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The Phytomicrobiome in Context

As is the case with other multicellular eukaryotes, plants are colonized by large numbers
of unicellular microorganisms. They may be free-living commensals, epiphytes, symbionts
(endophytes), or obligate parasites. The plant holobiont is in effect an ecosystem, and it is
of interest to know how this assemblage is established and maintained, and reacts to both
biotic and abiotic cues. The current view, initially elaborated in the context of coral-dwelling
microbial communites, is that the multicellular organism is more inclusively described by the term
“holobiont” that includes associated microbiota, and is a valid unit of natural selection (Rosenberg
et al., 2007). The holobiont then, is often dependent on its microbiota for crucial functions,
drastic imbalances in which, termed dysbiosis, are thought to lead to compromised or deficient
functioning.

The association of plants with microbes is phylogenetically ancient, going back to the
macroalgae (Marshall et al., 2006). The role of the microbiota of plants, collectively termed the

“phytomicrobiome,” in their overall life cycle is now under investigation, close on the heels of
more extensive studies on animal, especially human, microbiota. The development of Arabidopsis
thaliana (thale cress) and Brachypodium distachyon (purple false brome) as model systems
for dicotyledonous and monocotyledonous plants respectively, and the availability of genome
databases for Pseudomonads (Winsor et al., 2011) and plants (Duvick et al., 2008) indicate that
the potential for both hypothesis-based and discovery science are indeed great.

The assembly, development and maintenance of the plant holobiont is not possible without an
exchange and sensing of, and responses to, biomolecular cues between its constituents. Within this
overall theme, we focus on a few recently discovered, novel inter- and intra-species interactions of
some Pseudomonas spp., indicating their utility as model systems, and highlighting some previously
unforeseen mechanisms that could have a bearing on plant-phytomicrobiome interactions. Note
that, for purposes of this article, we use the word “signaling” to refer generically to the sensing and
response of organisms to environmental cues of both biotic and abiotic origins.

Some Aspects of the Social Biology of Pseudomonas spp.

The genus Pseudomonas is the most numerous among the cataloged genera of Gram-negative
bacteria (Gomila et al., 2015). The ubiquity and metabolic versatility of this genus allows it to
colonize a wide range of natural habitats and adopt a variety of lifestyles. Pseudomonas spp. have
been isolated from each of the ecological niches within a plant as stated earlier (for a compilation,
see Table 1 of Mercado-Blanco and Bakker, 2007). Their known ability to interact with and
influence other bacteria, fungi, and multicellular organisms in a variety of biological contexts, and
the availability of experimental tools for their genetic manipulation, should greatly facilitate the
translation of knowledge for a wide range of practical applications.
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At the outset, it is worth recalling that strains of P.
putida and P. aeruginosa were the first living, genetically
modified organisms to be patented for a specific application
(biodegradation of petrochemicals—camphor, octane, salicylate,
and naphthalene)—truly heralding the modern era of
genetically modified organisms (Chakrabarty, 1981). The
genus Pseudomonas is behaviorally very versatile, with free-living
as well as parasitic forms capable of colonizing a wide variety of
host organisms and ecological niches within hosts. For example,
P. aeruginosa (PA) is a free-living soil bacterium that is also an
opportunistic pathogen of both plants and animals, P. syringiae
(PS) is an opportunistic plant pathogen, P. putida (PP) has been
extensively used in bioremediation for its ability to utilize a wide
range of hydrocarbons as carbon sources, and both P. putida
and P. fluorescens (PF) are promising growth-promoting and
biocontrol agents.

In order to understand the role of the bacterial component of
the phytomicrobiome in plant physiology, the functional analysis
of bacteria colonizing multiple ecological niches provided by the
plant—the roots (rhizosphere), leaves (phyllosphere), surfaces
(ectosphere), and tissues (endosphere)—needs to be undertaken,
ideally in situ and over the several developmental stages of the
plant. This is an understandably formidable task, and the utility
of a model bacterium in this context is apparent. From a bacterial
viewpoint, it has to sense the presence of, and stimuli from,
potential hosts as well as competitors (of the same or different
species), strategize in a manner that allows it to reach the host,
survive competition, and colonize, gain access to resources, and
persist for a reasonable length of time in the face of perturbations.
The establishment and resilience of the plant-microbe interaction
is therefore dependent on the exchange and sensing of a variety
of signals by both types of partners, often simultaneously, and
combinatorially.

Bacterial Quorum Sensing and Inter-species
Competition
Pseudomonas spp. possess quorum-sensing (QS) systems that
synthesize and sense hormone-like messages of diverse origins
in their immediate environment. QS systems are often linked
with other regulons, leading to different phenotypes (for a review,
see Venturi, 2006). For example, PP produces cyclic lipopeptide
surfactants putisolvin I and II, that are under the control of
QS and disrupt biofilms (Kuiper et al., 2004; Dubern et al.,
2006). Interestingly, this can happen not only at the stationary
phase, but also stochastically in the early stages of growth
resulting in swarming motility (Cárcamo-Oyarce et al., 2015),
promoting colonization of fresh surfaces. Other putisolvin-like
lipopeptides of PP have been found to exhibit lytic activity
against the zoospores of the fungal pathogen Phytophthora capsici
zoospores in vitro, inhibit growth of the fungal pathogens Botrytis
cinerea and Rhizoctonia solani in addition to being involved in
swarming motility (Kruijt et al., 2009). In more general terms
such interactions could contribute to the overall composition of
the phytomicrobiome by modifying its diversity, and contribute
to its resilience to perturbation by invaders.

Plant growth promotion effects of Pseudomonas spp. may
also be under QS control, as was demonstrated in the case of

QS-controlled production of an N-acyl-L-homoserine lactone
(AHL), cyclic dipeptides and their derivative diketopiperazines
(DKPs) by PA. Exposure of A. thaliana seedlings to 3-oxo-
C12-AHL produced by the LasI AHL synthase causes growth
inhibition of the primary root, while DKP stimulated the growth
of lateral roots (Ortiz-Castro et al., 2011). The presence of orphan
AHL transcriptional regulators such as QscR in PA that lack a
cognate AHL synthase and bind with relaxed specificity to both
endogenously and exogenously produced AHLs adds another
layer of complexity to plant-phytomicrobiota interactions (for
a recent and detailed review, see Chugani and Greenberg,
2014). Likewise, pseudomonads as well as other plant-associated
bacteria have been found to encode a unique family of orphan (or
solo) AHL transcriptional regulators that are uniquely responsive
to unknown plant and/or bacterial signal molecules (Patel et al.,
2013).

That one component of the microbiota may influence another
indirectly by modulating host signals and responses has been
dramatically demonstrated recently in both plant and animal
contexts. PS pathovar tomato (PSt) infection of Arabidoposis
thaliana leaves induces the plant enzyme phospholipase Db1
(PLDb1) that is a negative regulator of the salicylic acid-
dependent resistance to PS, but is a positive regulator of the
jasmonic acid-dependent resistance to the fungal pathogen
Botrytis cinerea. Even more interestingly, infection with an
avirulent PSt strain that expresses the effector AvrRpt2 secreted
by the type III secretion system can also lead to resistance
against virulent Pst that does not express AvrRpt2 (Zhao et al.,
2013). Thus, indirect microbial modulation of the host can cause
subtle, even strain-level, shifts in the composition of microbiota,
depending on the temporal sequence of host colonization. In
what may well be a case of convergent survival strategies, PA
infection of airways in human patients of cystic fibrosis induces
airway cells of the airway epithelium to produce secretory
phosopholipase A2, which is bactericidal for Gram-positive
bacteria such as Staphylococcus aureus but relatively less so for
PA (Pernet et al., 2014). This effectively allows PA to proliferate
at the expense of S. aureus.

Identification of Putative Type VI Effectors in
Plant-associated Pseudomonas spp.
The ability of PA to infect both plant and animal hosts, and
the identification of a common set of virulence determinants
during plant and animal infections (Rahme et al., 1997, 2000),
along with genome sequence information can be exploited to
identify potential effectors and predict putative mechanisms
of interaction with the host plant in the context of other
Pseudomonas spp. Recent, extensive analyses of the A. thaliana-
associated microbiota indicate that Pseudomonas spp. are
preferentially enriched in the endophytic compartment of the
plant, as compared to the rhizosphere (Bulgarelli et al., 2012;
Lundberg et al., 2012). Therefore, the identification of conserved
effectors within the pseudomonad lineage can be used as a
starting point to probe plant-microbe interactions. The type VI
secretion systems (T6SS) merit special attention in this regard
as they are widespread among diverse Gram-negative bacteria,
both pathogenic and non-pathogenic including Pseudomonas
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TABLE 1 | A representative list of putative effectors potentially targeting plant cells and encoded by T6SS in plant-associated Pseudomonas spp.

Effector molecule(s)

of P. aeruginosa

Locus tag/Strain

of PA

Known function and context in PA Reference(s) for

known functions

Plant-associated

Pseudomonas spp.

Ortholog locus tag

Phospholipase D (PldB) PA5089/PAO1 Encoded by the H3-T6SS. Elimination

of compteting bacteria. Promoting PA

internalization by host (human)

epithelial cells

Jiang et al., 2014 Pseudomonas sp. UW4 PputUW4_03278

P. syringae pv. Phaseolicola

1448A (pathogen)

PSPPH_0117

P. syringae pv. Syringae

B728a (pathogen)

Psyr_4970

Valine-glycine repeat

protein (VgrG2b)

PA0262/PAO1 Encoded by the H2-T6SS. Delivered

into host (human) epithelial cells,

promotes microtubule-mediated PA

internalization by direct interaction

with microtubules

Sana et al., 2015 P. syringae pv. syringae

B728a

Psyr_4080

Pseudomonas sp. UW4 PputUW4_03083

P. putida F1 (orthologs also

present in strains HB3267,

KT2440, H8234, ND6,

GB-1, NBRC 14164, W619

and DOT-T1E)

Pput_2117

These have been identified based on two T6SS effectors in P. aeruginosa, PldB and VgrG2b, that are known to target eukaryotic host cells. Orthologs

were identified by searching the Pseudomonas database (http://beta.pseudomonas.com); (Winsor et al., 2011) and the Pseudomonas ortholog database

(http://pseudoluge.pseudomonas.com/pseudoluge/named/list/search?field=locus_tag&value=PCHL3084_RS00035); (Whiteside et al., 2013).

spp. (Barret et al., 2011), and can potentially deploy effectors
targeting both prokaryotic and eukaryotic cells (Jiang et al.,
2014). Two effectors secreted by T6SS in PA that are known to
target host cells, and their orthologs identified in plant-associated
Pseudomonas spp. are listed in Table 1. The functionality
of these effectors on plant cells, if verified, can provide
important information about the assembly and disruption of
bacterial communities, as well as their interaction with the host
plant.

Conclusions and Future Directions

The foregoing account suggests new lines of inquiry into
the signals that drive the formation and maintenance of the
plant microbiota. Can systemic effects on the host and/or
microbiota be mediated by diffusible signals produced in
one part of the plant? If so, over what distances do these
effects extend, and how are they mediated? What is the
role of conserved and functional T6SS effectors in diverse
plant-bacteria associations that range from commensalism to
symbiosis? In the effort to understand the relative contribution
of different components of the microbiota to the plant
holobiont, it may be remembered that abundance alone may
not truly reflect the relative importance of the species/strain
in question. Numerically less abundant species could be key
players within the microbiota, assuming the role of “keystone”
species, as has been suggested earlier (Saraswati and Sitaraman,
2014).

A potential limitation in reliance on Gram-negative
pseudomonads as model systems is that their relative importance
may depend on environmental conditions. For example,

Pseudomonas spp. may be an important disease-suppressive
agent in a moist and temperate environment in the Netherlands
(Mendes et al., 2011), whereas the Gram-positive Bacillus spp.
contribute to disease suppression in Egypt, a more arid zone
(Köberl et al., 2011). Over reliance on Pseudomonas spp. as
models could therefore potentially overlook unique interactions
and mechanisms operative over large geographical areas and
ecological zones. Also to be remembered is that most studies of
microbiota (plant or animal) focus on the bacterial component
alone, and the role of fungi and archaea is less studied and
understood.

The microbiota of multicellular organisms, whether plant or
animal, present a case wherein simultaneous and combinatorial
interactions have to be identified, and their relative importance
determined. To this end, the identification of effectors and
the delineation of mechanisms of interaction are required.
The predictive and inferential value of Pseudomonas spp.-based
models that can be probed with conventional as well as high-
throughput methods is therefore undeniable, and insights so
gained have immense potential to inform and refine our efforts
to dissect the mechanistic bases of interactions taking place in the
plant holobiont.
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