL) correlates with optimal growth
temperature (Zeldovich et al., 2007). In another study on bacteria,
Ala, Asp, Ser, and Thr were found preferred in the genome
of psychrophiles compared to mesophiles, whereas Glu and
Leu are less frequent (Metpally and Reddy, 2009). The analysis
of amino acid usage in thermophilic fungi showed that these
species indeed have a higher total frequency of IVYWREL amino
acids than their mesophilic relatives, but show also significant
depletion in Gly and enrichment in Arg and Ala (VanNoort et al.,
2013). At the structural level, cold environments seem to release
selective pressure for stable proteins, and increase selection for
highly active heat-labile enzymes, relying on improved intrinsic
disorder to maintain optimal conformation dynamics (Feller,
2003, 2007). Besides these seemingly general principles and given
the existence of psychrophiles in lineages across the tree of life,
multiple mechanisms contributing to cold adaptation may exist.

For a fungal pathogen such as S. borealis, completion of its
life cycle requires successful plant colonization, and a subset of
secreted virulence factors is likely involved in essential cellular
processes. Besides, secreted proteins in both yeasts and mammals
were shown to evolve slightly faster than intracellular proteins
(Julenius and Pedersen, 2006; Liao et al., 2010), suggesting that

the search for signatures of adaptation to S. borealis lifestyle
may help revealing proteins essential for host and environment
colonization in the Sclerotiniaceae. In this work, we focused
our analysis on adaptations to S. borealis environment that lead
to alterations in core functions (genes and proteins) conserved
in S. sclerotiorum and B. cinerea. We analyzed a set of 5531
groups of core orthologous proteins for amino acid usage and
intrinsic protein disorder patterns specifically associated with
S. borealis proteins. We highlight a novel putative antifreeze
protein and a novel putative lytic polysaccharide monooxygenase
identified through our pipeline as candidate proteins involved
in colonization of the environment. Our findings suggest that
similar protein signatures associate with S. borealis lifestyle and
with secretion in the Sclerotiniaceae. These signatures may be
useful for identifying proteins of interest as targets for the
management of plant diseases and for the bio-conversion of plant
biomass.

Results

A Pipeline to Reveal S. borealis Protein Sequence
Signatures in Multiple Ortholog Alignments
Several studies reported specific amino acid usage patterns
and intrinsic disorder frequency in proteins from psychrophilic
bacteria as compared to related mesophilic bacteria (Methé et al.,
2005; Metpally and Reddy, 2009). To test whether S. borealis
proteins have a distinctive pattern of amino acid usage and
disorder compared to S. sclerotiorum and B. cinerea proteins,
we designed a bioinformatics pipeline to process complete
proteomes deduced from the whole genome sequences of
these three fungal pathogens (Figure 2) (Amselem et al., 2011;
Mardanov et al., 2014a). To exclude patterns that may be due to
factors unrelated to adaptation in S. borealis proteins, we focused
our analysis on core groups of orthologous proteins with one
member from each species. A total of 6717 core orthologous
groups (COGs) were identified using two pairwise InParanoid
proteome comparisons (Ostlund et al., 2010) as explained
in material and methods section and presented in Figure 2,
covering between ∼42% (B. cinerea) to ∼66% (S. borealis) of
complete predicted proteomes. We used multiple alignments of
the three proteins in each COG to select S. sclerotiorum protein
regions conserved in S. borealis and B. cinerea. To retrieve core
protein regions conserved in all three members of COGs, we
ran another round of InParanoid pairwise comparisons using
conserved regions of S. sclerotiorum proteins as input. Short
alignments can artificially cause strong variations in amino acid
proportions. To reduce this confounding effect, we excluded
alignments producing a consensus sequence shorter than 200
amino acids. We obtained a total of 5531 COG alignments
matching these criteria that were processed for amino acid
frequency and intrinsic protein disorder analysis.

S. borealis Proteins Show Specific Intrinsic
Disorder and Amino Acid Usage Patterns
Compared to Their Sclerotiniaceae Orthologs
To document intrinsic protein disorder and amino acid usage
in Sclerotiniaceae COGs, we calculated frequencies of each of
the 20 amino acids in the aligned protein regions as well
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FIGURE 2 | Bioinformatics pipeline for the identification of S. borealis protein sequence signatures in multiple ortholog alignments. Our pipeline uses

complete predicted proteomes of S. borealis, S. sclerotiorum, and B. cinerea as inputs. It identifies orthologous protein pairs in S. borealis and S. sclerotiorum; and in

S. borealis and B. cinerea using Inparanoid. Using S. sclerotiorum proteins as a reference, it identifies non-redundant core ortholog groups (COG) and overlapping

regions (1). A second Inparanoid run is then used to define the longest aligned region in all three genomes (“consensus”) for each COG (2). Next, protein sequence

metrics (disorder probability and amino acid frequencies) are calculated for consensus regions of all proteins (3). Finally, Wilcoxon sum rank tests are performed to

identify metrics significantly different in S. borealis proteins.

as their disorder frequencies. Determination of the disorder
frequencies were obtained by assigning to each amino acid of
the aligned protein regions their disorder probability obtain by
submitting the full length protein to disEMBL analyses (Linding
et al., 2003). The disEMBL output contained three measures of
intrinsic protein disorder designated as “Coils,” “Hot loops,” and
“Remark465” corresponding to their probability to be involved
in disorder region. To test whether any of these 20 amino
acid frequencies plus 3 disorder metrics frequencies showed a
significantly different distribution in S. borealis COG aligned
regions compared to S. sclerotiorum and B. cinerea, we performed
pairwise Wilcoxon sum rank tests to compare distributions of
each of the 23 properties in S. borealis and S. sclerotiorum,
in S. borealis and B. cinerea, and in S. sclerotiorum and B.
cinerea (Table S1). We considered that a protein property was
significantly associated with S. borealis COG aligned regions

when Wilcoxon sum rank tests were significant (p < 0.05)
for S. borealis—S. sclerotiorum and S. borealis—B. cinerea
comparisons but not (p > 0.05) for S. sclerotiorum—B. cinerea
comparison. The “hot loops” frequencies measure of intrinsic
protein disorder was found significantly associated with S.
borealis COG aligned regions, whereas “Coils” and “Remark465”
were not (Figure 3A). “Hot loops,” corresponding to protein
regions predicted not to adopt helix or strand secondary structure
and having a high degree of flexibility, were found significantly
depleted in S. borealis COG aligned regions. S. borealis proteins
had a median hot loop frequency of 3.43% in COG aligned
regions, vs. 3.67% in S. sclerotiorum and 3.71% in B. cinerea
proteins. Regarding frequency of amino acids, three were found
significantly associated with S. borealis aligned COG regions.
Thr frequency was significantly enriched, representing 6.00% of
amino acids in S. borealis instead of 5.93% in S. sclerotiorum
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FIGURE 3 | Adaptation to S. borealis lifestyle associates with specific amino acid usage and protein disorder patterns. Distribution of the p-values of

Wilcoxon sum rank tests performed to identify intrinsic disorder probabilities (A) and amino acid frequencies (B) that are significantly different in S. borealis core

orthologs. For each amino acid frequency and intrinsic disorder probability, three pairwise tests were performed to compare (i) values in B. cinerea and S. sclerotiorum

orthologs (p-values shown along the X-axis), (ii) values in S. borealis and B. cinerea orthologs (p-values shown along the Y-axis in green), and (iii) values in S. borealis

and S. sclerotiorum orthologs (p-values shown along the Y-axis in red). Amino acid frequencies and intrinsic disorder probabilities that fell in the shaded areas were

considered significantly different between S. borealis and the other fungi (p < 0.05) but not between S. sclerotiorum and B. cinerea (p > 0.05). These properties were

considered as associated with S. borealis lifestyle.

and 5.91% in B. cinerea proteins. Lys and Glu were significantly
depleted in S. borealis. Lysine represented 5.26% of amino acids
in S. borealis instead of 5.41% in S. sclerotiorum and B. cinerea
proteins; Glu represented 6.43% of amino acids in S. borealis
instead of 6.54% in S. sclerotiorum and 6.57% in B. cinerea
proteins (Figure 3B). These findings are consistent with the view
that cold adaptation includes the directional adaptation of pre-
existing protein functions (intrinsic protein structure and amino
acid composition) in addition to specific sets of genes conferring
a psychrophilic lifestyle, such as previously reported in bacteria
(Methé et al., 2005).

The Distribution of sTEKhot Index Is Biased in S.

borealis Orthologous Proteins and Complete
Predicted Proteome
Several studies reported biases in amino acid usage in the
proteome of extremophiles and proposed indices able to
discriminate proteins from extremophilic and related mesophilic
organisms (Suhre and Claverie, 2003; Zeldovich et al., 2007;
Wang and Lercher, 2010). To analyze the degree to which
intrinsic protein disorder and amino acid usage of individual
proteins matches with specific patterns identified in S. borealis
predicted proteome, we designed the S. borealis T (Thr), E (Glu),
K (Lys), hot (hot loops) index as follows:

sTEKhot =
T

E+ K + hot
(1)

where “T,” “E,” and “K” are the normalized frequencies of Thr,
Glu and Lys respectively in a given protein sequence, and “hot”
is the normalized frequency of hot loops in this sequence. We
computed the sTEKhot index for each protein in the predicted

proteomes of S. borealis, S. sclerotiorum, and B. cinerea. First,
we compared the distribution of sTEKhot values in COGs by
plotting all values in a ternary plot (Figure 4A). This revealed
that sTEKhot values are distributed along an axis pointing toward
S. borealis angle, clearly showing that sTEKhot values of S.
borealis orthologs are major contributors to the structure of
the dataset. There was 692 COGs in which S. borealis sTEKhot
value accounted for >40% of the total sTEKhot for the COG,
but only 388 and 345 in which S. sclerotiorum and B. cinerea
sTEKhot values respectively accounted for >40% of the total
sKTEHhot for the COG (Figure 4A). Consistently, S. borealis has
the highest sTEKhot value in 42.7% of COGS (2761), whereas
S. sclerotiorum and B. cinerea have the highest sTEKhot value
in 28.3% (1845) and 28.8% (1865) of the COGs respectively
(Figure 4B).

At the whole proteome level, sTEKhot median was 0.366 in
S. borealis, but only 0.314 in S. sclerotiorum and 0.313 in B.
cinerea (Figure 4C, Table S2). The overall sTEKhot distributions
were significantly different when comparing S. borealis to the
two other species (p < 5.1.e−104) but not when comparing S.
sclerotiorum to B. cinerea (p = 0.84). However, a subset of
S. sclerotiorum and B. cinerea proteins appeared to have high
sTEKhot values. Indeed, as mentioned previously, S. sclerotiorum
and B. cinerea each account for the highest sTEKhot in ∼30%
of the COGs. Furthermore, the proportion of proteins with a
sTEKhot > 1 was 6.2% in S. borealis, 4.6% in S. sclerotiorum
and 5.0% in B. cinerea. This suggests that the general pattern of
intrinsic protein disorder and amino acid usage observed in S.
borealis protein may be shared by a subset of S. sclerotiorum and
B. cinerea predicted proteome.

To verify that the sTEKhot index was an optimized
combination of intrinsic protein disorder and amino acid usage
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FIGURE 4 | The sTEKhot index discriminates S. borealis proteins in core ortholog groups and whole predicted proteomes. (A) Overall distribution of

sTEKhot values from the three fungal species within COGs. Each bubble represents a COG positioned according to the contribution of each ortholog (sTEKhot%) to

the total sTEKhot of the COG. Therefore, orthologs that have similar sTEKhot values in all three species appear at the center of the plot, while COGs appear near the

corner of the species harboring the ortholog with the highest sTEKhot otherwise. The size of bubbles is proportional to the sTEKhot value of S. borealis orthologs.

Data points are frequent above the 40% line for S. borealis sTEKhot, and less so for S. sclerotiorum and B. cinerea sTEKhot indicating frequent higher sTEKhot values

in S. borealis orthologs. (B) Species distribution of orthologs having the highest sTEKhot value in COGs. (C) Distribution of the sTEKhot index in the whole predicted

proteome of the three fungi.

measures to discriminate the proteome of S. borealis from that
of S. sclerotiorum and B. cinerea, we randomly shuffled the 23
measures for intrinsic protein disorder and amino acid usage
in equation (1) and calculated the proteome median value for
shuffled indices in S. borealis, S. sclerotiorum, and B. cinerea
(Table S3). In 300 shuffling iterations, the p-value for difference
between the distribution of shuffled index in S. borealis and S.
sclerotiorum or B. cinerea was < 5.1.e−104 (highest observed p-
value) in only 6 instances. The median shuffled index value for S.
borealis proteome was higher than the observed sTEKhot median
in only 2 instances over 300 (0.6%). Wilcoxon ranking tests
comparing randommedians distribution to real sTEKhotmedian
showed p < 4.72e−33 in the three species. The result of these

simulations indicate that sTEKhot clearly departs from random
in describing specific intrinsic protein disorder and amino acid
usage patterns in S. borealis proteins.

Secreted Enzymes are Enriched among S.

borealis Proteins with High sTEKhot
To identify protein functions important for adaptation to S.
borealis environment, we analyzed annotations of proteins with
a sTEKhot value higher than 1 in S. borealis proteome. Overall,
4794 (47%) S. borealis proteins had no Gene Ontology (GO)
annotation assigned. There were 635 proteins with sTEKhot >

1, among which 349 (55%) had no GO annotation. We looked
for GO term enrichment in the 635 S. borealis with sTEKhot > 1
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compared to all annotated proteins. Forty two GO terms
appeared significantly enriched (p < 0.05) among proteins with
sTEKhot > 1, including 16 leaves (GO with no child term) of
the GO network (Figure 5). GO terms for “cellular component”
enriched in proteins with sTEKhot > 1 included extracellular

and cell wall compartments. Consistently, enriched “biological
processes” and “molecular functions” related to secreted enzymes
involved in cell wall modification (glycosyl hydrolases and
carboxylic ester hydrolases, among which are pectinesterases
and cutinases) and binding to cellulose. Cellulose is a major

FIGURE 5 | Network representation of gene ontologies (GOs) of proteins with sTEKhot >1 in S. borealis proteome. Nodes correspond to GOs are sized

according to the number of proteins with sTEKhot >1. They are colored from yellow to orange according to the p-value of a hypergeometric test for enrichment in

proteins with sTEKhot >1 compared to whole proteomes. White nodes are GOs not significantly enriched among proteins with sTEKhot > 1 (p > 0.05). GOs labeled

in bold font correspond to functions possibly associated with host interaction.

Frontiers in Plant Science | www.frontiersin.org 7 September 2015 | Volume 6 | Article 776

http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org
http://www.frontiersin.org/Plant_Science/archive


Badet et al. Protein signatures in Sclerotiniaceae fungi

component of plant cell walls that fungal pathogens are able to
detect and bind. Also plants aerial parts are protected by a cuticle
composed by cutin. Fungal pathogens are able to hydrolyze
cutin through cutinases, thus facilitating host colonization. In
addition, proteins involved in carbohydrate metabolism were
enriched among proteins with sTEKhot > 1. These functions are
associated with colonization of the environment, especially plant-
associated environment. Similar enrichments where observed
when looking at GO annotations for S. sclerotiorum and B.
cinerea proteins harboring a sTEKhot > 1 (Figures S1, S2). In
addition, copper ion binding GO was found to be enriched in S.
sclerotiorum and B. cinerea.

Secreted Proteins Have Higher sTEKhot Than
Non-secreted Proteins in the Three
Sclerotiniaceae Species
The enrichment of extracellular proteins among proteins with
sTEKhot > 1 prompted us to compare the distribution
of sTEKhot for secreted and non-secreted protein in the
Sclerotiniaceae. We considered as predicted secreted proteins
those identified as secreted with SignalP 4.0 no-TM network and
as extracellular byWoLF PSORT. This produced lists of 667, 661,
and 748 predicted secreted proteins (secretome) for S. borealis,
S. sclerotiorum, and B. cinerea respectively. In all three fungal
species, secreted proteins had significantly higher sTEKhot values
than non-secreted proteins, with median sTEKhot values for
secreted proteins of 1.13 in S. borealis, 1.06 in S. sclerotiorum
and 1.08 in B. cinerea (Figure 6A). The distribution of sTEKhot
in secreted proteins was found significantly higher than its
distribution in non-secreted proteins with p-value of 8.8e−239

in S. borealis, 9.1e−265 in S. sclerotiorum and 4.1e−275 in B.
cinerea respectively. To evaluate the likelihood of obtaining such
distributions with other intrinsic protein disorder and amino
acid usage parameters, we randomly shuffled the 23 measures for
intrinsic protein disorder and amino acid usage in Equation (1),
and calculated shuffled indices for each protein in the predicted
secretome in the three species. In 300 rounds of shuffling, the
median secretome index was found higher than the observed
median secretome sTEKhot in 3, 1 and 1 instance for S. borealis,
S. sclerotiorum and B. cinerea respectively (Table S3).

Remarkably, although secreted proteins account for 6.5% of
total proteome in S. borealis, 4.5% in S. sclerotiorum and 4.5% in
B. cinerea, the proportion of secreted proteins among those with
sTEKhot > 1.5 raised to 76.9% (206 out of 268) in S. borealis,
68.2% (182 out of 267) in S. sclerotiorum and 65.0% (206 out
of 317) in B. cinerea, representing ∼13.6 fold enrichment in
secreted proteins (Figure 6B). These results suggest that intrinsic
protein disorder and amino acid usage patterns associated with
S. borealis lifestyle and secretion are largely overlapping in the
Sclerotiniaceae.

To independently validate this observation, we compared the
distribution of all amino acid frequencies and the distribution
of the three intrinsic protein disorder measures used previously
in secreted and non-secreted proteins from the three fungal
species. We considered that a protein property is associated with
secretion when the null hypothesis of the Wilcoxon sum-rank
test (distribution of property no different between secreted and

FIGURE 6 | Predicted secreted proteins have high sTEKhot values. (A)

Distribution of sTEKhot values in the proteome and the secretome of

(Continued)
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FIGURE 6 | Continued

S. borealis, S. sclerotiorum and B. cinerea. (B) Proportion of predicted

secreted proteins according to sTEKhot cutoff values. In complete proteomes

(sTEKhot ≥ 0), the proportion of secreted proteins is ∼5% in all three fungal

proteomes, whereas among proteins with sTEKhot ≥ 1.5 (dotted line) it

reaches an average ∼70%. (C) Proportion of whole proteomes and proteins

with sTEKhot > 1.5 that are secreted, contain GPI-anchors, are

N-glycosylated or contain transmembrane (TM) domains. Enrich., enrichment

fold among sTEKhot > 1.5 as compared to whole proteomes.

non-secreted proteins) could be rejected with p < 0.05 for all
three fungal species. Among the 23 measures for protein disorder
and amino acid usage, 21 could be significantly associated with
fungal secretomes, supporting the view that function outside
the cell imposes specific constraints on amino acids usage in
secreted proteins, such as evolution toward reduced synthetic
cost of proteins (Smith and Chapman, 2010). Similar to patterns
associated with S. borealis lifestyle, we found that enrichment
in Thr, depletion in Glu and reduced frequency of hot loops
disorder are among the properties most significantly associated
with secretion (p-values ranging from 7.62e−3 to 2.67e−194)
(Table S4).

We considered several hypotheses to explain the observed
common signatures for S. borealis lifestyle and secretion. First,
we envisaged that prevalence of secreted proteins in COGs may
have biased signatures of S. borealis lifestyle toward properties
associated with secretion. However, ratios of secreted proteins
in COG sets were similar to those observed for total proteomes
(7% in S. borealis, 6.7% in S. sclerotiorum and 6.4% in B. cinerea
proteins from the set of 5531 COGs). Furthermore, we excluded
COGs that comprised secreted proteins and tested whether
amino acid usage patterns associated with S. borealis proteins
as previously. Amino acids enriched in S. borealis proteins
included Thr and amino acids depleted in S. borealis included
Glu and Lys (p < 0.05), similar to what we found in our
initial analysis taking all COGs into account. In addition, we also
found His enriched in S. borealis sequences and Asn depleted
(p < 0.05). We conclude that the detection of a bias in the
usage of these amino acids in S. borealis proteins was not due to
the abundance of secreted proteins in COGs (Table S5). Second,
we hypothesized that intrinsic protein disorder and amino acid
usage in secreted proteins might be due to signal peptide regions.
To test this, we analyzed protein properties associated with
mature secreted proteins (signal peptide region removed). We
found that mature secreted proteins had significantly higher
sTEKhot than the rest of the proteome (p < 2.4.e−232), similar
to what we found with full length secreted proteins (Figure S3).
Therefore high sTEKhot in secretomes is not due to signal
peptide sequence. Third, we considered that high sTEKhot in
secretomes could arise if secretomes were be less divergent
than the rest of the proteomes, leading to S. borealis signature
being more conserved in secreted proteins of S. sclerotiorum
and B. cinerea. To test this, we analyzed the distribution of
similarity between S. borealis proteins and their closest homologs
in S. sclerotiorum and B. cinerea. Whereas the average BLASTP
score was 630.9 for S. borealis non-secreted proteins aligned

with their closest homolog in S. sclerotiorum, this average score
was 521.6 for S. borealis secreted proteins (Figure S4). This
indicates that globally, S. borealis secretome is more divergent
from S. sclerotiorum proteome than S. borealis non-secreted
proteins. A similar tendency was observed when comparing S.
borealis and B. cinerea proteomes. The high sTEKhot average
observed in Sclerotiniaceae secretomes is therefore not due
to higher similarity in secretomes compared to non-secreted
proteins.

To test whether proteins with high sTEKhot could
be enriched in other types of motifs, we predicted
glycosylphosphatidylinositol (GPI) anchors, transmembrane
(TM) domains and N-glycosylation sites in the proteome
of S. borealis, S. sclerotiorum and B. cinerea. We found an
average of 5.0% of proteins with GPI-anchors, 9.9% proteins
with TM domains and 3.8% of proteins with >10 predicted
N-glycosylation sites in the Sclerotiniaceae species (Table S6,
Figure 6C). As compared to whole proteomes, the list of proteins
with sTEKhot >1.5 showed an average 7.1-fold enrichment
in proteins with GPI-anchors, 2.1-fold enrichment in proteins
with >10 predicted N-glycosylation sites and no enrichment
in proteins with TM domains (Figure 6C). Secreted proteins
showed the strongest enrichment among proteins with sTEKhot
>1.5. Overall these analyses suggest that a significant overlap
exists between the constraints imposed on protein sequence
by adaptation to S. borealis lifestyle and to secretion in the
Sclerotiniaceae.

S. Sclerotiorum Genes Encoding Proteins with
High sTEKhot are Enriched in Genes Induced in

planta
To further support the association between high sTEKhot index
and colonization of the environment, and particularly host
plants, we analyzed the distribution of sTEKhot values in S.
sclerotiorum genes differentially regulated in planta. For this, we
took advantage of S. sclerotiorum microarray gene expression
data generated by Amselem et al. from infected sunflower
cotyledons (Amselem et al., 2011). In this dataset, out of 14
503 predicted protein coding genes, 615 were induced at least
two-fold during infection of sunflower (4.31%) and 458 genes
down-regulated at least two-fold (3.21%). The proportion of
genes induced in planta reached 27.1% of S. sclerotiorum genes
encoding proteins with sTEKhot ≥ 2, representing ∼6.3-fold
enrichment (Figure 7). The proportion of genes down-regulated
in planta reached 12.1% of S. sclerotiorum genes encoding
proteins with sTEKhot ≥ 2, representing ∼3.8-fold enrichment.
S. sclerotiorum proteins with sTEKhot > 1 include six proteins
with CFEM domain, a Cys-rich domain with proposed role in
fungal pathogenesis, two proteins with a cerato-platanin domain,
one of which being the ortholog of B. cinerea pathogen associated
molecular pattern BcSpl1 (Frías et al., 2011), 27 proteins with a
pectin lyase fold found in Aspergillus virulence factors (Mayans
et al., 1997), and 29 out of 78 effector candidates proposed by
Guyon et al. (2014). These findings are consistent with important
role in the colonization of the host plant for some proteins with
high sTEKhot values.
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FIGURE 7 | Proportion of S. sclerotiorum proteins encoded by genes

differentially expressed in planta according to sTEKhot cutoff values.

In S. sclerotiorum complete genome (sTEKhot ≥ 0), the proportion of genes

induced ≥2-fold in planta is ∼4.31%, whereas it reaches ∼27.1%.among

proteins with sTEKhot ≥ 2 (dotted line).

High sTEKhot Index and Secretion Signal Reveal
Candidate Proteins Associated with Colonization
of the Environment
To illustrate the value of the sTEKhot index for the exploration
of the proteome of fungi from the Sclerotiniaceae, we analyzed
in detail the sequence of two proteins with high sTEKhot
but with no assigned function. Over the three proteomes
analyzed, S. borealis SBOR_9046 had the highest sTEKhot
(10.01). In S. sclerotiorum, its ortholog is SS1G_10836 which
ranked as the 5th highest sTEKhot in S. sclerotiorum (7.34).
In B. cinerea, its ortholog is BC1G_03854 which ranked as the
23rd highest sTEKhot in B. cinerea (4.29). No interproscan
domain or GO terms were associated with these proteins of
171 amino acids (except SS1G_10836 which is 173 amino
acids long). To get insights into their putative function, we
performed protein structure modeling and fold recognition
using the I-TASSER server (Zhang, 2008). The closest structural
analog was the antifreeze protein Maxi from winter flounder
(Pseudopleuronectes americanus) (Sun et al., 2014). Although
sequence similarity with Maxi was limited (from 15.2%
identity for SBOR_9046 to 16.2% identity for SS1G_10836),
superimposition of SS1G_10836 predicted structure with Maxi
structure showed a Root Mean Square Deviation < 2.3Å
and a TM-score of 0.875, indicating structural similarity
deviating significantly from random (Figures 8A,B). Analysis
of SBOR_9046, SS1G_10836 and BC1G_03854 sequence by
TargetFreeze (He et al., 2015) supported the prediction as
antifreeze proteins. The Sclerotiniaceae proteins contain four
Cys residues located in the kink of predicted structures that

may stabilize folding like, although these residues were not
predicted to form disulfide bonds by Disulfind (Ceroni et al.,
2006). Antifreeze proteins have been reporting that rely on
disulfide bonds for folding (Basu et al., 2015) whereas others
do not (Kondo et al., 2012; Sun et al., 2014). Like other known
fungal antifreeze proteins (Kondo et al., 2012), but unlike Maxi,
SBOR_9046 and its orthologs are predicted to be secreted.
A unique feature of Maxi among antifreeze proteins is the
presence of ice-binding residues buried within the four-helix
bundle instead of exposed on their surface (Sun et al., 2014). A
prediction of SS1G_10836 dimer structure supports the existence
of rather hydrophilic pockets buried within the four-helix bundle,
suggesting that the mechanism of ice binding of Maxi could be
conserved in SS1G_10836 and its orthologs (Figure 8C). To get
insights into SS1G_10836 function, we analyzed the expression of
the corresponding gene in mycelium grown in Potato Dextrose
Broth (PDB), during the colonization of Arabidopsis plants and
in sclerotia by quantitative RT-PCR. This revealed a 3.3-fold
induction (log2 = 1.7) specific to sclerotia (Figure 8F). Since
sclerotia overwinter in the soil, putative antifreeze proteins may
contribute to survival of these structures both in arctic and
temperate climates.

The COG including SS1G_03146, BC1G_07573, and
SBOR_1255 is remarkable for including three proteins with
high (>1) but with very variable sTEKhot, ranging from 1.58
(SS1G_03146) to 7.07 (BC1G_07573). No interproscan domain
or GO terms were associated with these proteins of 223 amino
acids in average, but all three were predicted to include a
N-terminal signal peptide for secretion. To get insights into their
putative function, we performed protein structure modeling
and fold recognition using the I-TASSER server (Zhang, 2008).
The closest structural analog was Aspergillus oryzae AA11
(AoAA11) Lytic Polysaccharide Monooxygenase (LPMO)
(Hemsworth et al., 2014). Sequence similarity with AoAA11 was
limited (from 9.6% identity for SBOR_1255 to 10.9% identity
for SS1G_03146), superimposition of SS1G_03146 predicted
structure with AoAA11 structure showed a Root Mean Square
Deviation < 3.1Å and a TM-score of 0.677, indicating structural
similarity deviating significantly from random (Figures 8D,E).
Similar to the Sclerotiniaceae proteins, full length AoAA11
(accession number XM_001822611) harbors a N-terminal
signal peptide. AoAA11, SBOR_1255, and BC1G_07573 feature
two conserved predicted disulfide bonds, SS1G_03146 is
predicted to contain only one (Figure 8D). The catalytic triad
of AoAA11 appears nicely conserved in the Sclerotiniaceae
proteins, with the exception of the catalytic Tyr replaced
by a Ser in SS1G_03146 (Figure 8D). LPMOs are enzymes
oxidizing recalcitrant polysaccharides such as cellulose, starch
and chitin. They present excellent potential for use in biomass
conversion and the production of biofuels. Aspergillus oryzae
AA11 represents a new class of LPMOs that include a putative
chitin-binding domain (Hemsworth et al., 2014). We analyzed
the expression of the SS1G_03146 gene in mycelium grown
in PDB, during the colonization of Arabidopsis plants and in
sclerotia by quantitative RT-PCR. This revealed up to 9.5-fold
induction (log2 = 3.25) during plant infection (Figure 8F). This
suggests that SS1G_03146 may be involved in colonization of the
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FIGURE 8 | Candidate proteins associated with colonization of the environment identified based on high sTEKhot values. (A) Multiple protein sequence

alignment of B. cinerea BC1G_03854 (sTEKhot = 4.29), S. borealis SBOR_9046 (sTEKhot = 10.01), S. sclerotiorum SS1G_10836 (sTEKhot = 7.34) and the

hyperactive Type I antifreeze protein “Maxi” from Pseudopleuronectes americanus (4KE2_A). (B) Superimposition of Maxi antifreeze protein structure (tan) and

SS1G_10836 model structure (rainbow). (C) Surface hydrophobicity of SS1G_10836 model dimer. Dotted line corresponds to the position of the section shown on

the right, illustrating the characteristic hydrophilic inner core of the dimer. (D) Multiple protein sequence alignment of B. cinerea BC1G_07573 (sTEKhot = 7.07), S.

borealis SBOR_1255 (sTEKhot = 3.79), S. sclerotiorum SS1G_03146 (sTEKhot = 1.58) and the AA11 Lytic Polysaccharide Monooxygenase from Aspergillus oryzae

(4MAH_A). (E) Superimposition of A. oryzae AA11 structure (tan) and SS1G_03146 model structure (rainbow). (F) SS1G_10836 and SS1G_03146 gene expression

in vitro (PDB, Potato Dextrose Broth), during colonization of Arabidopsis thaliana (lesion periphery and lesion center) and in sclerotia. Error bars show standard error of

the mean from two independent biological replicates.

Frontiers in Plant Science | www.frontiersin.org 11 September 2015 | Volume 6 | Article 776

http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org
http://www.frontiersin.org/Plant_Science/archive


Badet et al. Protein signatures in Sclerotiniaceae fungi

plant, but functional analysis will be required to determine its
actual role.

Based on these predicted functions, we propose that
SS1G_10836 and SS1G_03146 have important functions in the
colonization of the environment, the identification of which
was facilitated by the implementation of the sTEKhot index.
Functional studies will be required to test predicted functions of
these proteins. Furthermore, these two proteins have predicted
properties that may be exploited for biotechnology purposes.

Discussion

Understanding how fungal plant pathogens colonize their
environment, including their host plants, is critical for food
security and the sustainable management of ecosystems (Roux
et al., 2014). In particular B. cinerea and S. sclerotiorum are
threatening hundreds of plant species and important crop species
in the majority of regions of the globe. Fungi also represent
a remarkable reservoir of enzymes with very diverse catalytic
abilities that are employed in industrial processes. We have
conducted a comparative analysis of the proteome and secretome
of fungal species from the Sclerotiniaceae revealing common
principles of sequence optimization for secreted proteins.

In the present study we designed a bioinformatics pipeline
aiming at identifying species-specific patterns of amino acid
usage and intrinsic protein disorder in the proteome of closely
related species. We applied this pipeline to agriculturally
important fungal pathogens from Sclerotiniaceae family to reveal
specific signatures associated with S. borealis lifestyle. Compared
to S. sclerotiorum and B. cinerea orthologs, we observed in
S. borealis proteins a significant increase in Thr usage and a
significant decrease in Glu and Lys usage. To minimize the
impact of phylogenetic distance on the definition of S. borealis
sequence signature, we have restricted our analysis to species
from the Sclerotiniaceae family and we discarded any sequence
signature differing significantly between S. sclerotiorum and B.
cinerea. It is also worth noting that S. borealis, S. sclerotiorum
and B. cinerea have a very similar G+C content, so that G+C
bias is not expected to have an impact on the differential usage
of amino acids. Specific trends in amino acid composition have
been reported to associate with protein stability at extreme
temperatures. Given the diversity of ecological groups including
psychrophiles, it has been challenging to identify universal
trends in amino acids usage associated with cold adaptation
(Casanueva et al., 2010). Enrichment in Thr has been reported
in solvent-accessible areas of proteins from two cold-adapted
Archaea (Goodchild et al., 2004) and in proteins from several
psychrophilic bacteria (Metpally and Reddy, 2009). This was
proposed to reduce surface charge while minimizing risk of
aggregation (Goodchild et al., 2004). Frequent substitutions
of Glutamate were observed in exposed sites of selected
psychrophilic enzymes (Gianese et al., 2001) and more generally
in the proteome of the psychrophilic Archea Halorubrum
lacusprofundi (Dassarma et al., 2013). Glu is also part of a set
of amino acids shown to correlate significantly with optimal
growth temperature of prokaryotes (Zeldovich et al., 2007).
Specific signatures of amino acid usage we found in S. borealis

are therefore consistent with some previous observations made
for psychrophilic proteins. Nevertheless, our approach does not
allow dissociating psychrophily and other specific life traits of
S. borealis (specific host range, geographic habitat) as drivers
of the observed protein signatures. We observed a reduction in
the frequency of intrinsic disorder in hot loops in S. borealis
proteins. By contrast, cold adapted enzymes were often reported
to harbor low conformational stability to maintain high reaction
rates at low temperature (Feller, 2007; Casanueva et al., 2010) and
intrinsically disordered proteins were shown to be more resistant
to cold than globular proteins (Tantos et al., 2009). A global study
of intrinsic protein disorder in 332 prokaryotes showed however
that psychrophilic bacteria have a lower level of intrinsic disorder
than mesophiles, although this was proposed to be due to the loss
of cellular functions relying on intrinsically disordered proteins
(Burra et al., 2010). This analysis also supports the view that
adaptations to S. borealis lifestyle include directional changes in
the sequence of conserved proteins, in addition to possible gene
gains and losses that have not been analyzed in this work.

Enrichment analyses revealed that signatures associated with
S. borealis lifestyle are frequent in plant cell wall degrading
enzymes, carbohydrate binding domain containing proteins and
ion binding proteins. More generally, secreted proteins showed
high sTEKhot values in S. borealis, S. sclerotiorum and B. cinerea.
The proportion of predicted secreted proteins reaches over 75%
of S. borealis proteins with sTEKhot > 1.5 and the proportion
of proteins encoded by in-planta induced genes reaches over
27% of S. sclerotiorum proteins with sTEKhot > 2, suggesting
that sTEKhot may be a useful criterion to identify proteins
associated with environmental adaptation or potential virulence
factors. More specifically, there were 117 proteins predicted to
be secreted and harboring a sTEKhot > 1.5 with no annotation
in S. sclerotiorum that could include uncharacterized virulence
factors. Although some classes of protein effectors from bacteria
and oomycete pathogens can be identified relatively easily thanks
to conserved N-terminal sequence signals, this strategy has
proven limited for fungal pathogens. Alternative bioinformatics
approaches have been developed exploiting known effector
properties for searching effector candidates in the secretome of
fungal pathogens (Saunders et al., 2012; Guyon et al., 2014).
Typical effector properties include the presence of a N-terminal
secretion signal, small protein size, high Cys content, the absence
of characterized protein domains, high rate of non-synonymous
over synonymous substitutions (Hacquard et al., 2012; Saunders
et al., 2012; Persoons et al., 2014; Sperschneider et al., 2014).
However, validated virulence factors do not all comply with these
properties, such as Verticillium dahlia isochorismatase VdIsc1
harboring an isochorismatase domain but no conventional
secretion signal (Liu et al., 2014) or Melampsora lini AvrM that
lacks any Cys (Catanzariti et al., 2006).

Amino acid composition is a feature used to predict candidate
bacterial effectors. Positive charge, richness in alkaline (H,
R, K) amino acids and Glu in the 30 C-terminal amino
acids is for instance a property often found in type IV
secreted effectors (Meyer et al., 2013; Zou et al., 2013; Wang
et al., 2014). In Pseudomonas syringae, amino acid biases and
patterns at the N-terminus were used to identify type III
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effector candidates. Enrichment in Thr and depletion in Leu
is a characteristic of bacterial type III proteins secreted into
animal and plant cells, although high sequence variability and
high tolerance of mutations make these properties difficult
to generalize (Arnold et al., 2009; McDermott et al., 2011;
Schechter et al., 2012). To identify novel effectors in Fusarium
sp., Stagonospora nodorum, and Puccinia graminis f.sp. tritici
fungi, Sperschneider et al. performed unsupervised clustering
based on 35 sequence-derived features, including amino acid
composition (Sperschneider et al., 2013, 2014). Several clusters
were characterized by strong biases in amino acid usage, such
as the cluster including the three S. nodorum effectors SnToxA,
SnTox1 and SnTox3 enriched in small and non-polar amino acids
and the cluster including F. oxysporum f. sp. lycopersici SIX3
featuring high average positive protein charge and a significantly
higher percentage of Pro, Ser and Thr (Sperschneider et al., 2013).
Similarly, secreted effectors of fungi from the Sclerotiniaceae
family could be enriched in Thr and depleted in Glu and Lys
compared to the rest of the proteome. This suggests that amino
acid usage bias is a property that may be shared by sets of secreted
proteins with unrelated function and from distant pathogen
lineages. Consistent with Glu and Lys being disorder-promoting
amino acids, we found that secreted proteins of Sclerotiniaceae
species show lower disorder frequency in hot loops that the rest
of the proteome. Effectors of bacterial pathogens were shown
to be highly enriched in long disordered regions, presumably to
facilitate effector translocation into the host cell, host function
mimicry and evasion of the host immune system (Marín et al.,
2013). Intrinsic protein disorder was shown to promote high
specificity and low affinity protein-ligand interactions (Zhou,
2012; Chu and Wang, 2014). While these properties could be
advantageous for host-specific effectors of biotrophic pathogens,
for which avoiding detection by the host is critical, opposite
requirements may shape the evolution of effectors from broad-
range necrotrophic pathogens. Indeed, a relatively low specificity
may allow effectors to function during colonization of diverse
host species. It is also believed that detection by the host would
not be detrimental, and could even be beneficial, to some
necrotrophic plant pathogens (Govrin and Levine, 2000). In
that case, effectors with high affinity for their targets would
not be counter-selected by the host immune system, and would
instead favor Sclerotiniaceae fungi in the competition with other
microbes for plant-derived resources.

Cross species comparative analysis has been successfully
applied to the identification of novel and specialized virulence
mechanisms on the one hand, and to the identification of
optimization principles governing the evolution of proteins
under given constraints on the other hand. In nature,
S. borealis proteins have undergone optimization under
specific environmental constraints, including cold, over an
irreproducible time at the scale of human life. Comparative
genomics approaches therefore have the potential to reveal
protein specialization and optimization principles that are not
easily accessible through experimental evolution experiments.
Indeed, selecting optimized enzyme variants, especially for
thermostability, through random mutagenesis often requires
exploring a large library of mutants or experimental setups

maintaining an appropriate pressure of selection to collect
the optimized variants (Kuchner and Arnold, 1997; Lebbink
et al., 2000). Comparative genomics can accelerate discoveries
usually relying on time consuming screens (Xiao et al.,
2008). The biochemical properties of cold-active proteins
make them attractive in biochemical, bioremediation, and
industrial processes for food, biofuels and pharmaceutical
production notably (Cavicchioli et al., 2011). Plant pathogenic
fungi in particular present a vast reservoir of biopolymer
degrading enzymes adapted to a wide range of temperatures
and environments. Functional analyses will be required to test
whether the activity of candidates highlighted in this work have
applied potential. In the long term, the analysis of optimization
principles governing the evolution of secreted proteins from
important fungal pathogens may prove useful in improving
plant health with the design of crops resistant to broad host
range pathogens and to cold stress, and to develop novel
strategies for the production of renewable energy relying on the
bio-conversion of plant biomass.

Materials and Methods

Genome Sources
We retrieved three predicted proteomes (Sclerotinia sclerotiorum
v1.0, Botrytis cinerea v1.0 and Sclerotinia borealis F-4157)
from the Joint Genome Institute (http://jgi.doe.gov/) and NCBI
(http://www.ncbi.nlm.nih.gov/) in fasta format. As a cautionary
note: the proteome sequences that form the basis of our analyses
had originally been predicted by various techniques and may
thus be of varying quality and completeness. S. sclerotiorum gene
expression data was obtained from http://urgi.versailles.inra.fr/
Data/.

Gene Ontology Annotation and Enrichment
Analysis
The Gene Ontology was collected from the Gene Ontology
Consortium website (http://geneontology.org/) in obo format.
Assignment of the Gene Ontology annotation of the three
sets of protein sequences was performed using InterProScan
(Jones et al., 2014). GO enrichments analysis was performed
using the Biological Networks Gene Ontology plug-in (Maere
et al., 2005) in Cytoscape 3.2.1 with the following parameters:
a hypergeometric test for statistical analysis with a Bonferroni
Family-Wise Error rate correction and a significance level of 0.05.

Ortholog Prediction
Ortholog prediction was performed with standalone InParanoid
4.0 (Ostlund et al., 2010) using all vs. all Basic Local Alignment
Search Tool (BLAST) algorithms and the following parameters:
the BLOSUM62 matrix, a score cut-off of 50 bits and a minimal
sequence overlap area of 0.5 (Altschul et al., 1990; Remm et al.,
2001). Two pairwise InParanoid comparisons (S. borealis vs. S.
sclerotiorum and S. borealis vs. B. cinerea) were ran first on
complete proteomes, leading to the identification 6717 COGs,
then using only conserved regions of S. sclerotiorum proteins
(“overlapping regions”) as input (Figure 2). Finally alignments
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producing a consensus sequence shorter than 200 amino acids
were excluded leading to 5531 COGs.

Pipeline for Collecting Multiple Ortholog
Alignments
First, ortholog predictions were performed as described in
previous section between one organism, called reference
organism in the following (S. sclerotiorum), and each other
organism included in the analysis (B. cinerea and S. borealis).
Only core groups of orthologous proteins harboring one member
from each species were retained. Then, the common overlapping
sequences in the reference organism to the others organisms were
selected according to BLAST begin and end alignment positions.
Themaximal begin and the minimal end were used to defined the
overlapping sequences. Overlapping sequences with lower than
200 amino acids length were excluded. The obtained overlapping
sequences in the reference organism were used to run a new
round of ortholog prediction with each other organisms. The
consensus sequences, or core ortholog groups alignments, in each
organisms were selected accordingly to BLAST begin and end
alignment positions using the minimal begin and the maximal
end obtained through the all orthologs predicted. The consensus
sequences with lower than 200 amino acids length were excluded.

Amino Acid and Disorder Analysis
Protein amino acid usage was assessed by calculating the
frequency of each of 20 amino acids in protein sequences.
Prediction of disorder probability of protein amino acid was
performed with DisEMBL vs. 1.4 computational tool (Linding
et al., 2003) on the full length proteins. In case of analysis of
a protein sequence subset, like for the core ortholog groups
alignments (see previous section), the disorder probability of
each amino acid in the subset were taken from the disorder
probability of this amino acid in the full length protein. This was
done to avoid miss attribution of disorder probability in a subset
of a sequence since surrounding of amino acid in the sequence
are of importance to calculate its own disorder probability.

Secretome Prediction and Protein Motif
Annotation
Analysis by SignalP4.1 was performed at http://www.cbs.dtu.dk
using default parameters. Protein localization was predicted with
PSORT II software using the WoLF PSORT extension (Horton
et al., 2007) for organism type “fungi.” Proteins were defined
as part of the secretome when containing both signal peptide
and extracellular predicted localization and were excluded if
they possess a trans-membrane region predicted by TMHMM
(Sonnhammer et al., 1998). Glycosylphosphatidylinositol
anchored proteins were identified using Fraganchor (Poisson
et al., 2007); N-glycosylation sites were predicted using GlycoEP
(Chauhan et al., 2013).

Statistical Analysis and sTEKhot Index
Determination
All statistical tests were computed with R.Studio software.
Wilcoxon test was used for significance analysis. Difference was
considered significant for p-values inferior to 0.05. Significantly

enriched or depleted amino acids and disorder frequency in
S. borealis common set of core ortholog groups’ alignments
compared to S. sclerotiorum and B. cinerea core ortholog groups
alignments, but found to be not significantly different between
S. sclerotiorum and B. cinerea, were further used for computing
the environmental condition adaptation index (sTEKhot). Thr
frequency (Tf) found to be over represented in S. borealis were
added to the numerator of the index, whereas Lys (Kf), Glu
(Ef) and hot loops (HotLOOPf) frequencies found to be under
represented were added to the denominator. Each metrics were
normalized by their own median (Xmf, where X is the considered
metric) through the all set of proteome used in the analysis (S.
borealis plus S. sclerotiorum plus B. cinerea). This normalization
assures similar contribution of each metrics to the index.

sTEKhot =

Tf
Tmf

Kf

Kmf
+

Ef
Emf

+
HotLOOPf
HotLOOPmf

(2)

sTEKhot value was calculated for every protein of the three
proteomes according to (2). The list of proteins with the top
635 sTEKhot (>1) corresponded exactly to proteins with the top
Tf-(Ef+Kf+HotLOOPf) values supporting the robustness of the
arithmetic design of the sTEKhot index in this dataset.

Random Shuffling of sTEKhot
Random sTEKhot indexes were calculated by shuffling amino
acid and hotloop frequencies in Equation (2) with any of
the observed amino acid and hotloop frequencies for a given
organism. The random index is therefore defined by Equation
(3) in which W, X, Y, and Z are randomly selected observed
frequencies.

RANDOMindex =

Xf

Xmf

Yf
Ymf

+
Zf
Zmf

+
Wf

Wmf

(3)

Indexes were calculated separately for the three proteomes and
secretomes. Random sTEKhot medians and Wilcoxon ranking
test p-values were extracted from 300 independent runs.

Protein Structure Modeling and Analysis
Protein structure modeling was performed with the I-TASSER
server (Zhang, 2008) using SS1G_10836 and SS1G_03146 full
length sequences as queries. SS1G_10836 best model C-score was
-3.22; best TM score was 0.875 (RMSD 2.27Å) with model 4KE2.
SS1G_03146 best model C-score was -2.28; best TM score was
0.677 (RMSD 3.07Å) with model 4MAH.

Gene Expression Analysis
One-centimeter long leaves were collected and grinded twice
for 30 s at maximum frequency in a Retsch MM40 mixer. Total
RNA extraction was performed withMacherey-Nagel Nucleospin
RNA extraction kit following the manufacturer’s instructions.
One µg of total RNA was used for cDNA synthesis in a 20-µL
reaction according to Roche Transcriptor Reverse Transcriptase
protocol, using 0.5µL of SuperScript II reverse transcriptase
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(Invitrogen), 1µg of oligo(dT), and 10 nmol of dNTP. cDNAs
(diluted 1:10) were used as templates in the quantitative RT-
PCR analysis. Quantitative RT-PCR was performed using gene-
specific primers (Table S6) with LightCycler 480 apparatus
(Roche Diagnostics). Quantitative PCR reaction was performed
using the SYBR GREEN I protocol (5 pmol of each primer and
5µL of RT reaction product in a 7µL final reaction volume).
The PCR conditions were 9min at 95◦C, followed by 45 cycles
of 5 s at 95◦C, 10 s at 65◦C, and 20 s at 72◦C. Expression values
of SS1G_10836 and SS1G_03146 were normalized based on
expression of SS1G_04652 and SS1G_12196 housekeeping genes.
Values from two biological replicates are shown, error bars show
standard error of the mean.
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Figure S1 | Network representation of gene ontologies (GOs) of proteins

with sTEKhot >1 in S. sclerotiorum proteome. Nodes correspond to GOs are

sized according to the number of proteins with sTEKhot >1. They are colored

from yellow to orange according to the p-value of a hypergeometric test for

enrichment in proteins with sTEKhot >1 compared to whole proteomes.

Figure S2 | Network representation of gene ontologies (GOs) of proteins

with sTEKhot >1 in B. cinerea proteome. Nodes correspond to GOs are sized

according to the number of proteins with sTEKhot >1. They are colored from

yellow to orange according to the p-value of a hypergeometric test for enrichment

in proteins with sTEKhot >1 compared to whole proteomes.

Figure S3 | Distribution of sTEKhot values for non-secreted proteins and

mature secreted proteins (signal peptide removed) in S. borealis, S.

sclerotiorum and B. cinerea.

Figure S4 | Distribution of best BlastP bit scores (log-scaled scores) using

S. borealis non-secreted proteins and secreted proteins as queries

against S. sclerotiorum or B. cinerea proteomes. Lower scores for searches

using S. borealis secretome as query indicate that S. borealis secreted proteins

are less conserved than non-secreted proteins. P-values of a Student t-test for

differences between non-secreted and secreted proteins are indicated.
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