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Calabria, Reggio Calabria, Italy

In a field experiment conducted in a Mediterranean area of inner Sicily, durum wheat
was inoculated with plant growth-promoting rhizobacteria (PGPR), with arbuscular
mycorrhizal fungi (AMF), or with both to evaluate their effects on nutrient uptake,
plant growth, and the expression of key transporter genes involved in nitrogen (N)
and phosphorus (P) uptake. These biotic associations were studied under either low N
availability (unfertilized plots) and supplying the soil with an easily mineralizable organic
fertilizer. Regardless of N fertilization, at the tillering stage, inoculation with AMF alone
or in combination with PGPR increased the aboveground biomass yield compared to
the uninoculated control. Inoculation with PGPR enhanced the aboveground biomass
yield compared to the control, but only when N fertilizer was added. At the heading
stage, inoculation with all microorganisms increased the aboveground biomass and N.
Inoculation with PGPR and AMF+PGPR resulted in significantly higher aboveground P
compared to the control and inoculation with AMF only when organic N was applied.
The role of microbe inoculation in N uptake was elucidated by the expression of
nitrate transporter genes. NRT1.1, NRT2, and NAR2.2 were significantly upregulated by
inoculation with AMF and AMF+PGPR in the absence of organic N. A significant down-
regulation of the same genes was observed when organic N was added. The ammonium
(NH4

+) transporter genes AMT1.2 showed an expression pattern similar to that of the
NO3

− transporters. Finally, in the absence of organic N, the transcript abundance of
P transporters Pht1 and PT2-1 was increased by inoculation with AMF+PGPR, and
inoculation with AMF upregulated Pht2 compared to the uninoculated control. These
results indicate the soil inoculation with AMF and PGPR (alone or in combination) as a
valuable option for farmers to improve yield, nutrient uptake, and the sustainability of the
agro-ecosystem.

Keywords: mediterranean, organic N uptake, plant growth promotion, Gene Expression Regulation, field
experiments, arbuscular mycorrhizal fungi (AMF), plant growth-promoting rhizobacteria
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Introduction

Plants live in the soil engaging a wide range of interaction with
soil microorganisms. Such interaction can include a benefit, a
disadvantage or a null effect on plant growth and nutrient uptake
and such an effect also depends on soil conditions, especially
nutrient availability for the plant and the microorganisms.

Arbuscular mycorrhizal fungi (AMF) and plant growth-
promoting rhizobacteria (PGPR) are important components of
the soil microbiota and usually have major effects on plant
growth under stressing conditions thanks to their ability to
influence many pivotal physiological processes of both the plant,
such as seed germination rate, root growth and branching,
photosynthetic rates, etc., and soil, e.g., aggregate stability, pH,
activity of pathogens, and so on (Berg, 2009; Venkateshwaran
et al., 2013). In addition, AMF can also provide alternative
nutrient uptake pathways (Finlay, 2004), which are particularly
important for plant growth when nutrient availability is low.
For example, the mobility of phosphate (Pi) is low, especially in
alkaline soils, and its uptake rapidly leads to the development
of depletion zones around the roots, which further limits P
uptake (Schachtman et al., 1998). Pi acquisition in plants
is ensured by members of plasma membrane Pi transporter
family 1 (Pht1; Kobae et al., 2010), which are also involved
in Pi translocation among plant cells and tissues as well as Pi
remobilization from senescent to novel onset organs (Lambers
et al., 2008). Homologous Pht1 genes have been characterized
in many plant species, including Arabidopsis thaliana (Misson
et al., 2004), tomato (Daram et al., 1998), maize (Nagy et al.,
2006), and wheat (Liu et al., 2013). Numerous Pht1 members
act under high-affinity systems and thus play critical roles
in plant Pi uptake under Pi deprivation (Bucher, 2007). The
effects of AMF on the enhancement of P uptake are well
known and involve different genes encoding Pht1 transporters
(Javot et al., 2007). More recently, the differential expression
of two Pi transporter genes (Pht1;3 and Pht1;6) in maize root
colonized by different AMF was also highlighted (Tian et al.,
2013).

Unlike Pi, NO3
−, the dominant N form in most agricultural

soils, is highly mobile, and its uptake proceeds by at least two
transport systems—a low-affinity transport system (LATS; active
at NO3

− concentration >0.2 mm) and a high-affinity transport
system (HATS; operating within 0–0.2 mm)—that allow plants
to maximize NO3

− acquisition under low NO3
−-N availability.

HATS is particularly important for plant nutrition when limited
or no N fertilizer is applied (Malagoli et al., 2004). In bread wheat
(Triticum aestivum), an NRT2.1, an important HATS family, has
been isolated and characterized, and its transcript abundance
decreased in roots in response to NO3

− and NH4
+ (Wang et al.,

2011). Furthermore, an NAR2-like protein actively interacted
with NRT2.1 to form a functional HATS effective in NO3

−
transport (Orsel et al., 2006).

Arbuscular mycorrhizal fungi root colonization positively
affected nitrate uptake and allocation in tomato shoot compared
to an uninoculated control, preferentially mediated by a higher
expression of NRT2.3 (Hildebrandt et al., 2002), which is also
responsible for long-distance N translocation in other species

(Jing et al., 2012). This mechanismwas confirmed by an increased
expression of four different AMF-related nitrate transporter
genes in mycorrhizal Medicago truncatula roots (Hohnjec et al.,
2005).

Unlike NO3
−, NH4

+ tends to be buffered by interactions
with negatively charged soil particles (i.e., by the cation exchange
complex). Saturable and non-saturable systems operating at low
and high external NH4

+ concentrations, respectively, have been
characterized in several plant species (von Wittgenstein et al.,
2014). The uptake of ammonium at low concentrations (i.e.,
under high-affinity conditions) in plant roots is mediated by
AMT1-type ammonium transporters (AMTs), whose activity
depends on several factors, including the plant species. For
example, in Zea mays, such transport is most probably mediated
by two rhizodermis-localized transporters (ZmAMT1;1a and
ZmAMT1;3; Gu et al., 2013). In addition, in mycorrhizal Lotus
japonicus roots, an AMT (LjAMT2;2) is implicated in NH4

+
uptake and is upregulated by the AMF partner (Guether et al.,
2009).

Such as AMF, PGPR can improve the availability of
nutrients for plants through different mechanisms, including
soil acidification, chelation, exchange reactions, and organic
acid biosynthesis (Lugtenberg and Kamilova, 2009). The effects
of PGPR on plants depend on the specific interactions
between microbe and crop species. The Plant responses to
the inoculation of PGPR with varying Zn-mobilizing activity
varied among different wheat genotypes (Abaid-Ullah et al.,
2015). Microarray studies have been conducted to gain insight
into gene and pathway regulatory networks in response to
inoculations of PGPR in maize and Arabidopsis (Fan et al.,
2012). Proteomic approaches have also been used to elucidate
posttranscriptional regulation mechanisms (Cheng et al., 2009).
However, little information is available about the regulation
mechanisms of plant gene expression mediated by the PGPR–
plant interaction.

Considering the ability of both PGPR and AMF to help plants
take up nutrients, they could be the most important players
in shifting from conventional to sustainable land management
practices. The aim of the present work was to study the N and
P uptake of durum wheat grown in soil inoculated with PGPR,
AMF, or both and grown under conditions of different nutrient
availability. Durum wheat (cv. Anco Marzio) was grown in the
field, and the expression of key genes involved in the uptake of
nitrate, ammonium, and Pi was evaluated.

Materials and Methods

Farm and Field Conditions and Experimental
Design
A field trial was performed in the 2011–2012 growing season at
Pietranera farm (Sicily, Italy; 37◦30′ N, 13◦31′ E; 178 m a.s.l.) on
a deep, well-structured soil classified as a Vertic Xerochrept. Soil
properties (0–0.60 m layer) were as follows: 52% clay, 25% sand,
pH 8.2 (1:2.5 H2O), 16.8 g kg−1 total C (Walkley–Black), 1.78 g
kg−1 total N (Kjeldahl), 92 mg kg−1 available P2O5 (Olsen),
1.37 g kg−1 total P2O5, 35 cmol kg−1 cation exchange capacity,
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37.2% water content at field capacity, and 19.6% at the permanent
wilting point. The climate of the experimental site is semiarid
Mediterranean, with a mean annual rainfall of 581 mm, mostly
in autumn/winter (76%) and in spring (19%). The dry season
is from May to September. The mean air temperature is 15.9◦C
in autumn, 9.7◦C in winter, 16.5◦C in spring, and 24.7◦C in
summer. Weather data were collected from a weather station
located within 100 m of the experimental site. In the 2011–2012
growing season, total rainfall from September to March was very
similar to the long-term average (513 vs. 490 mm, respectively),
whereas the air temperature was 1.3◦C lower than the long-term
average. Soil, cropped in the previous growing seasonwith durum
wheat (Triticum durum Desf.), was plowed to a depth of 0.30 m
in the summer and then shallowly harrowed twice to control
weeds and prepare suitable seedbed conditions. No herbicides
were applied.

The experimental design was a split-plot design with six
replications. Themain plots was N application (either fertilized or
not). Subplot treatments consisted of microorganism inoculation:
soil inoculated with only AMF (+AMF), inoculated with
only PGPR (+PGPR), inoculated with both AMF and PGPR
(+AMF+PGPR), uninoculated control (NAT). Main plots were
7.5 m × 6.0 m; each main plot was spaced 1.0 m out from
the next. Along the 7.5-m side, each main plot was split in 4
subplots 1.5 m wide; within the main plot, each subplot was
spaced 0.5 m out from the next to avoid cross inoculation
among sub-treatments. Each 0.5-m or 1.0-m wide corridors was
tilled once per month to avoid AMF and PGPR movements
across plots. Fertilized plots received 80 kg N ha−1 as an
organic fertilizer (Hydrolysed leather meal, Dermazoto N11,
Organazoto Fertilizzanti S.p.A., San Miniato, Pisa, Italy), with
11% N, 0.9% P, and 40% organic C applied 1 day before
sowing. Inoculation with AMF included the application of the
commercial AMF inoculum (Micronised Endo Mycorrhizae,
Symbio, Wormley, Surrey, Great Britain). This inoculum was
composed of 5% organic material and 95% AM spores,
including the following AM species: Scutellospora calospora,
Acaulospora laevis, Gigaspora margarita, Glomus aggregatum,
Rhizophagus irregulare (syn G. intraradices), Funneliformis
mosseae (syn G. mosseae), G. fasciculatum, G. etunicatum,
and G. deserticola. Total spore density in the inoculum was
25 spores g−1 per species. The inoculum was mixed with
wheat seed at a rate of 1.55 g inoculum m−2 and drilled
simultaneously during sowing using a batch type precision
seeder.

The PGPR inoculum (Bacillus sp. on bran, Symbio) was
applied to the soil at a rate of 1.55 g inoculum m−2 at
the time of sowing. The PGPR inoculum used was composed
of the following species: Bacillus amyloliquefaciens, B. brevis,
B. circulans, B. coagulans, B. firmus, B. halodenitrificans, B.
laterosporus, B. licheniformis, B. megaterium, B. mycoides, B.
pasteurii, B. polymyxa, and B. subtilis, each at a density of 2
billion cfu g−1. Inoculation of +AMF+PGPR was performed by
applying to the soil 1.55 g AM inoculum m−2 and 1.55 g PGPR
inoculum m−2 as previously described.

Durum wheat (cv. Anco Marzio) was sown in the second half
of December 2011 at a rate of 350 viable seeds m−2 in rows

0.18 cm apart. The experimental plot consisted of eight rows 6 m
long. Weeds were controlled by hand during the experiment. At
wheat tillering (on 4 April 2012, i.e., 110 days after sowing), the
aboveground biomass of a subplot (six rows 0.75 m long) in the
middle of the plot was harvested and weighed, and a subsample
of 1 kg of fresh matter was taken and oven dried at 70◦C until
a constant weight. The biomass was then analyzed for total N
(Kjeldahl) and P (Bertramson), the latter measured after 48 h
heating at 550◦C and with no addition of magnesium nitrate.

Root Infection by AMF and Rhizoplane
Colonization by Bacteria
Roots from five randomly chosen plants from each plot were
sampled and three root subsamples of about 3 g each were taken.
The first root subsample was immediately freeze dried in liquid
N to stop metabolic activity and stored at −80◦C. The second
root subsample was stained with 0.05% trypan blue in lactic
acid according to Phillips and Hayman (1970); root colonization
by AMF was then measured with the grid intersect method
according to Giovannetti and Mosse (1980). The third root
sample was aseptically separated from the shoots, cleared from
soil with sterile forceps and saved at −80◦C for further analysis.
Rhizoplane bacteria were extracted according to Pereira et al.
(2011). Briefly, bacteria from each root sample were submerged
in sterile phosphate buffered saline (PBS: NaCl 8 g, KCl 0.2 g,
Na2HPO4 1.15 g, KH2PO4 0.2 g, deionized water 1000 ml, pH
7.3) and serially diluted up to 10−9. Aliquots of 0.2 ml were
taken and plated in duplicate on nutrient agar (OXOID, Milan,
Italy) treated with 15 mg/l nystatin to impair fungi growth. Plates
were aerobically incubated at 30◦C. Colony-forming units were
counted after 2, 4, and 7 days to allow for the development of
slower growing colonies.

Gene Expression Analysis
Real-time Sybr PCR analysis was performed to evaluate the
expression of durum wheat genes in response to microorganism
inoculation and N fertilization. The gene expression analyses
were conducted at anthesis. Three biological replicates were
considered for each of the eight conditions. Each replicate
was a pool of 10 roots from two plants per plot. For each
target gene, PCR primers were designed based on Triticum
aestivum sequences present in NCBI (Table 1) and used
with Sybr Mix reactions (Bio-Rad, Hercules, CA, USA). RNA
was extracted from roots using the Plant Mini Extraction
Kit (Qiagen, Hilden, Germany). DNase treatment and cDNA
synthesis were performed in a combined protocol following
the Quantitect Reverse Transcription Kit (Qiagen) instructions.
A standard curve to determine the linearity of amplicon
quantity versus initial cDNA quantity was generated for each
gene. Amplifications using 25 ng cDNA in a 15-µL final
volume were performed. Amplifications were conducted on
a Bio-Rad iQ5 PCR system using standard amplification
conditions: 10 min at 95◦C, 40 cycles of 15 s at 95◦C,
and 1 min at 60◦C. All PCR reactions were performed in
duplicate. The qPCR results were analyzed using the 2−�Ct

comparative method as previously described in the Real-
Time PCR Application Guide (Bio-Rad) and by Livak and
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TABLE 1 | List of primers used in qRT-PCR analysis.

Gene Primer sequences

Pht2 AJ344242 F: TTGGAGGAGTTGTACCGCAT
R: TAGAGCACGACGAAACCAGT
R: AGGCAGGAGACAGGTGAAAA

PT2-1 AY293827.1 F: TACATGCAGGTCCTGTCAGC
R: TATCTCAGCGCTGCTTGCTA

Pht1 AJ830009.1 F: TGATCATGGGCTCCTTCCTC
R: ACCAGGTGACAATGCAACC

NRT1.1 AY587265.1 F: CACAGCGAATAGGGATTGGT
R: CGCCTAGCAGGAAGTACTGG

NRT2 AF288688.1 F: GTGGTGCCACACAACTCATC
R: TTCTGGAGACTCGCAAGGTT

NAR2.2 AY763795.1 F: CCTCTCCAAGCTTCCTGTGA
R: CGTAGCAGAGGCTGACCTT

AMT2.1 AY428038.1 F: AGCCGAACCTCTGCAATCTA
R: TGACGACGCAGATAATGGAC

AMT1.2 AY525638.1 F: CGGCTTCGACTACAGCTTCT
R: AGTGGGACACCACAGGGTAG

18S AB778770.1 F: CAACGGATATCTCGGCTCTC
R: TTGCGTTCAAAGACTCGATG

Schmittgen (2001). Based on the fluorescence logarithmic
graph, the appropriate threshold was chosen and the Ct was
measured with an autocalculated threshold following baseline
subtraction. The 18S gene of Triticum aestivum (AB778770)
was shown to have more constant expression than elongation
factor 1. Thus, 18S was used as a reference gene. Relative
changes in expression were determined by calculating the
�Ct between the target (Ct sample) and reference (Ct 18S)
genes.

Statistical Data Analysis
Analysis of variance (GLM; SAS Institute, 2008) was performed
according to the experimental design. When no interaction
between treatments occurred, treatment means were compared
using Tukey’s honest significant difference (HSD0.05) at the
5% probability level. When an interaction between treatments
occurred, p-values at the 5% probability level for differences
of the LSMEANS (pdiff) were used to separate interaction
means.

Data on transporter expressionwere standardized to amean of
0 and a standard deviation of 1. Canonical discriminant analysis
(Klecka, 1980) (CDA; procedure CANDISC; SAS Institute, 2008)
was run on standardized data to summarize the mean variation
in transporter expression across all treatments.

Results

Root Mycorrhizal Colonization and Rhizoplane
Colonization by Bacteria
Fertilization did not affect root colonization by AMF (Table 2).
Soil inoculation with AMF (either alone or in combination
with PGPR) markedly increased root colonization by AMF.
No interaction among treatments on root AM colonization
was observed; however, root AM colonization of treatments TA
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inoculated with PGPR alone was slightly higher in unfertilized
than fertilized treatments (32.3 and 23.8%, respectively, pdiff at
LSMEANS= 0.0535).

Fertilization increased by 13.0% the Log10 number of bacteria
on the rhizoplane. Under unfertilized conditions, inoculation
with either AMF or PGPR increased Log10 number of bacteria on
the rhizoplane, whereas under fertilized conditions, only PGPR
(inoculated either alone or in combination with AMF) increased
the density of bacteria on the rhizoplane (Table 2).

Plant Growth
At tillering, both N fertilization and soil inoculation with plant
growth-promoting microorganisms significantly affected the
aboveground biomass of wheat. Compared to NAT, inoculation
with both microrganisms (AMF or PGPR, or both) increased
the aboveground biomass yield in both the fertilized and
unfertilized treatments. The effects of soil inoculation on total
N in the plant aboveground biomass varied according to the
fertilizer treatment: in the unfertilized treatments, inoculation
with AMF slightly, but not significantly, increased total N
compared to NAT, whereas in the fertilized treatments, both
PGPR and AMF, either singly, or co-inoculated, increased total N
compared to NAT.However, in unfertilized plots, soil inoculation
with plant growth-promoting microorganisms did not influence
plant N concentrations (pdiff at LSMEANS = 0.987), whereas
in fertilized treatments, inoculation with PGPR significantly
increased plant N concentration compared to NAT (pdiff at
LSMEANS = 0.012). Fertilization with an organic fertilizer
strongly reduced the wheat P concentration (on average 3.40
and 2.42 mg P kg−1 biomass in unfertilized and fertilized plots,
respectively). The effects of fertilization and soil inoculation
with both microorganisms (AMF, PGPR, or both) on total
aboveground P were very similar to those observed for
total N.

At heading, soil inoculation with plant growth-promoting
microorganisms always increased, compared to NAT,
aboveground biomass and N accumulation in both unfertilized
and fertilized treatments. For both of these traits, the greatest
advantage was seen for AMF+PGPR, but only when the crop
was fertilized. The effect of the inocula on the biomass N
concentration at heading varied by fertilization treatment: in the
unfertilized condition, soil inoculation with only AMF (+AMF)
increased the N concentration compared to NAT, whereas in the
fertilized condition, inoculation with PGPR (either alone or in
combination with AMF) resulted in a higher N concentration
than NAT.

Gene Expression Analysis
Pi Transporters
Fertilization decreased the expression of Pht1 by 86% and
PT2-1 by 49% (Figure 1). Inoculation with any or both
of the plant growth-promoting microorganisms used in
this study (AMF and/or PGPR) increased PT2-1. Under
unfertilized conditions, inoculation with AMF significantly
enhanced Pht2 expression compared to NAT, whereas
inoculation with PGPR downregulated it. Expression of
Pht2 in AMF+PGPR was similar to that observed in treatments

FIGURE 1 | Expression of phosphate transporter genes (Pht1, Pht2,
and PT2-1) in Triticum durum root. Plants were grown under the
unfertilized conditions or fertilized with an organic fertilized with low C:N ratio.
Soil was left with the native microbial inoculum (NAT, white bars); inoculated
with only arbuscular mycorrhizal fungi spores (AMF, scaled bars); only plant
growth-promoting rhizobacteria (PGPR, gray bars), or both AMF+PGPR
(black bars). Means (n = 6) with standard errors, and analysis of variance
results are shown. Fert is for fertilization treatment, Inoc for Inocula. Tukey’s
honest significant difference (HSD0.05) of Inocula is shown when Inocula, but
not Fertilizer × Inocula interaction, is significant.

inoculated with AMF alone. Under fertilized conditions, no
differences were found in Pht2 expression among inoculation
treatments.

N Transporters
NRT1.1 was significantly lower in fertilized than unfertilized
treatments, whereas soil inoculation with AMF and AMF+PGPR
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FIGURE 2 | Expression of nitrate transporter genes (NAR2.2, NRT1.1,
NRT2) in T. durum root. Plants were grown under the unfertilized conditions
or fertilized with an organic fertilized with low C:N ratio. Soil was left with the
NAT (white bars); inoculated with only AMF spores (scaled bars); only plant
PGPR (gray bars), or both AMF+PGPR (black bars). Means (n = 6) with
standard errors and analysis of variance results are shown. Fert is for
fertilization treatment, Inoc for Inocula. Tukey’s HSD0.05 of Inocula is shown
when Inocula, but not Fertilizer × Inocula interaction, is significant.

strongly increased its expression compared to NAT and PGPR,
respectively (Figure 2).

The effects of soil inoculation with plant growth-promoting
microorganisms on the expression of NRT2 and NAR2.2
varied by fertilization treatment. In unfertilized conditions,
differences among inocula were similar to those observed for

NRT1.1. In fertilized treatments, no differences in the expression
of NRT2 and NAR2.2 were observed among inoculation
treatments.

The addition of an organic fertilizer to the soil also reduced
both AMT1.2 and AMT2.1 (−47 and −67% compared to
unfertilized treatments; Figure 3). Inoculation with AMF (alone
or with PGPR) increased AMT2.1 in unfertilized but not
fertilized treatments. Finally, expression of AMT1.2 was higher
in AMF+PGPR than all other inoculation treatments (AMF or
PGPR alone or NAT).

CDA
Canonical Variable (Can) 1 accounted for 86% of the total
variance (P < 0.001) and Can 2 accounted for 8% of the
total variance (P = 0.008). Can 1 mostly varied according
to NRT2 (score = −9.41) and NAR2.2 (score = +4.91),
whereas Can 2 was mostly influenced by AMT1.2, NRT2,
and NAR2.2 (scores = −1.92, 1.60, and 1.08, respectively).
Can 1 did not discriminate among fertilized and unfertilized
treatments. CDA (Figure 4) clearly differentiated samples from

FIGURE 3 | Expression of ammonium transporter genes (AMT1.2,
AMT2.1) in T. durum root. Plants were grown under the unfertilized
conditions or fertilized with an organic fertilized with low C:N ratio. Soil was left
with the NAT (white bars); inoculated with only AMF spores (scaled bars); only
plant PGPR (gray bars), or both AMF+PGPR (black bars). Means (n = 6) with
standard errors and analysis of variance results are shown. Fert is for
fertilization treatment, Inoc for Inocula. Tukey’s HSD0.05 of Inocula is shown
when Inocula, but not Fertilizer × Inocula interaction, is significant.
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FIGURE 4 | Canonical discriminant analysis constructed with the gene expression data of T. durum root. Percentage of total variance explained by each
canonical axis is shown in parentheses. Percentages of variance explained by Can 3 to Can 7 were not significant (data not shown). Plants were grown under the
unfertilized conditions (U, yellow symbols) or fertilized with an organic fertilized with low C:N ratio (F, green symbols). Soil was left with the NAT (circles); inoculated
with only AMF spores (triangles); only plant PGPR (diamonds), or both AMF+PGPR (squares). Nitrate transporters vectors are shown in red, AMTs vector in blue and
phosphorus transporters vector in black. Each symbol represents the treatment centroid within Can 1 and Can 2. Bars represent the standard error of the
distribution of each treatment.

AMF-inoculated, unfertilized plots from all other treatments
(with P > Mahalanobis distance always less than 0.003),
whereas the other treatments (i.e., unfertilized NAT and
unfertilized PGPR and all the fertilized treatments) were grouped
together.

Discussion

Root Mycorrhizal Colonization, Rhizoplane
Colonization by Bacteria and Plant Growth
Soil inoculation with plant growth promoting microbes, such as
PGPR and AMF, is a promising tool of integrated management
systems, and many efforts have been made to increase the
efficiency of plants’ use of nutrients (from either soil or
fertilizers) through microbial technology and the sustainability
of the cropping systems. In the present work, the effects of
soil inoculation with AMF and PGPR efficient at promoting
plant growth were studied in durum wheat grown in an area
characterized by poor N availability and soil organic carbon
content. We found that inoculation with AMF, PGPR, or
both increased rhizoplane colonization by bacteria, which is
an important indicators of soil quality (Schloter et al., 2003).
And this occurred especially under unfertilized conditions.
Root colonization by the natural AM consortium (NAT) was

lower than that observed by other authors in the same species
(Gao et al., 2010). Soil inoculation with AMF spores markedly
increased root AM colonization and rhizoplane colonization
by bacteria. Teng et al. (2013) observed that natural AM
colonization decreased with increasing P supply to the soil. In
our experiment, both available and total soil P content were very
high (92 ppm and 1370 ppm, respectively), and this, along with
the huge amount of P fertilizer usually applied in the area, may
have contributed to the selection of less beneficial AM species
(Ehinger et al., 2009). Nonetheless, the increase in root AM
colonization after soil inoculation with AMF, as also observed
elsewhere (Al-Karaki et al., 2004), suggests that other factors
could be detrimental to the colonization process by the NAT,
including the effect of soil organic matter content on AMFgrowth
(Kohler et al., 2015) or continuous soil plowing. Indeed, soil
inversion plowing disrupts the AM hyphal net, which usually
represents the most important source of inoculum, and displaces
spores in the deep soil layer, where root growth is delayed in
the growing season (Kabir, 2005). In addition, plowing may
select for sporulating AM fungal genotypes, which invest more
resources in sporulation rather than symbiotic activity (Jansa
et al., 2003).

Soil inoculation with AMF increased plant growth irrespective
of fertilization, and this resulted in a higher aboveground biomass
yield and N and P uptake in comparison with uninoculated
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treatments. These results agree with those obtained in other
experiments carried out in both field and controlled (pot)
conditions (Adesemoye et al., 2008; Berta et al., 2014; Saia
et al., 2014a,b). As observed by Baris et al. (2014) in spring
wheat and barley, in our experiment soil inoculation with
PGPR increased the aboveground biomass and N and P uptake
in comparison with uninoculated treatments, but only when
organic fertilizer was applied. Several studies have shown that
the advantages of PGPR can be attributed, among other factors,
to a more rapid breakdown of organic matter, which enhances
the availability of nutrients for plants (Yildirim et al., 2011).
The delay in the benefit of PGPR compared to AMF in terms
of N uptake may be due to the time required by PGPR for
the mineralization processes, the amount and quality of wheat
root exudates and root biomass, or the reduced availability
of carbon for bacteria (Hu et al., 2009), as the effect of
PGPR at tillering was evident only in the organic fertilized
treatments.

Pi and N Transporters
Besides the adaptive strategies adopted by plants to increase
P absorption, such as secreting phosphatases, organic acids,
and protons (Dunlop and Gardiner, 1993) or enhancing root
growth and/or modifying root morphology (Bates and Lynch,
1996), positive correlations between AMF symbiosis formation
and shoot biomass, P uptake, and total P content have
been reported (Avio et al., 2006). In the present experiment,
fertilization reduced all P transporters, although the effects of
the inocula varied depending on the fertilization treatment:
under uninoculated treatments, inoculation with AMF increased
the expression of both Pht2.1 and Pht2, the latter of which
was also increased by PGPR in fertilized treatments. The
effects of fertilization on total P uptake, but not those of
soil inoculation with both microorganisms, complied with the
expression of P transporters: indeed, total P uptake increased
after fertilization, which suggests that fertilization resulted in
an increase in the available P fraction in soil, and this may
have been due to soil acidification by the soil bacteria when
mineralizing the organic fertilizer (Bertrand et al., 2007). Because
inoculation with PGPR increased plant growth and total P
uptake in fertilized treatments, we should have observed a
reduction in the expression of P transporters compared to
uninoculated treatments (NAT). Nonetheless, P transporters of
wheat in plots inoculated with PGPR were higher than NAT.
This implies that PGPR can stimulate P uptake through a
direct effect on plant metabolism (Richardson et al., 2009).
The role and importance of AM and/or PGPR in plant
N nutrition is uncertain, and it is not clear under which
conditions AM is beneficial for N uptake. Consistent with
their specific function, many members of the NRT1 and
NRT2 families are involved in the uptake of nitrates from the
soil into the root and their translocation to the shoots (Fan
et al., 2009). In particular, the dual-affinity NRT1.1 transporter
is triggered by a wide range of soil nitrate concentrations,
and its switching from LATS to HATS functionality is
determined by a phosphorylation at Thr101 (Ho et al., 2009).
Here, NRT1.1 transcript abundance was influenced by both

inoculation with AMF and fertilization, confirming its dual-
affinity function.

In contrast, the NRT2.1 member of the NRT2 family
encodes a HATS of nitrate uptake (Huang et al., 1999). The
expression of NRT2 from Triticum aestivum with high homology
with AtNRT2.1 under unfertilized conditions was significantly
induced, in T. durum, by inoculation with AMF+PGPR
compared to the uninoculated control. A less significant increase
in NRT2 expression was also induced by inoculation with
AMF. As expected, a downregulation in NRT2 was observed
when N80 organic fertilizer was supplied. The upregulation
of both NRT1.1 and NRT2 by inoculation with AMF and
AMF+PGPR is consistent with the increased aboveground N
compared to NAT. These results suggest that in unfertilized
plots, the increased N accumulation in the AMF-inoculated
plant biomass is mediated by the upregulation by AMF of
nitrate transporter genes. In terms of the classification of
nitrate transporters as constitutive, repressible, and inducible
(Wang et al., 2003), our results show that both NRT1.1
and NRT2 seem to be nitrate-repressible genes, although
NRT2 was more downregulated than NRT1.1 under fertilized
conditions, according to its nitrate dual affinity (Ho et al.,
2009).

Moreover, NRT2.1 may interact with an NAR2-type protein
for a functional HATS based on the essential role of NAR2.1 in
Arabidopsis (Orsel et al., 2006). Under unfertilized conditions,
NAR2.2 was significantly induced by inoculation with AMF and
AMF+PGPR compared to the uninoculated control. Thus, like
NRT2, its HATS partner NAR2.2 was highly inhibited by organic
N fertilization. Given NRT2/NAR2.1 expression and the relative
protein interaction, first reported in Arabidopsis (Orsel et al.,
2006), here we have shown an AMF can have a role in mediating
the expression of NRT2/NAR2.1 in durum wheat. In particular,
the two genes seemed to be upregulated by inoculation with AMF
and AMF+PGPR, and this was probably mediated by a reduced
availability of ammonium in AMF and AMF+PGPR than NAT
(Saia et al., 2015). In particular, the presence of AMF highly
upregulated NAR2.2. In contrast, NRT2/NAR2.2 was strongly
downregulated by N fertilization per HATS functionality but
probably also through the increase in the availability of NH4

+ in
fertilized soils.

Such as observed in nitrate transporters, we also found
that in unfertilized conditions, the expression of the HATS
AMT1.2 was significantly increased when wheat was inoculated
with AMF+PGPR compared to NAT; a positive, though not
significant, effect was also observed with inoculation with AMF.

These results do not completely agree with the AMT2 gene
family low-affinity function, but previous findings showed that
the regulation of both AMT family genes is controlled by a
complex network of different N forms and concentrations (Glass
et al., 2002).

Conclusion

In conclusion, the results of the present study showed
that soil inoculation with AMF increased plant growth and
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N uptake of durum wheat compared to the uninoculated
control irrespective of fertilization. CDA suggested that the
effects of the inoculation with AMF on the expression of P
and N transporters in the plant root were evident only in
unfertilized condition. Soil inoculation with PGPR benefitted
plant growth and nutrient uptake only when organic fertilizer was
added.

Agronomic benefits from the soil inoculation with beneficial
microbes could depend on the availability of nutrient for the
microbe: AMF, which receive photosynthates only from the host
plant, in our experiment benefitted the crop under both fertilized
and unfertilized conditions, whereas PGPR,which can also take C
from the soil, benefitted the crop only in plots where the organic
fertilizer was added.

These results indicate soil inoculation with AMF and PGPR
(alone or in combination) is a valuable option for farmers to
improve nutrient uptake and the sustainability of the agro-
ecosystem. Further studies are needed to evaluate the benefit of
the soil inoculation with efficient consortia of both AMF and
PGPR at varying the doses and characteristics of the fertilizers
applied.
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