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Wheat stripe rust (Puccinia striiformis f. sp. tritici, Pst), is one of the most serious
diseases of wheat (Triticum aestivum L.) worldwide. To gain a better understanding of
the protective mechanism against stripe rust at the adult plant stage, the differences in
photosystem II and antioxidant enzymatic systems between susceptible and resistant
wheat in response to stripe rust disease (P. striiformis) were investigated. We found
that chlorophyll fluorescence and the activities of the antioxidant enzymes were higher
in resistant wheat than in susceptible wheat after stripe rust infection. Compared with
the susceptible wheat, the resistant wheat accumulated a higher level of D1 protein
and a lower level of reactive oxygen species after infection. Furthermore, our results
demonstrate that D1 and light-harvesting complex II (LHCII) phosphorylation are involved
in the resistance to stripe rust in wheat. The CP29 protein was phosphorylated under
stripe rust infection, like its phosphorylation in other monocots under environmental
stresses. More extensive damages occur on the thylakoid membranes in the susceptible
wheat compared with the resistant wheat. The findings provide evidence that thylakoid
protein phosphorylation and antioxidant enzyme systems play important roles in plant
responses and defense to biotic stress.

Keywords: stripe rust, antioxidant enzyme, chlorophyll fluorescence, photosystem II, Triticum aestivum L.

Introduction

Common wheat (Triticum aesitivum L.) is the major cereal crop in the world, and its yield and
grain quality are highly impacted by various fungal diseases such as Fusarium head blight, powdery
mildew (Blumeria graminis), stem rust (Puccinia graminis), and stripe rust (Puccinia Striiformis; Pei
et al., 2015). Among the threemain rusts, wheat stripe rust, is one of the most serious wheat diseases
worldwide, which is the most destructive disease in the northwestern and southwestern wheat-
growing regions in China (Wan et al., 2004; Wellings, 2011; Ma et al., 2013). Wheat production
can be greatly reduced or even completely destroyed when seedlings are infected and the disease
continues to spread during the growing season (Chen, 2005). Growing resistant cultivars is the
most effective, safest, economical, and environmentally sound approach to control the wheat
stripe rust (Chen, 2005; Dodds and Rathjen, 2010). However, cultivars with race-specific resistance
usually become susceptible within a few years due to the rapid evolution of virulent races of Pst
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(Line and Chen, 1995). Therefore, it is essential to create
strategies for improving disease resistance in wheat.

Currently, resistance to stripe rust in wheat has been broadly
categorized into the all-stage resistance (also called seedling
resistance, detected at the seedling stage) and the adult plant
resistance (APR, detected only at the adult plant stage; Chen,
2005). Biotic stress usually stimulates the production of reactive
oxygen species (ROS), such as the superoxide anion (O·−

2 ),
hydrogen peroxide (H2O2) and hydroxyl radicals (OH· Suzuki
and Mittler, 2006). The production of ROS is one of the earliest
responses of plant tissues to elicitors and attack by pathogens.
Previous studies on histochemical methods have indicated that
wheat stripe rust can induce the generation of H2O2 and O·−

2 at
the seedling or adult plant stage (Wang et al., 2007; Zhang et al.,
2012). However, excessive levels of ROS potentially damage the
plant cell unless they are detoxified by the antioxidative enzymes
(Agarwal et al., 2005). These studies on wheat response to stripe
rust indicated that the antioxidant enzymes play an important
role in resistance to biotic stress (Asthir et al., 2010; Anahid et al.,
2013). Although ROS are associated with effective plant resistance
responses (especially in incompatible biotrophic pathogen–plant
interactions), some necrotrophic pathogens may generate ROS
to induce cell death, which facilitates subsequent spread of the
pathogen (Tiedemann, 1997). At present, there are few studies on
comparing of ROS and antioxidative enzymes in susceptible and
resistant wheat cultivars upon the inoculation with stripe rust.

It is well known that more than 90% of crop biomass is derived
from photosynthetic products. Although a lack of correlation
between photosynthesis and plant yield has been reported
frequently, some study suggests that enhanced photosynthesis
may increase the yield when other genetic factors remain
unchanged (Evans and Dunstone, 1970; Long et al., 2006;
Makino, 2011). Photosynthetic activities are affected by many
abiotic and biotic stresses. However, so far, most studies on wheat
photosynthesis under environment stresses focused on abiotic
stresses (Lu and Zhang, 1998; Shah and Paulsen, 2003; Yang et al.,
2008). In contrast, only a few studies have been conducted on
the relationship between the photosynthesis and biotic stresses.
Even though a previous study indicated that pathogen infection
may result in changes in photosynthesis (Wang et al., 2000), the
detailed effects of wheat stripe rust on photosystem II (PSII) are
poorly understood.

In order to reveal the relationship between the PSII and the
resistance levels of wheat to stripe rust, we compared changes
in the ROS contents, the activities of antioxidant enzymes,
chlorophyll fluorescence, thylakoid membrane protein levels,
and protein phosphorylation in susceptible and resistant wheat
cultivars. The present results are expected to provide a better
understanding of wheat resistance mechanisms against stripe rust
infections, and thus to improve the yield of wheat.

Materials and Methods

Plants, Pathogens, and Inoculation
Two wheat (Triticum aestivum L.) cultivars, namely Sy95-71 and
CN19, and the Chinese Pst race CY32 were used in the present

study. The wheat cv. Sy95-71 and CN19 are susceptible (IT = 4,
high susceptibility) and resistant (IT = 0; nearly immune) to race
CY32 at the adult plant stage (Luo et al., 2005).

For the adult plant experiments, five vernalized seedlings were
grown in a 20-cm diameter pot filled with pre-fertilized soil. The
plants were grown to the boot stage in the greenhouse under
16 h light (sodium light, 240 µmol of photons m−2 s−1) and 8 h
of darkness, and the greenhouse temperature were maintained
at 22◦C with light and 12◦C in darkness. Inoculations were
performed by applying fresh urediniospores to the flag leaves of
adult wheat plants with a fine paintbrush until the whole leaf
surface was wet without run-off. Parallel control inoculations
(CK) were treated in the same way with tap water. Subsequently,
inoculated plants were maintained at high humidity at 10◦C
for 24 h in the darkness and then returned to the greenhouse.
Inoculated and control leaves were harvested at 72 h post-
inoculation (hpi) for various analyses. The remaining plants were
continually grown to assess the stripe rust phenotypes. Three
independent biological replications were performed for each
treatment.

Chlorophyll Contents, Photosynthetic Rate,
Leaf Water Status, and Total Protein Content
Chlorophyll a and b contents were assayed according to the
method of Porra et al. (1989). Fresh leaves (0.5 g) were
cut, homogenized and extracted with 80% acetone at room
temperature. The extracts were filtered through two layers of
filter paper. After filtering, the absorbance of the solution was
read at 645 and 663 nm using a spectrophotometer (Hitachi-
U2000, Tokyo, Japan). The net photosynthetic rate (Pn) was
determined using an open gas analysis system as previously
described (Liu et al., 2009). The relative water content (RWC)
of the leaf was calculated using the following formula (Li et al.,
2014): RWC = (fresh weight - dry weight)/(turgid weight –
dry weight) × 100%. The turgid weight was determined after
placing the leaves in distilled water under dark conditions at
4◦C overnight, until they reached a constant weight. The dry
weight was obtained 24 h after placing the turgid leaves in an
oven at 85◦C. The total soluble protein content was measured as
described previously (Lowry et al., 1951). Fresh leaves (0.5 g) were
homogenized with 5 ml sodium phosphate buffer (pH 7.2) and
then centrifuged for 10 min at 4◦C. Supernatants were used for
the analysis of soluble protein using a UV spectrophotometer.

Determinations of Lipid Peroxidation and
Electrolyte Leakage
The degree of lipid peroxidation was estimated based on the
malondialdehyde (MDA) contents as previously described with
minor modification (Luo et al., 2009). Fresh leaf tissues (0.5 g)
were homogenized in 5mL 5% (w/v) tri-chloro acetic acid (TCA).
The homogenate was centrifuged at 4◦C for 10 min at 5,000 g.
A volume of 2 mL of the supernatant was combined with 2 mL of
5% TCA containing 0.67% thiobarbituric acid (TBA). The assay
mixture was incubated at 95◦C for 30min and then rapidly cooled
on ice. The mixture was centrifuged at 5,000 g for 10 min at 4◦C.
The absorbance of the supernatant was monitored at 532 nm and
corrected for non-specific turbidity by subtracting the absorbance
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FIGURE 1 | Stripe rust disease symptoms at 14 days post inoculation
(dpi) on the susceptible (Sy95-71) and resistant (CN19) wheat cultivars
at the adult plant stage. CK, un-inoculated leaves.

at 600 nm. Electrolyte leakage was measured according to the
method of Chen et al. (2015). After measuring the conductivity,
the samples were heated in water bath at 95◦C for 15 min to
achieve 100% electrolyte leakage.

Assay of ROS
Visual detection of the superoxide anion radicals (O·−

2 ) and H2O2
levels was performed using nitro blue tetrazolium (NBT) and 3,3-
diaminobenzidine (DAB), respectively, as described previously
with some modifications (Yang et al., 2004). The inoculated and
control leaves were excised at the base with a razor blade and
immersed in a solution containing 6 mM NBT, 50 mM Hepes
buffer (pH 7.5) for 2 h or 5 mM DAB dissolved in 10 mM 4-
Morpholineethanesulfonic acid (MES) (pH 3.8) for 8 h in the
darkness. Detached leaves were then fixed and decolorized in
boiling ethanol (90%) for 0.5–2 h. At least three leaves were used
for each treatment.

The H2O2 content was measured as described previously
(Okuda et al., 1991). Approximately 0.5 g of fresh leaf tissue
was cut into small pieces and ground in an ice bath with
5 mL 0.1% (w/v) TCA. After centrifugation (20 min, 12,000 g),
0.5 mL of supernatant was added to 0.5 mL 10 mM potassium
phosphate buffer (pH 7.0) and 1 mL of 1 M potassium iodide.
The absorbance of the supernatant was recorded at 390 nm.
Finally, the content of H2O2 was calculated using a standard

curve plotted with known concentrations of H2O2. The O·−
2

content was determined as described previously by monitoring
the nitrate formation from hydroxyl amine (Elstner and Heupel,
1976).

Determination of Antioxidative Enzyme
Activities
The enzymes were extracted at 4◦C from 0.5 g of fresh
leaf tissues using a chilled mortar and pestle with 5 mL
ice-cold 25 mM Hepes buffer (pH 7.8) containing 0.2 mM
ethylenediaminetetraacetic acid, 2 mM ascorbate and 2%
polyvinylpyrrolidone (PVP). The extracts were centrifuged at
12,000 g for 30 min at 4◦C. After centrifugation, the supernatant
was used for the enzyme assays. Peroxidase (POD), superoxide
dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX),
glutathione peroxidase (GPX), and glutathione reductase (GR)
were assayed as previously described (Chen et al., 2015).

Chlorophyll Fluorescence Visualization
Chlorophyll fluorescence images were recorded at room
temperature using a modulated imaging fluorometer (the
Imaging PAM M-Series Chlorophyll Fluorescence System,
Heinz-Walz Instruments, Effeltrich, Germany) according to the
instructions provided by the manufacturer. Infected and control
wheat samples were dark adapted for 30 min prior to the
fluorescence measurements. Values of F0 (minimum fluorescence
yield) and Fm (maximum fluorescence yield) were averaged
to improve the signal-to-noise ratio. The image data acquired
in each experiment were normalized to a false color scale.
The maximum efficiency of PSII photochemistry in the dark-
adapted state (Fv/Fm), the photochemical quenching (qP), the
quantum yield of PSII electron transport (�PSII), and the
non-photochemical quenching coefficient (NPQ) were visualized
according to the method of Maxwell and Johnson (2000).

Protein Gel Blotting Analysis
The isolation of thylakoid membrane from wheat was performed
as described (Chen et al., 2009). Thylakoid membrane proteins
were separated by SDS-PAGE (6% acrylamide stacking gel+ 15%
separation gel + 6 M urea). Then immunodetection was
performed on thylakoid membranes according to the method
as described previously (Chen et al., 2009). For the anti-
phosphothreonine antibody, purchased from New England
Biolabs (Cell Signaling, Ipswich, MA, USA), and the membrane
was blocked with 5% BSA (Sigma Chemical Co. St. Louis, MO,
USA). Antibodies against Lhca1, Lhca2, Lhca3, Lhca4, D1, D2,
CP43, Lhcb1, Lhcb2, Lhcb3, Lhcb4, Lhcb5, Lhcb6, and Rubisco
were obtained from Agrisera (Umea, Sweden). The membranes
were then incubated with horseradish peroxidase-conjugated
secondary antibody (Bio-Rad Comp. Hercules, CA, USA) and
developed using a chemiluminescent detection system (ECL, GE
Healthcare). Quantification of the immunoblots was done using
Quantity One software (Bio-Rad Comp. Hercules, CA, USA).

Transmission Electron Microscopy
Pieces of leaf tissue from control and infected plants were fixed
immediately with 3% glutaraldehyde in 0.1 sodium cacodylate
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FIGURE 2 | Chlorophyll (A), net photosynthetic rate (B), relative water content (RWC) (C), and total protein content (D) in inoculated and
un-inoculated leaves of Sy95-71 and CN19. Error bars represent the standard deviation based on three biological replicates. Different letters depict significant
differences between the susceptible and resistant wheat cultivars (P < 0.05). Statistical analysis was performed using one-way ANOVA followed by Duncan’s
multiple range test. CK, un-inoculated wheat plants.

FIGURE 3 | Measurement of reactive oxygen species (ROS) after stripe
rust infection. Histochemical assays for superoxide anion radicals (O·−

2 ) and
hydrogen peroxide (H2O2) by nitro blue tetrazolium (NBT) (A) and
3,3-diaminobenzidine (DAB) (B) staining, respectively. Then, O·−

2 production
(C) and the H2O2 content (D) were measured. Values are means ± SD from
three independent biological replicates. Different letters depict significant
differences between the susceptible (Sy95-71) and resistant (CN19) wheat
cultivars (P < 0.05). CK, un-inoculated wheat plants.

buffer (pH 6.9) at 4◦C overnight, post-fixed with 1% osmium
tetroxide, dehydrated in series acetone and embedded in Epon
812, as described previously (Liu et al., 2009). Thin sections
cut with an ultramicrotome (Ultracut F-701704, Reichert-Jung,
Austria) were stained with uranyl acetate and observed in
a Transmission Electron Microscope (TEM H600, Hitachi)
operating at 100 kV.

Statistical Analysis
SPSS 19.0 (IBM, Chicago, IL, USA) statistical software was used
for the statistical evaluation of the data. All results were presented
with mean ± SD from three independent biological replicates.
The means were compared using Duncan’s multiplication range

FIGURE 4 | Effects of stripe rust infection on the malondialdehyde
(MDA) content (A) and electrolyte leakage (B) of the susceptible
(Sy95-71) and resistant (CN19) wheat cultivars. Bars represent standard
deviations of three independent biological replicates and values followed by
different letters are significantly different at P < 0.05 according to Duncan’s
multiple range test. CK, un-inoculated wheat plants.
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FIGURE 5 | Effects of stripe rust infection on the POD, Peroxidase (A); SOD, superoxide dismutase (B); catalase CAT, catalase; (C); APX, ascorbate
peroxidase (D); GPX, glutathione peroxidase (E); and GR, glutathione reductase (F) in the susceptible (Sy95-71) and resistant (CN19) wheat cultivars.
Bars represent standard deviations of three independent biological replicates and values followed by different letters are significantly different at P < 0.05 according
to Duncan’s multiple range test. CK, un-inoculated wheat plants.

test. Differences between all four types of treatments were
considered to be statistically significant when P < 0.05.

Results

Symptoms after Inoculation
Adult plants of Sy95-71 and CN19 showed different symptoms at
14 days post-inoculation (dpi) with race CY32 (Figure 1). Stripe
rust uredia were visible on the flag leaves in the susceptible wheat
Sy95-71, representing a disease severity of 95% compared with
the un-inoculated control of Sy95-71. However, no sporulation
appeared on inoculated leaves in the resistant wheat cultivar
CN19. Therefore, Sy95-71 was susceptible, while CN19 was
highly resistant against to the stripe rust at the adult plant stage.

Effect of Wheat Stripe Rust on the Chlorophyll
(Chl) Content, RWC, and Total Protein Content
There was no significant difference in the Chl, Pn, RWC, and total
protein content between the control plants of the susceptible and

resistant wheat (Figure 2). In CN19, the wheat stripe rust fungal
infection caused a decrease in the Chl content of 17% compared
with the CN19 control (Figure 2A). However, a marked decrease
in Chl content was observed in the susceptible wheat Sy95-71
after inoculation at the boot stage, reaching 27% when compared
with the Sy95-71 control. The infected Sy95-71 also had a more
significant decrease in the photosynthesis rate compared with
the infected CN19 at 72 hpi. Apparently, the Pst infection can
regulate photosynthetic rates of infected leaves in both Sy95-71
and CN19 (Figure 2B). However, after inoculation, the RWC and
total protein content were not significantly different between the
susceptible and the resistant wheat (Figures 2C,D).

Pst Infection Induces ROS Accumulation and
Lipid Peroxidation in Leaves
The induction of O·−

2 and H2O2 by Pst inoculation in
the CN19 and Sy95-71 plants at the boot stage was
analyzed by histochemical staining with NBT and DAB,
respectively. No significant difference was detected among
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FIGURE 6 | Effects of stripe rust infection on chlorophyll fluorescence parameters (Fv/Fm; qP, photochemical quenching; NPQ/4, non-photochemical
quenching coefficient; and �PSII, quantum yield of PSII electron transport) in Sy95-71 and CN19. Quantitative values (±SD) are shown below the individual
fluorescence images. CK, un-inoculated wheat plants.

the controls of CN19 and Sy95-71 (Figures 3A,B).
Interestingly, both O·−

2 and H2O2 were upregulated in
infected leaves in both susceptible and resistant wheat,
compared with the control plants. In comparison, the
accumulation of O·−

2 and H2O2 was more pronounced
in the infected Sy95-71 than that of the infected
CN19.

Quantitative levels of H2O2 and O·−
2 produced in the

inoculated and un-inoculated leaves were determined further.
After infection, the level of O·−

2 accumulation in CN19
was slightly higher than that observed in the control plants
(Figure 3C). In Sy95-71, stripe rust fungal inoculation resulted
in a significant increase in the O·−

2 content compared with
that of the controls and CN19 (P < 0.05). Similar results
were observed for the level of H2O2. O·−

2 and H2O2 levels
in Sy95-71 increased by 43 and 284%, respectively, after
inoculation compared with the control (Figures 3C,D). In
addition, we examined the degree of oxidative damage in
leaves of wheat subjected to Pst infection by determining
the amount of lipid peroxidation (Barclay and Mckersie,
1994). As shown in Figure 4A, the stripe rust fungal
infection raised the concentration of MDA about 29 and
47% in CN19 and Sy95-71, respectively, when compared with
the respective controls. Similarly, the electrolyte leakage in
inoculated Sy95-71 was also higher than that of inoculated CN19
(Figure 4B).

Effect of Stripe Rust on the Activities of
Antioxidant Enzymes
The effects of Pst infection on the activities of antioxidant
enzymes in the susceptible and resistant wheat are presented
in Figure 5. The antioxidant enzyme activities in the un-
inoculated plants of Sy95-71 and CN19 showed no significant
difference (Figure 5). After inoculation, the POD, CAT, and
GPX activities increased in Sy95-71 and CN19 compared with
their respective controls. However, a more obvious increase was
observed in CN19, especially with respect to GPX activity. In
Sy95-71 and CN19, infections caused significant increases in GPX
activities of 41 and 79%, respectively (Figure 5E). However, after
infection, SOD activity decreased slightly in Sy95-71 but was
not significantly changed in CN19 compared with the respective
controls (Figure 5B). In addition, we found that APX and
GR activities decreased in Sy95-71 and CN19 infected with Pst
(Figures 5D,F). A more pronounced decrease was observed in
Sy95-71 after infection. There was a 50% decrease in GR activity
in Sy95-71 exposed to the stripe rust (Figure 5F).

Effect of Wheat Stripe Rust Inoculation on
Chlorophyll Fluorescence
The chlorophyll fluorescence of wheat leaves inoculated with Pst
was examined by a modulated imaging fluorometer. In CN19, the
maximum photochemical efficiency of PSII in the dark-adapted
state (Fv/Fm) had no significant decrease in the inoculated leaves
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compared with the un-inoculated leaves (Figure 6). Compared
with CN19, Sy95-71 exhibited a significant decrease in the Fv/Fm
value after the inoculation. Furthermore, we found that the
NPQ, the quantum yield of �PSII, and the qP values were also
influenced significantly in inoculated leaves of Sy95-71 compared
with the un-inoculated leaves (Figure 6). These obvious effects
were not observed in the infected leaves of CN19.

Effect of Stripe Rust on the Thylakoid Protein
Content and Phosphorylation
To determine whether a reduction in the abundance of PSII
subunits occurred in the susceptible wheat, the thylakoid
polypeptide composition was investigated by the immuno-
blotting (Figure 7). The levels of four major PSI proteins
showed no detectable changes after the infection (Figure 7A).
Although there was no obvious difference in the level of
almost all PSII proteins between inoculated and un-inoculated
wheat, changes in the D1 and Lhcb4 (CP29) proteins were
observed in Sy95-71 and CN19 after the infection (Figure 7B).
Compared with the control, infection resulted in a decrease
in the D1 protein in Sy95-71. By contrast, the level of D1
was increased in CN19 after the infection compared with the
control. We also found that the level of the D2 protein showed
no obvious difference between Sy95-71 and CN19 (Figure 7A).
Interestingly, although the level of the CP29 protein did not
change in any of the plants, CP29 protein was phosphorylated in
inoculated wheat plants, especially in CN19 (Figure 7B). Further

FIGURE 7 | Immunoblot analyses of thylakoid proteins in inoculated
and un-inoculated wheat plants (Sy95-71 and CN19). Immunoblot
analyses of thylakoid membrane proteins were performed using antibodies
specific for representative PSI, photosystem I (A); PSII, photosystem II (B);
and Rubisco proteins. One microgram of total chlorophyll was loaded into
each electrophoretic lane. CK, un-inoculated wheat plants. Rubisco was used
as the standard reference for western blotting.

analyses of thylakoid membrane protein phosphorylation were
performed with the anti-phosphothreonine antibody. As shown
in Figure 8A, thylakoid protein phosphorylation did not show
obvious differences after the infection, although phosphorylated-
D1 (P-D1) and P-LHCII presented some differences. In Sy95-71,
the infection resulted in a decrease in the level of P-D1 and
P-LHCII compared with the control plants. In contrast, more
levels of phosphorylated D1 and light-harvesting complex II
(LHCII) were found in the infected CN19 than that of the
non-inoculated control (Figure 8).

Alterations in the Thylakoid Ultrastructure of
Plants Infected with Stripe Rust
To further investigate effects of the stripe rust infection on PSII
structures, the thylakoid membrane ultrastructure was analyzed
with a transmission electron microscopy. The infection in Sy95-
71 resulted in a significant reduction in the stacking of the grana,
and the thylakoid structure had become fibrous compared with
the control. However, the infection of CN19 did not induce any
obvious changes in the thylakoid membrane structure compared
with the control (Figure 9).

Discussion

It is well known that wheat stripe rust is one of the most
destructive diseases of wheat, which can cause severe yield losses
when susceptible cultivars are grown in the field (Wan et al.,
2004; Chen, 2005). The use of resistant cultivars is the most cost-
effective and environmentally sound approach to reduce stripe
rust damage. To better understand the APR to wheat stripe rust,
we investigated the change of photosynthetic characteristics and
antioxidant systems in susceptible and resistant wheat cultivars
that were infected by wheat stripe rust.

It is well known that different stressful environments usually
cause substantial damage to photosynthetic pigments (Ashraf and
Harris, 2013). The decrease in total Chl content is a common
phenomenon under biotic and abiotic stresses. The stress-
induced alterations in leaf Chl content may be due to impaired
biosynthesis or accelerated pigment degradation (Perveen et al.,
2010). In consistence with these previous studies, we found
that the stripe rust infection resulted in a decrease in the
Chl content in both the susceptible and the resistant wheat,
especially the susceptible wheat. This result indicates that the
resistant wheat has a more effective protective system against
damages to pigments caused by the infection. In addition, the
photosynthetic rates were significantly decreased at 72 hpi, likely
because pathogen infection can reduce green leaf areas or damage
mesophyll cells (Chang et al., 2013).

ROS species are generated in cells during plant–pathogen
interactions and are associated with resistance to stripe rust,
as reported in previous studies using histological or microarray
methods (Wang et al., 2007; Coram et al., 2008). The results
from the present study showed that stripe rust markedly induced
ROS accumulation in the leaves of inoculated wheat plants,
particularly in the susceptible wheat (Figure 3). This finding
indicates a relationship between increased cell death and ROS
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FIGURE 8 | Thylakoid protein phosphorylation after wheat stripe rust
infection of the susceptible (Sy95-71) and resistant (CN19) wheat
cultivars. Thylakoid proteins extracted from the inoculated and un-inoculated
wheat plants were fractionated by SDS-PAGE in 12% acrylamide separation
gel with 6 M urea. Immunoblot analysis of thylakoid membrane proteins was
performed using anti-phosphothreonine antibodies (A). Loading was based
on an equal amount of chlorophyll (1 µg chlorophyll). The SDS-PAGE results
after Coomassie blue staining (CBS) are shown in the bottom panel (B). CK,
un-inoculated wheat plants. (C) Quantification of immunoblot data. Results
are presented relative to the amount of respective CK (100%).Asterisks
indicates statistically significant differences at the P < 0.05 level. Values are
means ± SD from three independent biological replicates.

accumulation. It has been shown that ROS plays a dual role in
plant–pathogen interaction (Feng et al., 2014), however the role
of ROS in plant defense responses depends on its concentration
(Mittler et al., 2004). A low ROS concentration induces protective
antioxidant mechanisms and triggers a systemic response, while
a moderate or high ROS concentration can be toxic to pathogens
(Peng and Kuc, 1992; Solomon et al., 1999). Here, we confirmed
that the protective antioxidant system was activated in the
resistant wheat, which subsequently changed the levels of
ROS and avoided severe oxidative damages caused by ROS
overproduction. The accumulation of O·−

2 and H2O2 is usually

FIGURE 9 | Transmission electron microscope analysis of chloroplasts
after stripe rust infection of the susceptible (Sy95-71) and resistant
(CN19) wheat cultivars. CK, un-inoculated wheat plants.

observed in the incompatible interaction during the early stage
of pathogen infection (Wang et al., 2007). However, the study
of Wang et al. (2007) also showed that H2O2 accumulation
was observed in mesophyll cells in the compatible interaction
at the late stage of 96 h after inoculation, which is consistent
with our results of 72 h after inoculation during the boot stage.
Therefore, the ROS accumulation level likely also depends on the
inoculated time and varies in different wheat cultivars. During
environment stresses, ROS species are also reportedly involved
in lipid peroxidation, which in turn result in membrane injury
(Smirnoff, 1993). The high content of O·−

2 and H2O2 in the
susceptible wheat after infection could be estimated by the
accumulation of MDA and the electrolyte leakage (Halliwell and
Gutteridge, 1984). In this study, our results indicated that ROS
may play an important role in plant resistance to stripe rust
during the adult plant stage.

To detoxify the excessive ROS species accumulation, plants
have evolved a complex antioxidant defense system to eliminate
or reduce their damaging effects. Previous studies indicated that
stripe rust infection leads to the activation of some antioxidant
enzymes in resistant wheat genotypes; by contrast, these enzymes
are inhibited in the susceptible genotypes (Ivanov et al., 2005;
Asthir et al., 2010). The activity of several antioxidant enzymes
wasmarkedly induced in susceptible barley after powderymildew
inoculation, while less pronounced pathogen-induced increases
were detected in inoculated leaves of resistant plants (Harrach
et al., 2008). In the present study, pronounced differences in
these antioxidant enzyme activities were observed in susceptible
and resistant wheat cultivars. After infection, the activity of
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POD, CAT, and GPX was markedly increased in resistant wheat
compared with susceptible wheat, suggesting that these three
antioxidant enzymes in inoculated adult plants might play an
important role in regulating the levels of ROS. In contrast,
pronounced decreases in the activity of SOD, APX, and GR were
found in susceptible wheat after the stripe rust infection. This
may be due to the severe damages in the susceptible wheat.

The common approach for screening genotypes for disease
resistance is costly and time-consuming, and also depends on
the environmental conditions. Therefore, the development of
rapid, accurate and objective evaluation methods is urgently
needed in agriculture. Chlorophyll fluorescence has been proven
to be a useful, non-invasive tool for the study of different
aspects of photosynthesis, as well as for the detection of various
environmental stresses in a wide range of plant species (Ashraf
and Harris, 2013). A previous study indicated that measurement
to the quantum yield of non-regulated energy dissipation in PSII
is a valuable tool for screening wheat plants for leaf rust resistance
(Burling et al., 2010). In the present study, the susceptible cultivar
showed a stronger decline of chlorophyll fluorescence compared
with the resistant cultivar. In the susceptible wheat, the lower
Fv/Fm valuemay be due to partial inactivation of the PSII reaction
centers. At the same time, the lower qP and �PSII also reflect
a lower quantum yield of PSII in the susceptible wheat cultivar.
In addition, the higher NPQ in the susceptible wheat shows
the increased need of dissipating excess light energy, possibly
because of its lower PSII activity. Furthermore, observations of
the thylakoid membrane ultrastructure also indicated that the
stripe rust infection alters grana stacking and relaxation of the
thylakoid structure (Figure 9), thereby resulting in a decrease in
PSII activity in the susceptible wheat plants. Hence, the results
suggest that the resistant cultivar avoids PSII damages more
effectively than the susceptible cultivar.

To date, most studies have been conducted on pathogen-
resistant (PR) genes or proteins. There are few studies on effects
of the stripe rust infection on photosynthetic proteins. A previous
study showed that stripe rust infection may result in a decrease
in D1 protein in susceptible wheat (Shen et al., 2008). This
finding is consistent with our results, in which the content of
D1 was reduced in the susceptible wheat leaves, but increased
in the resistant wheat plants when challenged with Pst. The

levels of PSI and other PSII proteins were not changed in
both the susceptible and the resistant wheat plants, indicating
that most photosynthetic proteins do not participate in the
regulation of plant resistance to stripe rust during the adult plant
stage. In addition, our study indicated that CP29 was strongly
phosphorylated in the resistant wheat plants after the stripe
rust infection, suggesting that CP29 phosphorylation plays an
important role in plant resistance. Previous studies showed that
CP29 protein phosphorylation in thylakoid membranes may be
involved in a number of responses to a changing environment
(Chen et al., 2009; Liu et al., 2009).

Although there are no studies on thylakoid protein
phosphorylation after stripe rust infections, phosphorylation and
dephosphorylation of PSII proteins have been reported to play
an important role in the response to environmental stresses (Aro
andOhad, 2003; Vener, 2007; Liu et al., 2009; Fristedt et al., 2010).
In the current study, we found that D1 and LHCII proteins were
strongly phosphorylated in the resistant wheat plants after the
stripe rust infection, suggesting that phosphorylation of D1 and
LHCII may be also involved in plant defense.

Summary

We show that stripe rust infections markedly altered the
photosynthetic characteristics and antioxidant systems in
susceptible and resistant wheat cultivars. We found that the
resistant wheat may be effective in alleviating excessive ROS
through antioxidant enzymes and may maintain a higher PSII
activity compared with the susceptible wheat plants. In addition,
strong PSII protein phosphorylation was also observed in the
resistant wheat. Based on these results, we propose that the
antioxidant enzymatic systems and PSII protein phosphorylation
may play an important role in plant resistance to stripe rust.
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