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Land plants are sessile organisms that cannot escape the adverse climatic conditions

of a given environment. Hence, adaptation is one of the solutions to surviving in a

challenging environment. This study was aimed at detecting adaptive loci in barley

landraces that are affected by selection. To that end, a diverse population of barley

landraces was analyzed using the genotyping by sequencing approach. Climatic data for

altitude, rainfall and temperature were collected from 61 weather sites near the origin of

selected landraces across Ethiopia. Population structure analysis revealed three groups

whereas spatial analysis accounted significant similarities at shorter geographic distances

(<40Km) among barley landraces. Partitioning the variance between climate variables

and geographic distances indicated that climate variables accounted for most of the

explainable genetic variation. Markers by climatic variables association analysis resulted

in altogether 18 and 62 putative adaptive loci using Bayenv and latent factor mixed model

(LFMM), respectively. Subsequent analysis of the associated SNPs revealed putative

candidate genes for plant adaptation. This study highlights the presence of putative

adaptive loci among barley landraces representing original gene pool of the farming

communities.

Keywords: landscape genomics, local adaptation, Hordeum vulgare, genotyping by sequencing, spatial genetic

structure, adaptive loci

Introduction

Natural selection is the key evolutionary process that generates the adaptation of plants
to their environments (Andrews, 2010). During this, the best fitted alleles to the specific
environment become prevalent through positive selection, which is the major driving force behind
adaptive evolution in plants (Schaffner and Sabeti, 2008; Bose and Bartholomew, 2013). Genetic
identification of those beneficial alleles is essential for answering fundamental questions concerning
plant adaptive evolution as well as to utilize them in crop improvement.

Genome-wide scan has been proven to be an effective approach for studying adaptive genetic
variation (Nosil et al., 2009). Classically, this approach uses different genotyping protocols to
assay a large number of DNA marker polymorphisms across the genome to associate them
with different traits and environmental factors (Bonin et al., 2006; Eckert et al., 2010a,b; Brachi
et al., 2011; Wang et al., 2012; Westengen et al., 2012). Recently, advances in next generation
sequencing technologies have resulted in the development of newer methods of high-throughput
genotyping such as genotyping by sequencing (GBS). This method brought out clear advantages
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to genotype highly diversified and complex genomes in lesser
time and at a low cost per sample (Elshire et al., 2011). GBS
generates thousands of sequence tags and single nucleotide
polymorphisms (SNPs) across the genome. It has been used
successfully in a number of plant species like barley, maize
(Elshire et al., 2011; Poland et al., 2012; Larsson et al., 2013),
sorghum (Morris et al., 2013), soybean (Sonah et al., 2013), and
Brachypodium (Dell’Acqua et al., 2014).

Genome-wide scan generally rely on the assumption that
the loci involved in adaptation exhibit stronger differentiation
among populations and lower diversity within a population when
compared with selectively neutral regions of genome (Storz,
2005). Such loci are considered outlier loci and can be detected
among populations using molecular marker data by calculating
the population differentiation coefficient (FST) (Excoffier et al.,
2009). Therefore, FST analysis has the ability to determine the
signatures of divergent selection evolving under the pressure
of ecological factors. This selection is the fundamental process
in adaptive differentiation and speciation among the natural
populations of plants (Schluter, 2001, 2009; Funk et al., 2006).

Landscape genomics is a relatively new approach that
combines landscape factors and genomics to scan for the
presence of a signature of selection (Allendorf et al., 2010;
Schoville et al., 2012). This approach attempts to detect the
loci that underlie observed adaptive genetic variation and hence
called adaptive loci. Currently, there is a growing body of
literature demonstrating the feasibility of landscape genomics in
detecting loci related to adaptation. For instance,Westengen et al.
(2012) detected adaptive loci that respond to the precipitation
and maximum temperature of a given habitat by analyzing
African maize landrace populations using association analysis.
Eckert et al. (2010b) found significant correlations between
genetics and climatic variables indicating the evidence of natural
selection in loblolly pine (Pinus taeda L.). Similarly, Poncet et al.
(2010) identified ecological relevant genes linked to minimum
temperatures in Arabis alpina. Recently, De Kort et al. (2014)
reported a clear association among outlier loci, temperature
and latitude in the tree species Alnus glutinous across Europe.
These reports clearly advocate the utility of the landscape
genomics in detecting and understanding the adaptive biology
of plants. Dell’Acqua et al. (2014) studied local adaptation
in Brachypodium and found genes related to environmental
adaptation in natural populations. However, until now, the
utilization of landscape genomics to dissect the fundamental
components of adaptation in crops like wheat and barley has not
been studied well.

Ethiopia, with its diverse agro-ecological and climatic features,
is known for being one of the 12Vavilovian centers of diversity
(Vavilov, 1951; Harlan, 1969). It contains a tremendous range
of altitudes spanning from 110m below sea level in areas of
the Kobar Sink to 4620 meter above sea level (m.a.s.l.) at
Ras Dashen. In addition, Ethiopian regions experience huge
temperature and rainfall differences, which are coupled with
highly variable edaphic factors. This diverse topography and
environmental heterogeneity may be the major reasons behind
the highly diversified plant species across Ethiopia. These diverse
climatic conditions and rich biodiversity make Ethiopia a model

environment to dissect the genetic basis of ecological adaptations
in plants.

Barley (Hordeum vulgare L.) is an important cereal for
subsistence farmers in Ethiopia. These farmers typically grow
barley without any application of inputs such as fertilizers,
pesticides, and insecticides (Lakew et al., 1997). They usually sow
their own harvested grain as seeds each year. Sowing their own
seeds from year to year, these farmers have established farmer
varieties (landraces) that are adapted to different ecological
environments across Ethiopia. It is not possible to neglect the
role of farmer-driven artificial selection to fit these landraces
to a particular ecological condition. However, the prevalence
and diverse adaptive differentiation of barley landraces across
Ethiopia clearly suggests that these genetic resources have
successfully undergone natural selection (Zeven, 1998).

The present study was aimed at detecting the signatures
of local adaptation in a state of the art barley population
using the landscape genomics approach. Here, we report the
first insight into the identification of putative adaptive loci by
combining molecular data of diverse barley landraces with highly
divergent climatic variables. The detection of these signatures
of local adaptation in a long-lasting native barley gene pool
of the farming communities, will help in understanding the
mechanisms of plant adaptation in barley and beyond in major
crops like wheat.

Materials and Methods

Plant Material and Genotyping
In the present study, we selected 130 diverse barley landraces
originating from 10 major barley-growing regions of Ethiopia
(Figure 1). These landraces are not only described with altitude
and geographic coordinates but also with the vernacular name
given by the local community. This germplasm and its detailed
information were provided by the Institute of Biodiversity
Conservation (IBC) in Ethiopia. We genotyped two samples
from each landrace resulting in 260 total samples (Table S2),
which were analyzed using the genotyping by sequencing (GBS)
approach. In addition, a German spring barley cultivar Barke
was included in two replications as an internal control for the
GBS analysis and data control. Initially, all samples were planted
in a glass house, and after 2 weeks, the leaves were harvested
for DNA extraction using the Qiagen DNeasy plant mini kit
(Qiagen, Hilden, Germany) to ensure high-quality DNA, which
was required for the GBS analysis. After DNA extraction, GBS
libraries were prepared and analyzed at the Institute for Genomic
Diversity (IGD), Cornell, USA, according to Elshire et al. (2011)
using the enzyme PstI for digestion and creating a library with
96 unique barcodes. These libraries were sequenced using the
Illumina HiSeq2000 platform. GBS analysis pipeline ver. 3.0.139,
an extension to the Java program TASSEL (Bradbury et al., 2007),
was used to call SNPs from the sequenced GBS library with the
following options. Tags were aligned with the barley reference
genome of cv. Morex (International Barley Genome Sequencing
Consortium, 2012). VCF tools ver. 0.1.8 (Danecek et al., 2011)
was used to summarize and filter data as well as to generate
input files for PLINK (Purcell et al., 2007), which were used
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FIGURE 1 | Distribution of barley landraces and weather sites across Ethiopia on an altitudinal map.

for MDS (multidimensional scaling). The output was visualized
using basic plotting functions in R ver. 2.15.0 (R Development
Core Team, 2008). Before using these SNP markers for analysis,
the original SNP data were filtered by applying different criteria.
The first criterion was the SNP call rate for which SNP markers
showing less than 10% missing values were passed to the next
step. Among these, SNPs with a minor allele frequency (MAF)
of less than 5% and monomorphic SNPs were excluded from the
data. However, two barley samples (1%) were excluded in the final
analyses because of missing genotypic data.

Climatic Data
The climate data from 61 weather sites were provided by
the Ethiopian Meteorological Agency (Figure 1). The weather
data were collected over multiple years, for an average of 21
years. The weather sites supplied monthly rainfall (lm−2) and
maximum and minimum temperature (◦C) data. The three main
seasons of Ethiopia, Kiremt (June–September), Bega (October–
January), and Belg (February–May) were the basis for the
grouping of the annual climatic data (USDA, 2002). Kiremt
is the main rainy season all over Ethiopia, whereas Bega is
the dry season, and Belg is considered the short rainy season.
The altitude data were obtained from the passport data of
the barley samples procured from the Institute of Biodiversity
Conservation of Ethiopia (IBC). The altitudes of the sampling
sites were grouped into four classes according to the traditional
agro-ecological classification of Ethiopia. These classes are cold
temperate, cool sub-humid highlands (Classes I and II, 1500–
2500 m.a.s.l.), cool humid highlands (Class III, 2500–3000
m.a.s.l.) and highlands (Class IV, over 3000 m.a.s.l.) (USDA,
2002). The temperate, cool sub-humid highland was further

divided into two classes because it covers a wide range of altitudes
(Table S1).

Inference of Population Structure
Correction of the confounding effect of population structure
in association studies plays a major role in reducing false
positives (Pritchard et al., 2000a; Yu et al., 2006; Kang et al.,
2008). Similarly, detecting adaptive loci without considering the
impact of population structure will lead to false positive loci.
Therefore, the analysis of hierarchical population structure was
computed using the Bayesian-based program STRUCTURE ver.
2.3.5 (Pritchard et al., 2000b). For the analysis, an admixture
model with correlated allele frequencies was chosen (Falush
et al., 2003). The analysis was performed for a number of
subpopulations varying from K = 2 to K = 20. For each
value of K 20 independent runs were performed. For each
run a burn-in of 10,000 and 50,000 iterations was specified.
Finally, the Evanno et al. (2005) method was applied to
determine the number of K. For this function, a web-based
program, STRUCTURE HARVESTER ver. 0.9.93 (Earl and
Vonholdt, 2012) was employed to infer the level of population
structure. Ultimately, CLUMPP (Jakobsson and Rosenberg, 2007)
was used to combine and average the individual’s assignment
across 20 runs for the determined number of K. To identify
barley landraces that were admixed, each individual sample
was assigned to its respective group based on a membership
coefficient. The samples with a membership coefficient of ≥90%
were assigned to a single group, whereas those that were smaller
than the threshold were considered admixed. The membership
coefficients (Q) were calculated using administrative regions
instead of considering LOCPRIOR option during structure
analysis. Eventually, altitude classes were used as basis of
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grouping to test if the detected sub-populations were influenced
by altitude. This was determined by, assigning each barley
accession to its origin of altitude class and plot the structure graph
using the membership coefficient.

Principal Component Analysis
A principal component analysis (PCA) was conducted using
SNP markers data to reduce the number of variables into
fewer components that explain the maximum variance. These
components were then plotted in a two-dimensional plot for
ease of viewing the existing genetic pattern. Before computing
the PCA, the missed marker data were replaced with the mean
values calculated over the markers. Subsequently, the analysis
was carried out with the Proc princomp procedure using SAS
software ver. 9.3 (SAS, 2011). A parallel analysis (PA) (Franklin
et al., 1995) was then carried out to decide the number of
principal components to retain for further analysis. PA is a
method based on the generation of random eigenvalues to
determine the number of components to retain. The eigenvalues
are computed from the permutations of the observed data
rather than from simulated data. This is an advantage not to
keep the assumption of multivariate normality since the null
reference set is conditioned on the observed data (Ledesma and
Valero-Mora, 2007). In this analysis the covariance matrix was
decomposed in which the parallel analysis restricted random
matrices to have variable means and standard deviation of
the real data (Franklin et al., 1995). Hence, a permutation test
of 100 replications was used to run covariance matrices to
calculate the eigenvalues. Afterwards, principal components
which showed higher observed eigenvalues than their
randomly generated associated values were retained for further
analysis.

Spatial Genetic Structure
Isolation by distance (IBD) was computed using the “Spatial”
option implemented in GenAlEx ver. 6.41 (Peakall and Smouse,
2006). The autocorrelation coefficient (r) obtained was similar
to Moran’s I (Moran, 1950), which ranges from -1 to 1. The
spatial autocorrelation analysis was computed based on the
pairwise comparison of the genetic distances derived from
the genetic markers and geographic distance (km). Prior
to performing the correlation analysis, the coordinates were
converted into the Universal Transverse Mercator (UTM)
system, and autocorrelation was computed first for all accessions
from all regions followed by another analysis excluding
accessions collected from Tigray. Accessions collected from
Tigray region were excluded because of the geographic distance
of the region and the sole grouping of the accessions during
structure analysis. The significance of the spatial autocorrelation
value was tested by constructing a two-tailed 95% confidence
interval around the null hypothesis of no spatial genetic structure,
which is r = 0. The analysis was performed with an option of
an even distance class of 20 km based on a study that reported
the distances traveled by Ethiopian farmers to obtain seeds
(Bishaw, 2004). Permutations of 9.999 and a bootstrap of 1000
were used to compute the confidence interval around the null
hypothesis.

Partitioning of Genomic Variation due to Climate
Variables and Geographic Distance
Partial redundancy analysis (RDA), a constrained ordination
technique, attempts to explain differences in species composition
by combining a regression analysis with a principal component
analysis (Borcard et al., 2011). It is based on genetic and
environmental matrices (climate and geography). Partial
constrained ordinations determine relationship between desired
environmental and biological variables by removing the effect
of known and uninteresting factors. Whereas unconstrained
partial RDA considers the residual variance (Peres-Neto et al.,
2006). In the present study, RDA was computed using XLSTAT
ver. 2014.05.1 and vegan function in R package to disentangle
the relative contribution of climate variables and geographic
coordinates in driving genetic structure (Legendre and Fortin,
2010). For this, Hellinger transformed SNP allele frequencies
were used as the response variable, and climate and coordinates
as explanatory variables (Liu et al., 2011; De Kort et al., 2014).
Before running the analysis the climate data were standardized
using the Proc Stand procedure in the SAS software. The
geographic variables were also normalized using a square root
transformation of the geographic coordinates (Borcard et al.,
2011). To examine how much of the genetic variation in barley
landraces explained by climate variables, geographic coordinates
and the combination of both, the variance components of the
RDA were partitioned by running three different models. The
first model considered all climate and geographic variables as
explanatory variables (Model 1); the second model was a partial
model in which the climate variables explained the genetic data
conditioned on geographic coordinates (Model 2); and the third
model was a partial model in which geographic coordinates
explained the genetic data conditioned on climate variables
(Model 3). For all models redundancy analysis was followed by
significance test using Monte Carlo permutations test with 500
runs. For determination of best model forward selection with
permutation of 999 and α = 0.01 were computed. This process
of model determination was improved by the introduction
of adjusted R2 by Peres-Neto et al. (2006), and the analysis
was conducted using ordistep function of vegan in R package
(Oksanen et al., 2010). Subsequently, the variation partitioning
was followed when more than one significant explanatory
variables were found (Legendre and Legendre, 1998).

Association Analysis of Climatic Variables
At present, a number of statistical tools are available for detection
of outlier loci that are possibly affected by selection (Pérez-
Figueroa et al., 2010; Narum and Hess, 2011). In the present
study, we used two different software for the associations,
between the environments and SNPs, and one for detection of
the outlier loci. Bayenv2 and latent factor mixed model (LFMM)
were used to identify association of climate factors with genetic
markers whereas outlier loci were detected using BayeScan
software. A detailed description of each statistical method is
presented below.

The detection of loci correlated with different climatic
variables was carried out using Bayenv2 (Coop et al., 2010) and
LFMM (Frichot et al., 2013). Bayenv is a Bayesian method that
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estimates the empirical pattern of covariance in allele frequencies
between populations from a set of markers and then uses this
as a null model for testing individual SNPs. Genome scans
for SNPs with allelic correlations with climate variables were
performed using Bayenv2 (Coop et al., 2010; Günther and
Coop, 2013). This program runs in two steps. First, it creates a
covariance matrix of relatedness between populations. Then, in
the second step, it runs the correlation between the covariance
matrix and the environmental variables generating a Bayes factor
(BF) and non-parametric Spearman’s rank correlation coefficient
[ρ (Rho)]. The null model assumes that allele frequencies
in a population are determined by the covariance matrix of
relatedness alone against the alternative model, where allele
frequencies are determined by a combination of the covariance
matrix and an environmental variable, producing a posterior
probability (Coop et al., 2010). Before running a null model
estimation, the exclusion of outlier loci and loci which are in
linkage disequilibrium, is recommended to ensure independence
between SNPs on a chromosome (Bayenv2 Manual). Hence,
we excluded outlier loci which were detected using BayeScan
and LFMM program followed by loci which were in linkage
disequilibrium (r2 > 0.2) within each linkage group. The rest (801
neutral SNPs) were used to estimate the covariance matrix with
50,000 iterations. To control the variation across the covariance
matrix, the average was calculated for the outputs of 10 matrices.
Covariance matrices were compared after three independent
runs with different seed numbers to ensure that the matrix was
well-estimated. According to the recommendation of Blair et al.
(2014) the BF of each SNP was calculated by averaging five
independent runs of Bayenv2 at 50,000 Markov chain Monte
Carlo (MCMC) for both the covariance matrix and Bayes factor
analysis. For detection of outlier loci, Günther and Coop (2013)
recommended considering the Spearman correlation coefficient,
which measures the correlation between ranks of SNP allele
frequencies and environmental factors, in addition to BF. BF is
considered to have a slightly higher power, and SNPs, which fall
in the top x% of BF and y% (where x < y; Bayenv2 Manual) of
absolute values of spearman rank correlation coefficient ρ, are
suggested to be robust candidate loci. Thus, we considered loci
which were commonly detected in the top 1% of the BF-values
(BF > 3) and top 5% of the absolute correlation values as a
significant putative adaptive loci.

The other correlative method used for adaptive loci detection
was LFMM, a software package that is a newly developed
statistical model (Frichot et al., 2013). According to the study
conducted by de Villemereuil et al. (2014), LFMM provided the
best compromise between power and error rate across different
scenarios. LFMM tests the association between environmental
and genetic markers while estimating the hidden effect of
population structure. The LFMM implemented fast algorithms
using a hierarchical Bayesian mixed model based on a variant of
PCA, in which the residual population structure is introduced
via unobserved or latent factors. All SNP markers (1370)
and the original climate variables were used for association
analysis. The principal components of environmental variables
are recommended when the summary of the variables is required
because of their numbers (personal communication with Dr.

Eric Frichot). The first three principal components generated
for genetic markers were used as latent factors to estimate
the population structure effect. The SNPs, which showed an
association with environment, were determined based on the
z-score. To estimate the z-scores for the environmental effect,
the Gibbs sampler algorithm was run for 50,000 sweeps after a
burn-in period of 10,000 sweeps. The threshold for the z-scores
was determined after applying the Bonferroni correction for type
I error α = 0.01. Loci exhibiting z-scores above the absolute
value of four and corresponding to P < 10−5 were retained as
significant loci.

Outlier Loci Detection
BayeScan is the tool that we used to detect outlier loci. It is a
Bayesian based method that depends on a highly differentiated
locus (Foll and Gaggiotti, 2008). It is the most conservative
method with the least type I error compared to other outlier
loci detection methods (Narum and Hess, 2011). However, it
may detect high false positive loci if demographic history is
not included in the analysis (Lotterhos and Whitlock, 2014).
BayeScan identifies loci that are characterized by higher or lower
levels of population divergence than neutral loci, suggesting a
diversifying or purifying selection. It estimates the probability
that a given SNP is under selection by calculating the posterior
odds (PO). The PO are the ratio of the posterior probabilities
of the two models (selection/neutral) for each locus based on
the allele frequency. Before running the outlier loci analysis,
the barley landraces were assigned to their respective K groups,
thus supporting the comparison of the discrete groups in the
process of candidate loci detection. To compare the result of
outlier analysis, the individuals were assigned twice based on
admixture Q coefficients of ≥70 and ≥90. Outlier loci detection
was conducted by setting the prior probability of the model with
a selection of 1/10, assuming a priori that the neutral model
is 10 times more likely than the model including selection.
During this run, all of the default values of 10 pilot runs of 5000
iterations with 50,000 additional burn-in steps were retained.
We used false discovery rate (FDR = 0.05) as significance level
for detection of the outlier loci. The FDR was controlled using
the q-value which is the FDR analog of the p-value (Storey,
2002).

Detection of Candidate Genes
Candidate genes were found using the BLASTn function of
DNA sequence analysis where the DNA sequences of SNP
markers showing significant association were searched against
the barley genome sequence using the NCBI and IPK databases.
Genomic contigs showing the best hits were selected based
on highly significant and maximum similarity percentages
(>95%) and an E-value cut-off of 1E-15. The putative candidate
genes across the contigs and relative distance of the associated
SNP marker and candidate genes were found using BARLEX
database and alignment package of Lasergene core suit of
DNASTAR program. The gene ontology (GO) terms of the
putative candidate genes were assigned using the Uniprot
database.
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Results

Genotyping by Sequencing and SNP Detection
The genotyping by sequencing (GBS) pipeline resulted
in a total of 2,028,787 sequence tags, of which 1,548,708
(76.3%) were aligned with unique positions across the barley
chromosomes. The sequence reads aligned with unique
positions were subjected to SNP calling across the genotypes,
founding 67,508 (unfiltered) Hapmap SNPs. After applying
the filtering criteria as described in material and methods, a
total of 1370 polymorphic SNPs were retained and utilized in
further analyses. These SNP were distributed across all seven
barley chromosomes. The highest number of SNP (214) were
found on chromosome 7H and the lowest on chromosome
4H (108). The details of these SNPs, their corresponding
chromosomes and contigs information are summarized in
Figure S1.

Population Structure
The population structure analysis grouped barley landraces
into three subpopulations (Figures S2A–C). The membership
coefficient assignment (≥90%) indicated that most of the
individuals were grouped in the first two groups, whereas the
third inferred cluster contained few individuals. Themembership
coefficient assignment also revealed that most of the landraces
from different geographic regions were clustered in group 1 (30
accessions) and group 2 (63 accessions). However, all landraces
that were assigned to group 3 (18) originated from Tigray,
but one accession from this region was assigned to group two.
Bale (89%), Arsi (83%), Sidamo (79%), Harerge (68%), and
Welo (63%) were the regions that contained highly admixed
individuals. In contrast, less than half of the accessions collected
from Shewa, Tigray, Gonder, and Gojam contained less than
10% admixtures within each individual, which was derived from
historical ancestors. This percentage value indicated that more
than half of the barley individuals from these regions have
a membership coefficient that assigned these accessions to a
distinct group. After the membership coefficient was assigned
to each individual, we also tested whether altitude classes (Class
I: below 2000; Class II: 2001–2500; Class III: 2501–3000; Class
IV: above 3000 m.a.s.l) were the basis for the detection of the
three sub-populations. All but one of the barley accessions in
group 3 and 80% of the accessions in group 1 were collected
from altitude classes I and II; the rest (20%) were collected
from altitude class III (Figure S2D). Unlike other groups, barley
landraces in group 2 were collected from altitude class II (13%)
and class III (68%), and all accessions collected from altitude class
IV (19%).

To visualize the geographic distribution of the population
structure, we plotted the pie chart of the membership coefficient
on an Ethiopian map (Figure 2A). The distribution of the barley
landraces based on their area of origin was associated with
their groupings. Most of the landraces from the eastern part of
Ethiopia (Harerge), Gojam, Sidamo, and Welo were clustered
in group 1, whereas the landraces collected from the rest of
the regions were assigned to group 2, except Tigray, which was
assigned to group 3.

FIGURE 2 | Distribution of barley landraces and assignment of

population membership coefficient along Ethiopian map (A). Each

barley landrace was assigned to its respective inferred cluster based on the

membership coefficient obtained from population structure analysis carried out

using the model based software STRUCTURE. The scatter plot of principal

components represented by the first and second principal components

depicting the groupings of the barley individuals based on the

subpopulations (B).

Principal Component Analysis
Principal component analysis (PCA) reduced the variables into
fewer components to explain most of the variation. Despite
many eigenvalues, which were greater than one, we retained
the first three principal components with variance of 15.03,
13.29, and 10.83. The proportions of variance explained by
the respective principal components were 6.8, 5.9, and 4.9%.
According to parallel analysis, the first three eigenvalues were
sufficient for describing the grouping of the population. In
order to visualize the pattern of the population grouping
the first two principal components were plotted in 2-D. An
assignment of individuals to their respective groups based
on a ≥90% membership coefficient from population structure
analysis resulted in approximately 57% of the individuals
being categorized as admixtures (Figure 2B). Consequently,
we assigned each barley individual to its respective group
by considering its membership coefficient from the structure
analysis and plotted the individuals based on the principal
component values. In general, the first principal component
separated groups one and three from group two, whereas the
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second principal component separated group one from the rest
of the groups.

Spatial Population Structure
A spatial analysis was computed using the entire data and
excluding the accessions collected from Tigray. First, the analysis
was performed for the accessions from all regions, and it showed
a significant spatial autocorrelation (Figure 3A). Further, this
analysis revealed a significant and positive spatial autocorrelation
for the closest accessions and a negative correlation for the
accessions collected from a wide distance. The positive and weak
correlation between genetic similarity and geographic distance
in the first dataset was observed for the genotypes collected in a
range of 180 km (r = 0.017, p = 0.001). The presence of negative
correlation for accessions collected in a geographic distance range
of 780 km (r = −0.013) to 960 km (r = − 0.037) was
observed. However, after the accessions collected from Tigray
were removed, the positive correlation was detected at short
distances ranging from 20 km (r = 0.095, p = 0.001) to 40
km (r = 0.006, p = 0.1) (Figure 3B). Although most of the
distance classes showed no spatial autocorrelation, the overall
result of the spatial analysis revealed the presence of weak spatial
population structure at the shortest distances, thus indicating
genetic similarity.

Partitioning of Genomic Variation due to Climate
Variables and Geographic Distance
A partial redundancy analysis (RDA) was performed to partition
the variations accounted by climatic and geographic variables.
The RDA analysis for model 1, which used climate and
geographic variables as explanatory variables, indicated that the
variation due to climate and geographic variables (constrained)
explained most of the variation compared with the residual
variance (unconstrained) (Figure 4A). Partitioning of the total
variance indicated that the climatic variables accounted for 40%
of the explainable total variance after removing the effect due
to geographic variables, whereas geographic variables explained
29% of the total variance after the effect of climatic variables
was controlled. The combination of climate and geographic
effects explained 61% of the total explainable variation. The
variance partitioning indicated that in Model 1 (F1 = 38.4%,
F2 = 34.64%, F3 = 26.71%) and Model 2 (F1 = 69.64%, F2
= 22.62%, F3 = 7.74%) the first three eigenvalues contributed
100% to the variation, in contrast to Model 3, where two of the
eigenvalues contributed to the total explainable variation (F1 =

81.83%, F2 = 18.17%; Figures S3A–C). The RDA result obtained
after excluding Tigray indicated the importance of the region in
shaping the genetic diversity pattern of the entire population.
Executing the RDA analysis without conditioning on any of the

FIGURE 3 | Spatial autocorrelation correlogram plots. The plot depicts results obtained from all geographic regions (A), and after accessions collected from

Tigray region were removed and isolation by distance was calculated for accessions from the rest of the regions (B). The analysis considered geographic distances

with even distance class of 20 km. Dashed lines encompass the 95% confidence interval of the null hypothesis, and each point represents the autocorrelation

coefficient (r).
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FIGURE 4 | The partial RDA variance partitioning was computed for

entire dataset (A) and after accessions from Tigray region were

excluded (B). The variance explained due to all variables (Model 1), the

variance explained after controlling the effect introduced due to geographic

distance (Model 2), and variance explained by geographic coordinates after

the variance due to climate variables controlled (Model 3).

variables gave a close cumulative variance both with and without
the Tigray region (60.6%; 57.2%) in the dataset (Figure 4B).
A partial RDA analysis test for the full dataset yielded 40
and 29% for conditioning on geographic and climate variables,
respectively. However, excluding Tigray from the dataset gave
a value of 14.1 and 4.7% when conditioned on geographic and
climate variables, respectively. The relative variances contributed
by the presence of Tigray in the entire dataset conditioning
on climate and geography were 35.3 and 16.5%, respectively.
Furthermore, the eigenvalue results indicated low value and
most of the variation was explained by residual variance
(Figures S3D–F). We have also computed the partitioning
among the climate variables while considering their major
proportion in the total variance. It revealed that the variables
altitude, Rf_Kiremt (rainfall in Kiremt) and Rf_annual explained
most of the variation across the climatic variables (Figure 5,
Table S3).

Association Analysis of Climatic Variables
The association analysis of SNP markers and climatic variables
was performed using the Bayenv program. This analysis detected
a total of 18 loci showing significant association with one
or more climatic variables (Table 1). Among these, three loci
were associated with variable altitude. Similar number of
loci were associated with rainfall variables; Rf_Bega (1) and
Rf_Kiremt (2). The highest number of loci were associated
with minimum temperature variables; Mintemp_Bega (2),
Mintemp_Belg (3), Mintemp_Kiremt (1), and Mintemp_aver (2)
followed by maximum temperature variables; Maxtemp_Bega
(2), Maxtemp_Kiremt (1), and Maxtemp_aver (1).

The association of SNP markers and climatic variables was
also analyzed using a LFMM analysis. This analysis revealed

the detection of 62 loci associated with the 13 selected climatic
variables (Table 2). The highest number of loci (35) were
associated with rainfall variables; Rf_Bega (10) and Rf_Belg (10),
Rf_Kiremt (8) and Rf_annual (7). The second most number
of loci were associated with variable altitude (9). In contrast,
Mintemp_Belg and Mintemp_Kiremt were the only two climate
variables that had one significant locus with z = 5.20 and
z = 5.57, respectively. The highest number of common putative
adaptive loci (6) were found for Rf_Bega and Rf_Belg followed by
altitude and Rf_Kiremt (4). Among the loci commonly detected
for altitude and Rf_Kiremt, we have selected the SNP locus
Hv_SNP27845 with the highest significance level (z = 6.71).
This locus was further illustrated to examine the allele frequency
distribution along the altitude classes (Figure 6A) and rainfall
as well as allele distribution over the country (Figure 6A). It
showed that the most prevalent major allele at lowland was
gradually decreased with an increase in the altitude and rainfall
(Figures 6B,C). A complete summary of the LFMM analysis is
presented in Table S4.

Outlier Loci Detection
The BayeScan method detected 12 and nine outlier loci (FDR =

0.05, prior 10:1) using a threshold of ≥70 and ≥90% ancestry
coefficient of admixture for each barley individual, respectively
(Figure S4, for the first approach). Of the nine loci detected
using the second approach, six loci were also detected using the
first approach. Three of the loci (Hv_SNP23336, Hv_SNP66136,
and Hv_SNP27872) that were also detected with 100: one prior
were considered for further analysis (Figure 7). The detected
outlier loci showed a positive alpha value, which indicated
directional selection. FST-values ranged between 0.69 and 0.66
for Hv_SNP53122 and Hv_SNP23336, respectively. Notably, the
three detected SNPs were mapped on the same position (70.68
cM) on chromosome 7H.

Altogether, none of the software shared common
significant loci among them but one locus (Hv_SNP4131)
was commonly detected between LFMM and Bayenv software
(Figure S5).

Detection of Candidate Genes
We have made an in silico analysis of the associated genomic
regions to detect underlying putative candidate genes (Table 3).
It revealed that all three SNP marker associated to altitude were
found in single genomic contig (contig_46879) on chromosome
4H. These SNPs were found in the coding region (+1108 base
pairs (bp) from ATG) of the sulfate transporter (ST3.1) gene.
The SNPmarkers associated with altitude and Rf_Kiremt (rainfall
in Kiremt) appear to underlie the L-lactate dehydrogenase
(LDH) gene. These markers were around at +357 bp from
ATG. The SNP locus (Hv_SNP4131) associated with maximum
temperature (Kiremt, Bega and average) was found in the region
of the cation\H+ exchanger (CAX) gene, +465 bp from ATG.
Additionally, SNP loci on chromosome 2H associated with
Maxtemp_Bega, were found next to each other in the putative
promoter region (−2749 bp from ATG) of the universal stress
responsive protein (USP1).
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FIGURE 5 | Partial RDA analysis was performed to determine the relative contribution of climate and geographic variables shaping the genetic

structure. The biplot depicts the eigenvalues and lengths of eigenvectors for the RDA conditioned on geographic distance.

Discussion

Population Structure
The population structure analysis was computed using the
STRUCTURE program and supported by the principal
component analysis approach. The detected clusters did not
completely reveal a geographically based population structure.
Though accessions from 10 geographic regions were analyzed,
the population structure analysis detected that three sub-
populations contained different regions as one group. Hence,
this result suggests the weak impact of geographic boundaries
on the genetic structure of the barley population. A weak effect
of political regions was reported for the morphological and
genetic differences between major barley-growing areas of
Ethiopia (Abebe et al., 2010; Abebe and Léon, 2013a). However,
the pattern of clustering in the present study, was different
compared with previous studies because of the difference in
the number of barley genotypes, number of genetic markers
and sampling strategy to genotype landraces. In the present
study, we also replicated each landrace twice for genotyping
to ensure high-quality genotyping data and to determine the
genetic purity of the landraces that farmers have selected and
established for barley cultivation. Among the inferred groups,
the third cluster was aligned with one of the geographic regions.
This region was Tigray, which is located in the northern part
of Ethiopia and is frequently affected by drought because of a
degraded environment and erratic rainfall (Abay et al., 2009).
Farmers in this region have selected drought-resistant landraces
to grow under water-limited conditions (Meze-Hausken, 2004).
In addition, a decrease in rainfall northwards and eastwards
from the high rainfall pocket area in the southwest has been
reported (USDA, 2002). In the present study, Tigray was one of
the regions having low percentage of admixed barley landraces
(39%) and over 90% of the accessions from other regions were

assigned to group 3. However, more than three quarters of
the accessions from Arsi, Bale and Sidamo were considered
admixed and were thus not assigned to a single cluster. These
regions are known as the cereal belt of Ethiopia, which implies
that a considerable amount of cereal production and marketing
occurs in these areas. This leads to high genetic diversity in
the region and gene flow between farmers’ fields, resulting
in admixed landraces (Negassa, 1985; Abebe et al., 2013b).
The population structure coefficient sorted by altitude classes
indicated that the accessions grouped in the first and second
sub-populations originated in altitudes less than 2500 m.a.s.l.
Except for a few accessions, the third sub-population contained
accessions collected from the highlands (above 3000 m.a.s.l) of
Ethiopia. In general, geographic regions and altitude classes were
associated with different groups; however, the spatial distance
was presumably not considered as the basis for the inferred
clustering.

Spatial Genetic Structure
Isolation by geographic distance occurs when the gene flow
between organisms is restricted because of spatial isolation. The
detection of a correlation between the genetic and geographic
distance was described as isolation by distance (Wright, 1946).
We also detected significant but weak isolation by distance for the
dataset consisting of all the barley accessions and in the dataset
where the accessions from the Tigray region were removed.
The correlogram from the first dataset showed correlation with
the geographic distance covering a wide range, whereas after
excluding Tigray, a significant correlation was observed over a
shorter distance. In this case, the accessions in a 40 km range
were considered to be genetically similar and positively associated
with geographic distance but the correlation was not different
from zero. The population structure analysis grouped most of the
accessions from this region in one group, indicating the presence
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TABLE 1 | A summary of putative adaptive loci showing association with different climate variables identified using Bayenv analysis.

SNP ID Chr cM BF Rho (ρ) Climatic variables

A B C D E F G H I J K L M

Hv_SNP785 2H 65.59 3.05 0.52 *

Hv_SNP4131 2H 123.94 3.26 0.60 *

Hv_SNP8058 4H 77.48 8.22 0.37 *

Hv_SNP51899 4H 78.61 3.97 0.44 *

Hv_SNP51899 4H 78.61 4.21 0.44 *

Hv_SNP594 4H 79.87 4.06 0.43 *

Hv_SNP594 4H 79.87 3.00 0.49 *

Hv_SNP594 4H 79.87 4.27 0.43 *

Hv_SNP4616 5H 40.07 4.88 0.60 *

Hv_SNP4616 5H 40.07 5.51 0.51 *

Hv_SNP15799 5H 129.65 5.00 0.45 *

Hv_SNP56701 5H 169.38 3.68 0.51 *

Hv_SNP31344 6H 100.42 3.05 0.46 *

Hv_SNP30323 7H 55.74 4.55 0.47 *

Hv_SNP23710 7H 109.92 5.44 0.54 *

Hv_SNP23253 7H 124.58 3.14 0.45 *

Hv_SNP58 U U 3.20 0.44 *

Hv_SNP32903 U U 4.25 0.54 *

Total loci 3 1 – 2 – 2 3 1 2 2 – 1 1

Where: A, Altitude; B, Rf_Bega; C, Rf _Belg; D, Rf_Kiremt; E, Rf_annual; F, Mintemp_Bega; G, Mintemp_Belg; H, Mintemp_Kiremt; I, Mintemp_aver; J, Maxtemp_Bega; K, Maxtemp_Belg;

L, Maxtemp_Kiremt; M, Maxtemp_aver; U, Unknown.

*Indicates that the particular SNP showed correlation with that specific climate variable. BF (Bayes factor), Rho (ρ) (Spearman’s rank correlation coefficient).

of less shared ancestors among the accessions. Furthermore,
the autocorrelation result revealed that the other regions are
spatially isolated from Tigray because of its geographic location.
Hence, the location of Tigray influenced the pattern of the spatial
genetic structure in the studied population. The low percentage of
admixture among the accessions was presumably associated with
the low gene flow from the neighbor regions. This is attributed
to the location, landscape, social and economic activity of the
region. In general, the accessions from Tigray region affected the
pattern of isolation by distance when all regions were considered
for analysis. But the detected spatial correlation was weak and
limited to a short distance to infer the presence of isolation by
distance.

Partitioning of Genomic Variation due to Climate
Variables and Geographic Distance
The partial RDA was computed to estimate the proportion
of variation explained by the environmental variables or by
geographic distance alone or as the fraction of the variation
shared by both variables. The variance partitioning for partial
RDA models indicated that the variation contributed by climate
variables were higher than the variation introduced due to
geographic variables in both datasets (datasets are explained
in material and methods). However, all the models showed
significant association between the environmental variables
and the genetic variation. The positive association of the
climate variables with the genetic markers while controlling

the variations due to geographic variables, thus suggests an
important influence of climate diversity in shaping genetic
variation (Temunovic et al., 2012). Similar findings were reported
by Lasky et al. (2012) where they found a significant contribution
of climate variables after controlling the spatial structure in
Arabidopsis thaliana. They propose these variables as the selective
gradients related to local adaptation across the species range.
Unlike the climate variables the geographic coordinates showed
low linear association with the genetic data indicating the
influence of the spatial structure on the genetic variation of
barley. Previously, Liu (1997) also found that climate factors
accounted for 13% of the explained variation, whereas the
geographic position was considered less important for algae
colony thickness and colonization which are in agreement with
the present study. Similar outcome was reported byMcGaughran
et al. (2014) who suggested the association between geography
and genetic distance as an important determinant of genetic
structure beyond genetic drift in isolated population. Moreover,
comparing the results of both datasets revealed that accessions
collected from Tigray region contributed more than a unit
variance considering the contribution of the remaining regions
to the environmental variation.

Further partitioning of variance explained due to the
climate variables revealed altitude, total rainfall and rainfall
of the main growing season as the main contributors of
the detected genetic variation. Besides, the forward selection
process retained altitude twice (in both datasets) as the
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TABLE 2 | A summary of putative adaptive loci showing association with different climate variables identified using LFMM analysis.

SNP_ID Chr cM Zscore -log10 (p-value) Climatic variables

A B C D E F G H I J K L M

Hv_SNP57960 1H 7.22 4.26 4.68 *

Hv_SNP57963 1H 7.22 4.43 5.03 *

Hv_SNP9160 1H 42.71 5.55 7.53 * * *

Hv_SNP28572 1H 48.51 4.86 5.92 * *

Hv_SNP28218 1H 49.75 5.6 7.66 * *

Hv_SNP6094 1H 70.25 5.13 6.55 *

Hv_SNP53255 1H 103.82 4.06 4.31 *

Hv_SNP54198 1H 132.51 5.75 8.06 *

Hv_SNP3374 2H 18.8 4.2 4.58 *

Hv_SNP27845 2H 18.91 6.71 10.71 * *

Hv_SNP13837 2H 39.66 4.19 4.55 *

Hv_SNP4499 2H 55.56 5.57 7.59 * * * * * *

Hv_SNP55036 2H 92.21 5.21 6.72 *

Hv_SNP4131 2H 123.94 4.67 5.52 * * *

Hv_SNP25024 2H 138.6 4.32 4.8 *

Hv_SNP51311 3H 83.59 4.37 4.91 * *

Hv_SNP7771 4H 18.48 5.89 8.41 * *

Hv_SNP54437 4H 19.9 4.17 4.52 *

Hv_SNP15569 4H 35.13 5.96 8.6 *

Hv_SNP19635 4H 60.55 4.48 5.12 * *

Hv_SNP25404 4H 91.18 4.18 4.53 *

Hv_SNP5505 4H 105.49 4.68 5.55 * *

Hv_SNP34901 5H 13.77 4.68 5.54 *

Hv_SNP34783 5H 77.08 6.27 9.44 * *

Hv_SNP37305 5H 79.13 4.23 4.64 *

Hv_SNP30681 5H 80.35 4.06 4.31 *

Hv_SNP13299 5H 95.9 5.01 6.27 * *

Hv_SNP27374 5H 161.08 4.42 5.00 *

Hv_SNP64267 5H 164.72 5.88 8.39 *

Hv_SNP8419 5H 164.72 4.57 5.31 * *

Hv_SNP36036 5H 169.38 5.23 6.76 * * *

Hv_SNP65888 5H 169.38 6.14 9.09 * * *

Hv_SNP28364 6H 15.72 4.04 4.27 *

Hv_SNP23365 6H 52.2 5.44 7.28 *

Hv_SNP64219 6H 94.62 5.12 6.51 *

Hv_SNP8527 7H 12.75 4.33 4.82 *

Hv_SNP8936 7H 67.37 8.39 16.32 *

Hv_SNP29190 7H 85.98 4.06 4.31 *

Hv_SNP8273 7H 109.92 4.28 4.73 *

Total loci 9 10 10 8 7 5 1 1 2 3 1 2 3

Where: A, Altitude; B, Rf_Bega; C, Rf _Belg; D, Rf_Kiremt; E, Rf_annual; F, Mintemp_Bega; G, Mintemp_Belg; H, Mintemp_Kiremt; I, Mintemp_aver; J, Maxtemp_Bega; K, Maxtemp_Belg;

L, Maxtemp_Kiremt; M, Maxtemp_aver.

*Indicates that the particular SNP showed correlation with that specific climate variable. The underlined loci showed association with two climate variables whereas the underlined and

bold loci are associated with three or more climate variables.

first significant explanatory variable. This result indicated the
importance of altitude in affecting the existing genetic variation
in barley population. The importance of altitude in shaping
and determining the climate variables and thus the genetic
diversity in barley has been reported by Abebe et al. (2010)

and Demissie and Bjornstad (1996). Similarly, Pyhäjärvi et al.
(2013) controlled population structures using partial mantel
analysis and found a significant effect of altitude in teosinte,
the wild ancestor of maize. Besides, rainfall, which mostly
depends on altitude, is one of the determinant factor in
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FIGURE 6 | Allele frequency of putative adaptive loci correlated with altitude classes and Rainfall in Kiremt as detected by LFMM. The major and minor

alleles of putative adaptive loci Hv_SNP27845 showed frequency pattern along the altitude classes (A). The allele distribution depicting on the Ethiopian map (B) and

the rainfall pattern along the coordinates of Ethiopia displayed in scatter plot (C).

FIGURE 7 | A Bayesian based BayScan program were employed to

scan for the presence of putative outlier loci affected by selection. This

plot presents FST against log 10(q-value), which is the FDR analog of the

p-value. The line represents the threshold FDR = 0.05 and the red dots

indicate the outlier loci which are potentially affected by directional selection.

the genetic variation. Zhao et al. (2013) proposed annual
rainfall as a major factor behind the genetic divergence
and adaptation of Chinese wild rice (Oryza rufipogon).
Hence, the variance partitioning of the significant climate
variables emphasized the importance of altitude in shaping
the ecological diversity and evolutionary aspect of different
plants.

Climatic Adaptations
Natural selection plays a major role in shaping the available
genetic variation of a population and thereby determines local
adaptation (Kawecki and Ebert, 2004). It also changes the allele
frequency when individuals with the same fitness trait survive
and increase in number. In this study, we observed a similar
situation in allele distribution of the detected putative adaptive
loci in response to different climate variables. The association
of climate variables with SNP markers using Bayenv and LFMM
returned several significant loci in relation to all climate variables,
indicating that the variables were the important climate factors
that affect selection pressure. Most of the loci detected using
LFMM software were associated with rainfall variables followed
by altitude, indicating the importance of these variables in
determining local adaptation. In Bayenv analysis most loci
were correlated with temperature variables followed by altitude
and rainfall. Partial RDA analysis also indicated that altitude,
Rf_Kiremt and Rf_annual were the most important climate
variables; most of the variation originated from these variables.
De Kort et al. (2014) reported strong associations between outlier
loci and temperature using LFMM in the tree species Alnus
glutinosa. LFMM detected a locus (Hv_SNP27845) showing
correlation with altitude and rainfall variables which explained
most of the variation in partial RDA. The pattern of decreasing
frequency of the major alleles as a function of increasing altitude
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presumes the presence of directional selection, which leads to
local adaptation. The minor alleles were observed in highland
areas with high rainfall, indicating the importance of altitude
in determining other climate factors. The prevalence of the
major allele among the genotypes that were collected below 2500
m.a.s.l. in low rainfall areas was presumably due to local selection
(Figure 6A). In this case, because of directional selection, the
advantageous alleles increased in frequency relative to others and
eventually became fixed (Bose and Bartholomew, 2013). Altitude
affects phenology, the distribution and type of disease and the
prevalence of frost in different crops of Ethiopia. In the highlands,
barley matures quite late, and it takes as long as seven to 8
months to mature (Tanto and Demissie, 2001), whereas in the
lowlands and in the Belg season, barley matures early, within 3–
4 months (Mulatu and Grando, 2011). The special adaptation of
barley to highlands makes the crop the most valuable cereal for
the survival of the farmers living in the highlands as it is the
only crop cultivated across those regions (Lakew et al., 1997).
The highlands of Ethiopia are described as sunny during the day
and cold at night with occurrences of frost, particularly during
the Bega season (USDA, 2002). In general, altitude plays a major
role in the determination of morphological novelties of different
crops in Ethiopia (Engels, 1994; Abebe et al., 2010), and it affects
the ecological variables and, thus, local adaptation. Kiremt (main
rainy season) rains occur during June-September, accounting
for 50–80% of the annual rainfall over the Ethiopian regions.
The most severe droughts are usually related to a failure of the
Kiremt rainfall to meet Ethiopia’s agricultural water demands
(Korecha and Barnston, 2007). In general, directional selection
occurs when natural selection favors a single phenotype, and the
allele frequency thus shifts in one direction. The loci that were
identified as adaptive loci presumably underlie the phenotypic
variation that affect fitness in different environments (Nunes
et al., 2011).

Detection of candidate genes
Although genes and phenotypes are in a causal relationship,
dissecting the genetic components of a phenotype is not
simple. Through the advent of genome-wide DNA markers
and sequenced genomes, it has become feasible to uncover this
relationship precisely and dissect the hidden genetic regulations
in the expression of a phenotype at the gene level. In the
present study, we utilize genome-wide SNP markers to dissect
those footprints associated with barley adaptation to landscape
and climatic variables. The associated SNP markers loci were
then searched in the database for the putative genes. To this
end, we are proposing four putative candidate genes due to
their tight linkage with the associated SNP markers as well
as due to likelihood of their functional linkage with a given
climatic variable. For instance, the significant loci associated with
altitude and rainfall variables underlie putative sulfate and L-
lactate dehydrogenase genes. A number of studies suggested the
role of sulfate genes in nutrient transport for plant growth as
well as for environmental adaptation like drought and salinity
stress (Hawkesford and Buchner, 2001; Gallardo et al., 2014).
In Arabidopsis, lactate dehydrogenase genes are involved in

adaptation to hypoxic stress (reduced oxygen because of water
logging or higher altitudes) by switching plants from aerobic
respiration to anaerobic fermentation (Dolferus et al., 2008).
These results, seems to be in line with the present study where
we found a putative association of L-lactate dehydrogenase gene
with altitude and rainfall. Similarly, cation\H+ exchanger (CAX)
and universal stress protein (HvUSP1) appeared as candidates for
adaptation to higher temperature. Plants trigger the expression
of a specialized protein called the heat shock or stress protein
against climatic conditions such as higher temperature (Vierling,
1991; Parsell and Lindquist, 1993; Gupta et al., 2010). These
proteins are then involved in the maintenance of cell membrane
stability, capturing the reactive oxygen species (ROS), synthesis
of antioxidants, accumulation and osmoregulation of osmoticum
(Wahid et al., 2007). We believe that these data reveal a primary
insight into the identification of primary evolutionary candidate
genes mediating adaptation to important landscape and climatic
variables across Ethiopia. However, further experiments are
needed to confirm the precise role of these candidate genes in
the process of local adaptation in barley.

Taken together, the present study has successfully analyzed
the association between genetic markers and environmental
factors to determine their effect on the explainable genetic
variation. We identified climate and geographic variables as
important explanatory aspects of genetic variation followed by
altitude and rainfall as underlying cause of climatic variation.
Hence, the detected correlation between environmental variables
and genetic markers can help to understand the phenomenon
of natural selection, yet, conducting the common garden
experiment to verify the result will provide the strong evidence
for the underlying phenotypic traits. In general, this study has
successfully demonstrated how landscape genomics contribute
to uncover the genetic components (genes) and evolutionary
processes affecting adaptation. In conclusion, we assume that the
detected candidate loci were associated with local adaptation that
showed selective responses to important climatic variables.
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